CN110557027A - 一种应用于感应电能传输系统最大效率跟踪dc-dc变换器及其控制方法 - Google Patents

一种应用于感应电能传输系统最大效率跟踪dc-dc变换器及其控制方法 Download PDF

Info

Publication number
CN110557027A
CN110557027A CN201910868764.5A CN201910868764A CN110557027A CN 110557027 A CN110557027 A CN 110557027A CN 201910868764 A CN201910868764 A CN 201910868764A CN 110557027 A CN110557027 A CN 110557027A
Authority
CN
China
Prior art keywords
switching tube
output
diode
tube
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910868764.5A
Other languages
English (en)
Other versions
CN110557027B (zh
Inventor
游江
程连斌
张镠钟
彭辉
李晓旭
周玮
王西贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201910868764.5A priority Critical patent/CN110557027B/zh
Publication of CN110557027A publication Critical patent/CN110557027A/zh
Application granted granted Critical
Publication of CN110557027B publication Critical patent/CN110557027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Abstract

本发明属于电能传输领域,公开了一种应用于感应电能传输系统最大效率跟踪DC‑DC变换器及其控制方法,包括LCL‑S补偿拓扑、不控整流桥和双管Buck‑Boost电路;LCL‑S补偿拓扑的输出与不控整流桥的输入连接,不控整流桥的输出与双管Buck‑Boost电路的输入连接。本发明通过调节全桥逆变电路超前与滞后桥臂之间的移相角来实现对感应电能传输恒压控制,通过采用交错占空比偏置调制策略来控制DSBB开关管来实现阻抗匹配,保持整流桥输出侧等效负载始终处于最大效率负载点;本发明的双管结构能有效减小开关管的电压电流应力,使系统输出具有更宽的电压范围和更高的功率等级;升降压模式的调节能够使系统在实现最大效率跟踪时负载的可调范围更广,极大提高了系统的适用性。

