CN110552037B - 一种基于电化学沉积制备氧化锌纳米墙的方法 - Google Patents

一种基于电化学沉积制备氧化锌纳米墙的方法 Download PDF

Info

Publication number
CN110552037B
CN110552037B CN201910936023.6A CN201910936023A CN110552037B CN 110552037 B CN110552037 B CN 110552037B CN 201910936023 A CN201910936023 A CN 201910936023A CN 110552037 B CN110552037 B CN 110552037B
Authority
CN
China
Prior art keywords
zinc oxide
nanowall
electrochemical deposition
zinc
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910936023.6A
Other languages
English (en)
Other versions
CN110552037A (zh
Inventor
商世广
高浪
赵玲
任卫
贾一凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Posts and Telecommunications
Original Assignee
Xian University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Posts and Telecommunications filed Critical Xian University of Posts and Telecommunications
Priority to CN201910936023.6A priority Critical patent/CN110552037B/zh
Publication of CN110552037A publication Critical patent/CN110552037A/zh
Application granted granted Critical
Publication of CN110552037B publication Critical patent/CN110552037B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种基于电化学沉积制备氧化锌纳米墙的方法,即采用传统的电化学沉积方法在导电衬底上生长出二维纳米结构的氧化锌纳米墙。该电化学沉积利用一种简单的电化学沉积装置,主要包括直流稳压电源、阳极、电解槽、绝缘挡板和加热装置等部分;将带有氧化锌籽晶层的导电衬底作为阴极、碳棒作为阳极,浸入盛有硝酸锌(Zn(NO3)2·6H2O)水溶液的电解槽中,利用加热装置加热到设定温度后通上直流电压在阴极产生金属锌离子还原反应而生长出氧化锌纳米墙,随后进行退火处理。本发明制备的氧化锌纳米墙具有形貌可控、尺寸均匀和结晶度高等优点,为二维纳米结构氧化锌纳米墙的广泛应用奠定坚实基础。