Description

一种应用于感应电能传输系统最大效率跟踪DC-DC变换器及 其控制方法
技术领域
本发明属于电能传输领域,尤其涉及一种应用于感应电能传输系统最大效率跟踪DC-DC变换器及其控制方法。
背景技术
传统的电能传输方式如插座等具有热插拔特点,容易产生电火花等安全隐患,无法实现电气隔离,维护成本较大,难以满足电动汽车、矿井供电及水下充电等应用场景的需求,因此实现高效的感应电能传输十分必要。如何提高电能传输过程中的效率,降低传输损耗,节省使用成本显得尤为重要。
根据能量传输过程中中继能量形式的不同,无线电能传输可分为:磁场耦合式、电场耦合式、电磁辐射式如太阳辐射、机械波耦合式超声。其中,磁耦合式是目前21世纪初研究最为火热的一种无线电能传输方式,也就是将高频电源加载到发射线圈,使发射线圈在电源激励下产生高频磁场,接收线圈在此高频磁场作用下,耦合产生电流,实现无线电能传输。
感应式无线电能传输技术ICPT是一种利用磁场耦合原理,将电能以非导线连接的方式从电源端传输到负载端的技术。它提高了用电设备的灵活性,是一种安全、可靠、灵活的供电方式。实现电能无线传输的主要挑战在于其较低的传输效率和功率传输能力,造成这种结果的主要原因是由于其相较于传统变压器,发射绕组和接收绕组之间存在较大气隙,耦合系数较低且存在较大漏感,系统整体的功率因数很低,所以必须加入谐振补偿电路,使系统工作在单位功率因数,提高电路整体的效率。
感应电能传输系统主要由直流电源、松耦合变压器及电力电子变换器组成。整个系统能够实现安全可靠的无接触式电能传输。在实际的工作环境下,负载状态通常并不是恒定的,很难保证传输过程始终处于最大效率的工作点附近。现阶段保持IPT系统动态运行过程最大效率传输的方法大致分为两类,一类是频率跟踪控制,另一类是阻抗匹配,包括无源阻抗匹配和有源阻抗匹配。无源阻抗匹配是利用电感电容阻抗调节网络来实现某固定负载点的等效,无法实现动态跟踪。有源阻抗匹配即在定频工作时,利用Buck变换器来实现等效负载的调节,以保证系统运行在最大效率工作点处,但由于自身结构限制,负载侧的等效阻抗可调范围十分有限,当负载大幅变化时并不适用。因此,提高变压器耦合系数及设计合理的补偿网络是感应式无线电能传输系统的主要研究方向。
发明内容
本发明的目的在于公开适用性广、可调范围大的一种应用于感应电能传输系统最大效率跟踪DC-DC变换器及其控制技术。
本发明的目的是这样实现的:
一种应用于感应电能传输系统最大效率跟踪DC-DC变换器,包括LCL-S补偿拓扑、不控整流桥和双管Buck-Boost电路;LCL-S补偿拓扑的输出与不控整流桥的输入连接,不控整流桥的输出与双管Buck-Boost电路的输入连接。
进一步地,LCL-S补偿拓扑,包括直流电源E,全桥逆变电路,电感L1,耦合器自感Lp,耦合器自感Ls,电容C1和电容Cs;全桥逆变电路由开关管Q1,开关管Q2,开关管Q3和开关管Q4组成;直流电源E与全桥逆变电路的输入连接;电容C1与耦合器自感Lp并联后再与电感L1串联;电容C1、耦合器自感Lp、电感L1的混联与全桥逆变电路的输出连接;耦合器自感Ls与电容Cs并联;开关管Q1和开关管Q2,开关管Q3,开关管Q4均为180°互补导通,开关管Q1,开关管Q2,开关管Q3和开关管Q4的占空比固定为0.5。