Description

一种基于电化学沉积制备氧化锌纳米墙的方法
技术领域
本发明属于半导体纳米材料制备领域,具体涉及到一种电化学沉积制备氧化锌纳米墙的方法。
背景技术
氧化锌(ZnO)是一种Ⅱ-Ⅵ族宽禁带半导体材料,具有优异的光学、电学、机械性能、化学稳定性和热稳定性。氧化锌在室温下的禁带宽度为3.37eV、激子束缚能为60 meV,具有很强的近紫外发射和光学透明电导性;低维的氧化锌纳米材料,如纳米棒、纳米线、纳米带、纳米墙和纳米管,其独特纳米结构产生量子效应的增强,使其表现出独特的光学、电学和声学性能。尤其是二维结构的氧化锌纳米墙是一种空间网络蜂窝状材料,蜂窝由氧化锌片层交织而成,具有高的比表面积、好的电子连续性和高的电子迁移率,是制备传感器、锂离子电池、场致电子发射器和催化剂载体的理想材料。
常见氧化锌纳米墙的制备方法很多,主要有金属有机化学气相沉积法、热蒸发法和低温水热法等。韩国的S.W.Kim等人采用金属有机化学气相沉积法,在硅衬底上制备的氧化锌纳米墙,在室温下有较高氢掺入性能;中国台湾T.P.Chen等人采用热蒸发法在玻璃衬底上制备氧化锌纳米墙,对甲烷气体具有较高灵敏度;西安交通大学张雯等人采用水热法在 ITO玻璃衬底上制备的氧化锌纳米墙,在383nm处有较强烈的紫外激发峰。金属有机化学气相沉积法成本较高,部分反应物易燃易爆或有毒性;热蒸发法工艺简单,但反应速率较低、成膜质量较差;水热法成本低不需要任何的模板或表面活性剂,但是不能精确控制反应容器内的实际温度。电化学沉积法不仅操作方便、对环境友好,而且容易在衬底上大面积均匀沉积薄膜,目前关于电化学沉积法制备氧化锌纳米墙报道文献很少。本专利利用电化学沉积法,在导电衬底上制备出尺寸均匀的氧化锌纳米墙,且可通过调节硝酸锌水溶液浓度、沉积电压及沉积时间,实现对氧化锌纳米墙形貌的有效调控。
发明内容
本发明目的是提供一种基于电化学沉积制备氧化锌纳米墙的方法。
针对上述目的,本发明采用的技术方案是:首先通过磁控溅射在导电衬底上射频沉积氧化锌籽晶层,并在大气中退火处理;其次,采用电化学沉积法,将带有氧化锌籽晶层的导电衬底为阴极、碳棒为阳极,浸入配置好的硝酸锌水溶液中,利用加热装置恒温加热,通过直流稳压电源在电极两端加上直流电压,产生金属锌离子还原反应而生长出氧化锌纳米墙;最后,沉积结束取出样品,在大气中进行退火处理,即可得到氧化锌纳米墙薄膜。
上述导电衬底的选择,可使用ITO玻璃、金电极、铜电极和铝电极。
上述氧化锌籽晶层退火处理,在大气条件下温度为300~500℃,时间为2~4h。
上述制备方法中磁控溅射氧化锌籽晶层,溅射功率为50~150W,溅射气压为0.5~5Pa,溅射时间为5~30min。
上述制备方法中沉积氧化锌纳米墙,硝酸锌水溶液配制浓度为0.01~0.5mol/L,直流电压为0.5~5V,沉积时间为3~8h,恒温加热温度为45~85℃。
上述制备方法中对生长的氧化锌纳米墙进行退火处理,在大气条件下400~750℃退火处理2~6h。
本发明的优点如下:
1、本发明采用传统的电化学沉积生长氧化锌纳米墙,在温度为45~85℃条件下即可进行,具有成本低廉、重复性高、无污染和操作简单等优点。
2、本发明利用电化学沉积法生长氧化锌纳米墙,通过调节硝酸锌水溶液浓度、沉积生长电压和时间,可实现对二维结构氧化锌纳米墙形貌的有效调控。
3、本发明所制备的氧化锌纳米墙,尺寸均匀、可大面积化,在传感器、电容器电极和场致电子发射器等领域有广泛的应用前景。
附图说明
图1是本发明中氧化锌纳米墙薄膜的扫描电子显微镜照片。
图2是本发明中氧化锌纳米墙薄膜的X射线衍射图。
图3是本发明中氧化锌纳米墙薄膜的Raman光谱图。
具体实施方式
下面结合附图和实施案例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施案例。
实施案例1
(1)通过磁控溅射、退火处理在导电衬底上制备氧化锌籽晶层。其中,磁控溅射功率为70W、溅射气压为1.0pa、溅射时间为20min;在大气中350℃退火处理2h。
(2)将带氧化锌籽晶层的ITO衬底作为阴极、碳棒作为阳极,浸入浓度为0.05mol/L的硝酸锌水溶液中,利用电化学沉积法生长氧化锌纳米墙。其中,沉积反应电压为1.8V、沉积时间为5h,恒温加热温度为60℃。
(3)电化学沉积结束后,在大气条件400℃退火处理3h,,得到样品S1。
实施案例2
(1)通过磁控溅射、退火处理在导电衬底上制备氧化锌籽晶层。其中,溅射功率为100W、溅射气压为1.0pa、溅射时间为10min;在大气中350℃退火处理2h。
(2)将沉积氧化锌籽晶层的ITO衬底作为阴极、碳棒作为阳极,浸入浓度为0.1mol/L 的硝酸锌水溶液中,利用电化学沉积法生长氧化锌纳米墙。其中,沉积反应电压为1.2V、沉积时间为4h,恒温加热温度为75℃。
(3)电化学沉积结束后,在大气条件下500℃退火处理3h,得到样品S2。
采用扫描电子显微镜、X射线衍射仪和拉曼光谱仪分别对实施案例S1、S2制备的样品进行表征分析。从图1可看出,本发明制备的氧化锌纳米墙是一种空间网络蜂窝状结构,蜂窝尺寸均匀,蜂窝片层厚度在40-60nm范围内,垂直于衬底生长。从图2可看出,在衍射角2θ为31.7°、34.4°、36.2°、47.5°和62.8°附近均出现了衍射峰,分别对应氧化锌的(100)、(002)、(101)、(102)和(103)的衍射峰,说明氧化锌为纤锌矿结构,且沿着(002)晶面择优取向生长。从图3可看出,氧化锌纳米墙在438cm-1处出现E2(H) 模的散射峰,在574cm-1处出现A1(LO)模的散射峰,进一步证实了氧化锌纳米墙为纤锌矿结构。

Claims (4)