进一步地,不控整流桥由二极管D1、二极管D2、二极管D3和二极管D4组成;耦合器自感Ls与电容Cs的并联与不控整流桥的输入连接。
进一步地,双管Buck-Boost电路包括滤波电容Cf、开关管S1、开关管S2、二极管VD1、二极管VD2、电流传感器CSA、电流传感器CSB、电压传感器VS、电感L、电容C和负载RL;滤波电容Cf与不控整流桥的输出连接;开关管S1与二极管VD1串联,开关管S1与二极管VD1的串联和滤波电容Cf并联;三者并联二极管VD2与开关管S2串联;二极管VD2与开关管S2的串联、电容C、负载RL三者并联;开关管S2的远离二极管VD2的一端与二极管VD1的远离开关管S1的一端连接;电感L的一端连接于开关管S1与二极管VD1之间,电感L的另一端连接于二极管VD2与开关管S2之间;电流传感器CSA连接于电感L所在的线路上,电流传感器CSB连接于负载RL所在的支路上,电压传感器VS连接于负载RL上。
一种应用于感应电能传输系统最大效率跟踪DC-DC变换器的控制方法,包含如下步骤:
步骤(1):初始化系统,将程序中的输出电压控制器、电感电流控制器、开关管S1和开关管S2的占空比发生器输出均设置为0;
步骤(2):采集电压传感器VS得到输出直流电压值uo,将输出直流电压值uo与设置的电压值u* o进行比较,将输出直流电压值uo与设置的电压值u* o的偏差信号Δuo输入至控制器Gv并作为电感电流的给定量i* L;采集电流传感器CSA得到电感电流值iL,将电感电流值iL与控制器Gv输出的给定量i* L进行比较,将电感电流值iL与控制器Gv输出的给定量i* L的偏差信号ΔiL输入至控制器Gi并对控制器的输出进行限幅,将限幅后的输出经过运算后作为全桥逆变电路的移相角控制信号
步骤(3):采集电流传感器CSB得到输出直流电流值io,根据输出直流电压值uo和输出直流电流值io,利用欧姆定律计算感应电能传输系统实时的负载值RL
步骤(4):将感应电能传输系统实时的负载值RL输入至占空比发生器,得到DC-DC变换器的占空比控制信号d,并对d进行偏置处理得到开关管S1的控制信号d1以及开关管S2的控制信号d2
步骤(5):将d1、d2分别作为调制信号用于PWM调制,采用幅值为VM的三角波作为载波信号,产生占空比为d1、d2的两路脉冲序列,分别用于驱动DC-DC变换器开关管S1与开关管S2
步骤(6):将固定占空比0.5作为调制信号,同样采用幅值为VM的三角波作为载波,将开关管Q3、开关管Q4组成的桥臂LegB的载波信号滞后开关管Q1、开关管Q2组成的桥臂LegA角度产生两路占空比为0.5,相位差为的脉冲序列,将该脉冲序列用于分别驱动全桥逆变电路桥臂LegA的上开关管Q1和桥臂LegB的上开关管Q3,桥臂LegB和桥臂LegA下开关管Q2与开关管Q4分别与对应桥臂上的开关管互补导通,占空比也为0.5;
步骤(7):判断是否接收到停机指令,若没有接收到停机指令,返回执行步骤(2);若接收到停机指令,则退出运行状态。
本发明的有益效果为:本发明通过调节全桥逆变电路超前与滞后桥臂之间的移相角来实现对感应电能传输恒压控制,通过采用交错占空比偏置调制策略来控制DSBB开关管来实现阻抗匹配,保持整流桥输出侧等效负载始终处于最大效率负载点;本发明的双管结构能有效减小开关管的电压电流应力,使系统输出具有更宽的电压范围和更高的功率等级;升降压模式的调节能够使系统在实现最大效率跟踪时负载的可调范围更广,极大提高了系统的适用性。
在感应电能传输系统中,直流电源作为全桥逆变电路的输入,逆变全桥通过LCL-S补偿结构与中间的功率拾取机构即松耦合变压器相连,并作为不控整流电路的输入,负载通过双管Buck/Boost变换器(DSBB)与整流电路的输出相连。通过调节全桥逆变电路的移相角来实现负载的恒压输出控制,通过采用交错占空比偏置调制策略来控制DSBB开关管以降低电感电流纹波,同时保持整流桥输出侧等效负载始终处于最大效率负载点。DSBB的双管结构能够有效降低开关管电压电流应力,满足更高电压的输出要求,并且能够在有限占空比调制下允许更宽的负载范围运行在最大效率状态。
附图说明
图1是一种应用于感应电能传输系统最大效率跟踪DC-DC变换器及其控制技术结构图;
图2是最大效率跟踪以及恒压控制策略示意图;
图3是感应电能传输系统恒压控制系统输出波形图;
图4是感应电能传输系统最大效率跟踪时实际负载值与等效负载值变化波形图;
图5是一种应用于感应电能传输系统最大效率跟踪DC-DC变换器及其控制技术流程图。
具体实施方式
下面结合附图来进一步描述本发明:
如图1,一种应用于感应电能传输系统最大效率跟踪DC-DC变换器及其控制技术,主要的电路拓扑结构为感应电能传输主电路和阻抗匹配主电路,前者主要由松耦合变压器,由L1、C1、Cs以及耦合器自感Lp、Ls由组成的LCL-S补偿拓扑,由开关管Q1-Q4构成的全桥逆变电路,由二极管D1-D4构成的不控整流桥以及滤波电容Cf组成。其中,逆变电路开关管Q1和Q2、Q3、Q4均为180°互补导通,其占空比固定为0.5,由开关管Q1和Q2组成的超前桥臂LegA和由Q3、Q4组成的滞后桥臂LegB间的相位角为阻抗匹配主电路主要由双管Buck-Boost电路组成,交错占空比偏置调制方式即使开关管S1与S2的开关信号具有180°的相位差,且两个开关管的导通占空比不同,定义开关管S1的占空比为d1,S2的占空比为d2,控制器输出占空比为d,偏置量为c,则两个开关管的占空比分别等于d加减偏置量c。全桥逆变电路的输入与直流电源连接,LCL-S补偿拓扑将逆变电路与整流电路相连接,整流桥输出通过DSBB变换器与负载相连接。其中,E为直流电源输出电压,i1为逆变全桥中点电流,ip、is分别为松耦合变压器原、副边绕组电流,iin为DC-DC变换器输入电流,RL为可变负载。
该拓扑结构实现IPT系统最大效率跟踪与恒压控制的原理如下,整流桥输出与负载通过该DC-DC变换器相连接,则滤波电容电压Ucf与负载电压Uo之间应满足Uo(1-d+c)=Ucf(d+c),假定忽略阻抗匹配的功率损耗,即
上式中,Re为等效输出阻抗,因此可以得到:
令Rmax为最大效率时等效输出阻抗,当Rmax确定后,就可以得到占空比d与负载RL的函数关系式:
因此通过检测负载侧输出直流电压电流,得到实时负载阻抗值,利用占空比d与负载RL的函数关系式输出对应占空比,即可实现整流侧的等效阻抗始终与最大效率负载值相同,达到最大效率跟踪的效果。在相同系统参数下该拓扑与传统的Buck变换器相比,极大扩展了负载在最大效率跟踪时的可调范围。
松耦合变压器通过LCL-S补偿网络与全桥逆变电路中点相连接,补偿结构通过参数配置实现电流分配,使得i1约为ip的二分之一,减小开关损耗。通过调节逆变电路的移相角来改变耦合机构的输入电压,配合最大效率跟踪控制,实现系统恒压控制。