1.一种基于电化学沉积制备氧化锌纳米墙的方法,其特征在于:首先通过磁控溅射在导电衬底上射频沉积氧化锌籽晶层,并进行退火处理,退火处理温度为300~500℃,退火时间为2~4h;其次,以带氧化锌籽晶的导电衬底为阴极、碳棒为阳极,浸入盛有硝酸锌水溶液的电解槽中,硝酸锌水溶液配制浓度为0.01~0.5mol/L,并搅拌均匀,利用加热装置恒温加热,通上直流电压在阴极产生金属锌离子还原反应而生长出氧化锌纳米墙;最后,待反应结束对样品进行退火处理,退火处理设置温度为400~750℃,退火时间为2~6h,即可得到氧化锌纳米墙,氧化锌纳米墙生长过程外加设置直流电压为0.5~5V,沉积时间为3~8h,恒温加热温度为45~85℃。
2.根据权利要求1所述的一种基于电化学沉积制备氧化锌纳米墙的方法,其特征在于:射频磁控溅射沉积氧化锌籽晶层的功率为50~150W,溅射气压为0.5~5Pa,溅射时间为5~30min;籽晶退火处理温度为300~500℃,退火时间为2~4h。
3.根据权利要求1所述的一种基于电化学沉积制备氧化锌纳米墙的方法,其特征在于:硝酸锌水溶液浓度为0.01~0.5mol/L,并搅拌均匀。
4.根据权利要求1所述的一种基于电化学沉积制备氧化锌纳米墙的方法,其特征在于:所述的导电衬底指的是氧化铟锡ITO玻璃、金电极、铜电极或铝电极。
CN201910936023.6A 2019-09-29 2019-09-29 一种基于电化学沉积制备氧化锌纳米墙的方法 Expired - Fee Related CN110552037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910936023.6A CN110552037B (zh) 2019-09-29 2019-09-29 一种基于电化学沉积制备氧化锌纳米墙的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910936023.6A CN110552037B (zh) 2019-09-29 2019-09-29 一种基于电化学沉积制备氧化锌纳米墙的方法

Publications (2)

Publication Number Publication Date
CN110552037A CN110552037A (zh) 2019-12-10
CN110552037B true CN110552037B (zh) 2021-07-27

Family

ID=68742164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910936023.6A Expired - Fee Related CN110552037B (zh) 2019-09-29 2019-09-29 一种基于电化学沉积制备氧化锌纳米墙的方法

Country Status (1)

Country Link
CN (1) CN110552037B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628133B (zh) * 2013-12-09 2016-04-06 西安工业大学 一种定向生长单晶ZnO纳米墙的水溶液制备方法
CN107321347A (zh) * 2017-06-05 2017-11-07 清华大学 一种蜂窝状氧化锌纳米墙阵列的制备方法

Also Published As

Publication number Publication date
CN110552037A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
CN109518222B (zh) 用于电催化co2还原至甲酸的铋基催化剂及其制备方法和应用
Luo et al. Preparation of porous micro–nano-structure NiO/ZnO heterojunction and its photocatalytic property
Chen et al. Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition
Wu et al. Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil
Chakraborty et al. Structural, optical and electrochemical properties of Al and Cu co-doped ZnO nanorods synthesized by a hydrothermal method
CN114016077B (zh) 一种硫化镉-硫铟锌异质结纳米棒阵列复合材料及其制备方法
CN102691084A (zh) 一步电沉积制备ZnO纳米棒阵列的方法
Yu et al. Pulsed laser irradiation-assisted electrodeposition of germanium in ionic liquid: From amorphous film to polycrystalline branched structures
Zhang et al. Field emission property of ZnO nanoneedle arrays with differentmorphology
Nawn et al. Zinc oxide nanostructure decorated amorphous carbon nanotubes: an improved field emitter
CN110512232B (zh) 一种自支撑过渡金属硫化物薄膜电催化电极及其制备方法
Lee et al. Spontaneously polarized lithium-doped zinc oxide nanowires as photoanodes for electrical water splitting
CN110760874A (zh) 一种利用废弃磷酸铁锂电池制备氧化铁光阳极薄膜的方法
Zhang et al. Hierarchical architecture of WO 3 nanosheets by self-assembly of nanorods for photoelectrochemical applications
AL-Zahrani et al. Effect of hydrothermal growth temperature and time on physical properties and photoanode performance of zno nanorods
CN110552037B (zh) 一种基于电化学沉积制备氧化锌纳米墙的方法
Xu et al. Seed layer-free electrodeposition of well-aligned ZnO submicron rod arrays via a simple aqueous electrolyte
Gong et al. ZnO nanorod arrays with tunable size and field emission properties on an ITO substrate achieved by an electrodeposition method
Li et al. Effects of bath pH on structural and electrochemical performance of Cu 2 O
Tian et al. Electrochemical synthesis of wheat-like CdSe array and their photoelectrochemical properties
CN109518149A (zh) 沿<002>方向择优生长的硒化锑光电薄膜的制备方法
CN103693861A (zh) Ge掺杂的α相三氧化二铁纳米片阵列薄膜的制备方法
CN112408462A (zh) 一种Al掺杂的ZnO纳米棒及其制备方法和应用
Ma et al. The effect of TiN deposition time on the field-emission performance coated on ZnO nanorod arrays
Wang et al. Vertically aligned CdTe nanorods array for novel three-dimensional heterojunction solar cells on Ni substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210727