如图1、图2和图5,一种应用于感应电能传输系统最大效率跟踪DC-DC变换器及其控制技术,包含如下步骤:
步骤(1):首先在系统上电初始阶段,进行与系统控制相关的软件和硬件初始化工作,其中重要的工作是将程序中的输出电压控制器和S1、S2占空比发生器输出均设置为0。
步骤(2):采集电压传感器VS可得到输出直流电压值uo,将采集到的电压与设置的电压值u* o进行比较,将它们的偏差信号Δuo输入至控制器Gv并作为电感电流的给定量i* L。采集电流传感器CSA可得到电感电流值iL,将采集到的电流与控制器Gv输出的给定量i* L进行比较,将它们的偏差信号ΔiL输入至控制器Gi并对控制器的输出进行限幅,其输出经过运算后作为全桥逆变电路的移相角控制信号
步骤(3):采集电流传感器CSB可得到输出直流电流值io,根据采集到的直流输出电压和输出电流,利用欧姆定律计算获取感应电能传输系统实时的负载值RL
步骤(4):将计算得到的RL输入至占空比发生器,得到DC-DC变换器的占空比控制信号d,并对d进行偏置处理得到S1的控制信号d1以及S2的控制信号d2
步骤(5):将d1、d2分别作为调制信号用于PWM调制,采用幅值为VM的三角波作为载波信号,产生占空比为d1、d2的两路脉冲序列,分别用于驱动DC-DC变换器开关管S1与S2
步骤(6):将固定占空比0.5作为调制信号,同样采用幅值为VM的三角波作为载波,将桥臂LegB的载波信号滞后桥臂LegA角度产生两路占空比为0.5,相位差为的脉冲序列,该脉冲序列用于分别驱动全桥逆变电路桥臂LegA的上开关管Q1和桥臂LegB的上开关管Q3,两桥臂下开关管Q2与Q4分别与对应桥臂上开关管互补导通,占空比也为0.5。
步骤(7)在没有得到停机指令的情况下重复执行(2)~(6)步骤,否则退出运行状态。
结合具体参数给出本发明的实施例:
直流电源输入电压:300V;输出直流电压:80V;输出功率:80-640W;
负载阻值:10-80Ω;最大效率时等效输出阻抗值:2.96Ω;系统工作频率20kHz。
图3所示为感应电能传输系统恒压控制系统输出波形图,从图中可以看出,当负载由10Ω逐渐增加至80Ω时,功率由640W减小为100W,系统输出电压恒定不变。测定效率在负载为10Ω时约为90%,而当轻载时即负载为80Ω时,效率仍有88%,考虑到功率较小时,系统损耗所占比例的增加,可以认为系统始终处于最大效率跟踪状态。图4所示为感应电能传输系统最大效率跟踪时实际负载值与等效负载值变化波形图。
综上,本发明提供的是一种应用于感应电能传输系统IPT中实现系统最大效率跟踪,并保持输出电压稳定的DC-DC变换器及其控制技术。感应电能传输常用于电动汽车充电、水下及矿井供电等,在实际电能传输系统中负载通常并不是恒定的,而由于感应电能传输的特性,负载的变化会影响系统效率的高低,甚至干扰系统正常工作运行。该感应电能传输系统由直流电源、全桥逆变电路、松耦合变压器及整流桥构成。该拓扑连接整流桥输出侧与负载侧,能够保证系统始终跟踪最大效率负载点,并通过调节全桥逆变电路超前桥臂与滞后桥臂的移相角来维持负载侧的输出电压稳定。采用本专利所述的拓扑结构及其控制技术在维持感应电能传输系统输出电压稳定的基础上,可以使负载在更宽范围的环境下持续获得最大效率电能传输状态。

Claims (6)

1.一种应用于感应电能传输系统最大效率跟踪DC-DC变换器,其特征在于:包括LCL-S补偿拓扑、不控整流桥和双管Buck-Boost电路;LCL-S补偿拓扑的输出与不控整流桥的输入连接,不控整流桥的输出与双管Buck-Boost电路的输入连接。
2.根据权利要求1所述的一种应用于感应电能传输系统最大效率跟踪DC-DC变换器,其特征在于:所述的LCL-S补偿拓扑,包括直流电源E,全桥逆变电路,电感L1,耦合器自感Lp,耦合器自感Ls,电容C1和电容Cs;全桥逆变电路由开关管Q1,开关管Q2,开关管Q3和开关管Q4组成;直流电源E与全桥逆变电路的输入连接;电容C1与耦合器自感Lp并联后再与电感L1串联;电容C1、耦合器自感Lp、电感L1的混联与全桥逆变电路的输出连接;耦合器自感Ls与电容Cs并联;开关管Q1和开关管Q2,开关管Q3,开关管Q4均为180°互补导通,开关管Q1,开关管Q2,开关管Q3和开关管Q4的占空比固定为0.5。
3.根据权利要求1或2所述的一种应用于感应电能传输系统最大效率跟踪DC-DC变换器,其特征在于:所述的不控整流桥由二极管D1、二极管D2、二极管D3和二极管D4组成;耦合器自感Ls与电容Cs的并联与不控整流桥的输入连接。
4.根据权利要求1或2所述的一种应用于感应电能传输系统最大效率跟踪DC-DC变换器,其特征在于:所述的双管Buck-Boost电路包括滤波电容Cf、开关管S1、开关管S2、二极管VD1、二极管VD2、电流传感器CSA、电流传感器CSB、电压传感器VS、电感L、电容C和负载RL;滤波电容Cf与不控整流桥的输出连接;开关管S1与二极管VD1串联,开关管S1与二极管VD1的串联和滤波电容Cf并联;三者并联二极管VD2与开关管S2串联;二极管VD2与开关管S2的串联、电容C、负载RL三者并联;开关管S2的远离二极管VD2的一端与二极管VD1的远离开关管S1的一端连接;电感L的一端连接于开关管S1与二极管VD1之间,电感L的另一端连接于二极管VD2与开关管S2之间;电流传感器CSA连接于电感L所在的线路上,电流传感器CSB连接于负载RL所在的支路上,电压传感器VS连接于负载RL上。
5.根据权利要求3所述的一种应用于感应电能传输系统最大效率跟踪DC-DC变换器,其特征在于:所述的双管Buck-Boost电路包括滤波电容Cf、开关管S1、开关管S2、二极管VD1、二极管VD2、电流传感器CSA、电流传感器CSB、电压传感器VS、电感L、电容C和负载RL;滤波电容Cf与不控整流桥的输出连接;开关管S1与二极管VD1串联,开关管S1与二极管VD1的串联和滤波电容Cf并联;三者并联二极管VD2与开关管S2串联;二极管VD2与开关管S2的串联、电容C、负载RL三者并联;开关管S2的远离二极管VD2的一端与二极管VD1的远离开关管S1的一端连接;电感L的一端连接于开关管S1与二极管VD1之间,电感L的另一端连接于二极管VD2与开关管S2之间;电流传感器CSA连接于电感L所在的线路上,电流传感器CSB连接于负载RL所在的支路上,电压传感器VS连接于负载RL上。
6.一种应用于感应电能传输系统最大效率跟踪DC-DC变换器的控制方法,其特征在于:包含如下步骤:
步骤(1):初始化系统,将程序中的输出电压控制器、电感电流控制器、开关管S1和开关管S2的占空比发生器输出均设置为0;
步骤(2):采集电压传感器VS得到输出直流电压值uo,将输出直流电压值uo与设置的电压值u* o进行比较,将输出直流电压值uo与设置的电压值u* o的偏差信号Δuo输入至控制器Gv并作为电感电流的给定量i* L;采集电流传感器CSA得到电感电流值iL,将电感电流值iL与控制器Gv输出的给定量i* L进行比较,将电感电流值iL与控制器Gv输出的给定量i* L的偏差信号ΔiL输入至控制器Gi并对控制器的输出进行限幅,将限幅后的输出经过运算后作为全桥逆变电路的移相角控制信号
步骤(3):采集电流传感器CSB得到输出直流电流值io,根据输出直流电压值uo和输出直流电流值io,利用欧姆定律计算感应电能传输系统实时的负载值RL
步骤(4):将感应电能传输系统实时的负载值RL输入至占空比发生器,得到DC-DC变换器的占空比控制信号d,并对d进行偏置处理得到开关管S1的控制信号d1以及开关管S2的控制信号d2
步骤(5):将d1、d2分别作为调制信号用于PWM调制,采用幅值为VM的三角波作为载波信号,产生占空比为d1、d2的两路脉冲序列,分别用于驱动DC-DC变换器开关管S1与开关管S2
步骤(6):将固定占空比0.5作为调制信号,同样采用幅值为VM的三角波作为载波,将开关管Q3、开关管Q4组成的桥臂LegB的载波信号滞后开关管Q1、开关管Q2组成的桥臂LegA角度产生两路占空比为0.5,相位差为的脉冲序列,将该脉冲序列用于分别驱动全桥逆变电路桥臂LegA的上开关管Q1和桥臂LegB的上开关管Q3,桥臂LegB和桥臂LegA下开关管Q2与开关管Q4分别与对应桥臂上的开关管互补导通,占空比也为0.5;
步骤(7):判断是否接收到停机指令,若没有接收到停机指令,返回执行步骤(2);若接收到停机指令,则退出运行状态。
CN201910868764.5A 2019-09-16 2019-09-16 一种应用于感应电能传输系统最大效率跟踪dc-dc变换器及其控制方法 Active CN110557027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910868764.5A CN110557027B (zh) 2019-09-16 2019-09-16 一种应用于感应电能传输系统最大效率跟踪dc-dc变换器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910868764.5A CN110557027B (zh) 2019-09-16 2019-09-16 一种应用于感应电能传输系统最大效率跟踪dc-dc变换器及其控制方法

Publications (2)

Publication Number Publication Date
CN110557027A true CN110557027A (zh) 2019-12-10
CN110557027B CN110557027B (zh) 2021-07-16

Family

ID=68740426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910868764.5A Active CN110557027B (zh) 2019-09-16 2019-09-16 一种应用于感应电能传输系统最大效率跟踪dc-dc变换器及其控制方法

Country Status (1)

Country Link
CN (1) CN110557027B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342668A (zh) * 2020-03-09 2020-06-26 西南交通大学 一种利用可变电感拓展ss结构wpt系统的软开关范围的方法
CN113452243A (zh) * 2021-06-25 2021-09-28 山东航天电子技术研究所 逆变器供电电路、逆变器供电控制方法以及电子设备
CN114069882A (zh) * 2021-11-16 2022-02-18 华东交通大学 一种高压电力线缆的自供电低压电源系统及其控制方法
CN114204596A (zh) * 2021-12-13 2022-03-18 北京航空航天大学 一种有源功率解耦电路及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202759384U (zh) * 2012-03-14 2013-02-27 中国石油天然气集团公司 一种用于垂直钻井系统的非接触电能传输系统
CN105141043A (zh) * 2015-08-24 2015-12-09 芜湖市汽车产业技术研究院有限公司 无线充电控制方法和装置
WO2018233766A1 (de) * 2017-06-19 2018-12-27 Otto-Von-Guericke-Universität Magdeburg, Patentwesen Vorrichtung und verfahren zur aktiven erzeugung und einprägung von blindleistung in induktive übertragungssystem
WO2019072561A1 (de) * 2017-10-10 2019-04-18 Robert Bosch Gmbh Verfahren zum zeitlichen festlegen von schaltvorgängen in einer vorrichtung zur induktiven übertragung von leistung und vorrichtung zur induktiven übertragung von leistung
CN110168892A (zh) * 2018-08-02 2019-08-23 深圳欣锐科技股份有限公司 一种直流升降压电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202759384U (zh) * 2012-03-14 2013-02-27 中国石油天然气集团公司 一种用于垂直钻井系统的非接触电能传输系统
CN105141043A (zh) * 2015-08-24 2015-12-09 芜湖市汽车产业技术研究院有限公司 无线充电控制方法和装置
WO2018233766A1 (de) * 2017-06-19 2018-12-27 Otto-Von-Guericke-Universität Magdeburg, Patentwesen Vorrichtung und verfahren zur aktiven erzeugung und einprägung von blindleistung in induktive übertragungssystem
CN110771006A (zh) * 2017-06-19 2020-02-07 奥托·冯·格里克马格德堡大学专利事业部 用于主动地产生无功功率并将其施加到感性传输系统中的设备和方法
WO2019072561A1 (de) * 2017-10-10 2019-04-18 Robert Bosch Gmbh Verfahren zum zeitlichen festlegen von schaltvorgängen in einer vorrichtung zur induktiven übertragung von leistung und vorrichtung zur induktiven übertragung von leistung
CN110168892A (zh) * 2018-08-02 2019-08-23 深圳欣锐科技股份有限公司 一种直流升降压电路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342668A (zh) * 2020-03-09 2020-06-26 西南交通大学 一种利用可变电感拓展ss结构wpt系统的软开关范围的方法
CN113452243A (zh) * 2021-06-25 2021-09-28 山东航天电子技术研究所 逆变器供电电路、逆变器供电控制方法以及电子设备
CN114069882A (zh) * 2021-11-16 2022-02-18 华东交通大学 一种高压电力线缆的自供电低压电源系统及其控制方法
CN114069882B (zh) * 2021-11-16 2024-01-30 华东交通大学 一种高压电力线缆的自供电低压电源系统及其控制方法
CN114204596A (zh) * 2021-12-13 2022-03-18 北京航空航天大学 一种有源功率解耦电路及控制方法
CN114204596B (zh) * 2021-12-13 2023-07-18 北京航空航天大学 一种有源功率解耦电路及控制方法

Also Published As

Publication number Publication date
CN110557027B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN110557027B (zh) 一种应用于感应电能传输系统最大效率跟踪dc-dc变换器及其控制方法
CN107425610B (zh) 并联能源系统负载补偿的无线电能传输系统及控制方法
KR101851995B1 (ko) 무선 충전기용 공진 컨버터 및 그 구현방법
WO2020029312A1 (zh) 一种充电电路移相控制方法
Boys et al. Single-phase unity power-factor inductive power transfer system
CN108695957B (zh) 一种抗偏移恒流输出无线电能传输装置的参数优化方法
CN210608706U (zh) 一种实现恒流恒压输出切换的感应式无线电能传输系统
CN111555420B (zh) 恒流-恒压输出模式可切换的感应式充电系统及方法
CN108683229A (zh) 一种电动汽车无线充电副边输出控制系统及其控制方法
CN111740509B (zh) 基于调压控制的无线充电方法及系统
CN111864915B (zh) 宽功率范围内实现zvs的无线充电系统调控方法及系统
CN114362389B (zh) 输入电压、负载及互感变化大时的恒压输出无线传能系统
CN110957796B (zh) 无线充电电路和系统
CN108964289A (zh) 具有双t型谐振网络的ecpt系统及其参数设计方法
CN110429719A (zh) 基于交错并联Boost的高效无线电能传输系统
Colak et al. A novel phase control of single switch active rectifier for inductive power transfer applications
CN113162167B (zh) 一种恒流恒压自主切换的无线充电系统
CN111740510B (zh) 基于移相调节控制的无线充电方法及系统
Junwei et al. Design and implementation of high power closed-loop AC-DC resonant converter for wireless power transfer
CN112260416B (zh) 一种基于变初级参数的恒流恒压感应式无线充电系统
Wu et al. Robust Parity-Time-Symmetric WPT System With Reduced Switching-Frequency and Improved Step-Down Conversion Ratio
CN109980757B (zh) 一种基于拓扑切换的恒流恒压无线充电系统
CN208849525U (zh) 一种发射端Buck控制的SP补偿型恒流无线充电电源
CN113410913A (zh) 一种基于Sepic电路阻抗匹配的MC-WPT系统及其最大效率跟踪方法
Luo et al. A primary shunt inductor compensated inductive power transfer system with natural ZVS for battery charging application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant