CN110544768B - 一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用 - Google Patents

一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用 Download PDF

Info

Publication number
CN110544768B
CN110544768B CN201910743498.3A CN201910743498A CN110544768B CN 110544768 B CN110544768 B CN 110544768B CN 201910743498 A CN201910743498 A CN 201910743498A CN 110544768 B CN110544768 B CN 110544768B
Authority
CN
China
Prior art keywords
superlattice
electrode material
thin film
film electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910743498.3A
Other languages
English (en)
Other versions
CN110544768A (zh
Inventor
高远浩
韩雪鹏
周文嵩
岳红伟
李伟
雷岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuchang University
Original Assignee
Xuchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuchang University filed Critical Xuchang University
Priority to CN201910743498.3A priority Critical patent/CN110544768B/zh
Publication of CN110544768A publication Critical patent/CN110544768A/zh
Application granted granted Critical
Publication of CN110544768B publication Critical patent/CN110544768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • C01B21/0865Binary compounds of nitrogen with sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用;利用硫粉和NaOH水溶液之间的简单化学反应,制得多硫化物浅黄色碱性水溶液(含有Na2S、Na2S2、Na2S3),然后与镍箔进行水热反应,通过调控水热反应的温度,实现S2掺杂原子在Ni3S2晶格中的均衡分布,最终获得S2掺杂的Ni3S2.9超晶格薄膜电极材料,化学组成为Ni3(S)1.1(S2)0.9。制备的Ni3(S)1.1(S2)0.9超晶格呈多阶的三角塔锥状结构,均匀生长在镍箔基底上,其超晶格结构由周期性交替的Ni‑S和Ni‑S2原子层构成。本发明用水作为反应介质,没有用到任何有机溶剂、添加剂及表面活性剂,属于环境友好型反应。因为原料易得、价格低廉、操作简单,湿化学法获得高附加值的超晶格产品,有可观的经济效益。

Description

一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方 法和应用
技术领域
本发明属于无机纳米材料领域,具体涉及一种三角塔锥状Ni3S2.9均质超晶格材料的制备方法及其作为薄膜电极材料的应用。
背景技术
薄膜电极材料在锂离子电池和超级电容器等储能装置中具有广阔的应用前景。碳基电极材料因良好的导电性是目前商业化锂离子电池和超级电容器等储能装置中惯用的负极材料,但碳基电极材料的储能比容量低,制约着储能装置性能的进一步提升。目前科学界聚焦于探索寻找高比容量的电极材料来取代碳基电极材料以获得高储能体系。长期以来,传统的镍基硫化物因理论比容量高受到科学界的广泛关注,例如Ni3S2,作为锂离子电池的负极材料,其理论比容量高达472mAh g-1。各种纳米结构的Ni3S2,如纳米线、纳米片和纳米管等,已经作为锂离子电池的负极材料已经被广泛地制备和研究。然而,和碳基电极材料相比较,Ni3S2纳米结构材料的电子导电性差,致使电池的能量密度、倍率容量和循环稳定性等都不十分理想。为了同步改善Ni3S2电极材料的电化学特性,如电子导电性、比容量、倍率容量和循环稳定性等,目前最有效的方法是制作具有异质结构的纳米材料,比如V、Zn、Mo、Sn和Fe等掺杂的Ni3S2。另外,在Ni 箔基底上生长Ni3S2@carbon异质纳米管、Ni3S2@MoS2异质纳米棒、V2O5@Ni3S2异质纳米阵列等也受到广泛关注。在这些异质结构中,异质的界面能够诱导带缘交叉排布,改善界面处的带缘结构,在一定程度上提高了界面处电子的迁移能力,但晶体内部电子迁移率低的问题仍难以解决。近年来研究发现,超晶格纳米结构具有人们渴盼的量子限域效应,其特有的超晶格调制结构相当于有序的异质结界面,能够有效地提高电子迁移率,因此超晶格纳米结构被誉为“打开了纳米研究和应用的新篇章”。
发明内容
本发明所要解决的技术问题是针对现有技术的不足提供三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用。
本发明的技术方案如下:
本发明以NaOH和硫粉为原料,首先在温和条件下获得高活性的S2-和S2 2-碱性水溶液,通过镍箔水热条件下自硫化作用,实现S2掺杂原子在Ni3S2晶格中的均衡分布,在Ni箔基底上获得S2掺杂的三角塔锥状Ni3S2.9超晶格薄膜电极材料,电化学性能优良,具有原料成本低、工艺过程简单和附加值高等优点。
本发明的目的是克服现有锂离子电池负极电极材料存在的缺点,提供一种S2掺杂的三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其低成本制备方法和应用。
一种S2掺杂的三角塔锥状Ni3S2.9超晶格材料,化学组成为Ni3(S)1.1(S2)0.9,属于六方晶相,具有三角纳米片堆叠的多阶塔锥状微形貌和内在的超晶格结构,三角纳米片单片厚度约30nm,堆叠成的三角塔锥高度约1.2μm,其内在超晶格结构由周期性交替的 Ni-S和Ni-S2原子层构成,属于化学均质超晶格。
为实现上述目的,本发明采用的技术方案如下:
一种S2掺杂的三角塔锥状Ni3S2.9超晶格薄膜电极材料,S2掺杂的Ni3S2.9超晶格结构由周期性交替的Ni-S和Ni-S2原子层构成,化学组成为Ni3(S)1.1(S2)0.9,属于六方晶相。三角状塔锥结构由三角形纳米片多阶堆叠而成,三角纳米片单片厚度约30nm,堆叠成的三角塔锥高度约1.2μm,均匀生长在镍箔基底上。
所述的S2掺杂的Ni3S2.9超晶格三角塔锥材料作为薄膜电极活性材料的应用,其卓越的电导特性、高的比容量和高倍率特性适合作为锂离子电池等高储能设备的电极材料。
一种S2掺杂的三角塔锥状Ni3S2.9超晶格薄膜电极材料的制备方法,包括以下步骤:
(1)将适量硫粉置于浓度为6mol/L NaOH水溶液中,80-100℃回流反应2-3小时,得到浅黄色澄清的多硫化物碱性水溶液;
(2)取一定量的镍箔与适量的多硫化物浅黄色碱性水溶液共置于反应釜聚四氟乙烯内胆中,密封反应釜,置于恒温干燥箱中,控温120-180℃,恒温反应12小时,自然冷却至室温;
(3)步骤(2)中所得反应后镍箔依次用蒸馏水和无水乙醇多次洗涤,真空干燥,得到S2掺杂的三角塔锥状Ni3S2.9超晶格薄膜电极材料。
所述的制备方法,步骤(1)中反应物硫粉和NaOH的摩尔比为1:50。
所述的制备方法,步骤(1)中恒温90℃回流反应3小时。
所述的制备方法,步骤(2)中多硫化物浅黄色碱性水溶液的用量按反应物中硫粉和镍箔的摩尔比0.06-0.6:1控制。
所述的制备方法,步骤(2)中恒温干燥箱自然升温至120-180℃,恒温反应12小时,温度波动±5℃。
所述的制备方法,步骤(3)中真空干燥控温60℃,干燥30min,得到S2掺杂的三角塔锥状Ni3S2.9超晶格薄膜电极材料
所述的制备方法,把3.0mmol(96.0mg)硫粉和25mL浓度为6mol/L的NaOH 水溶液置于50mL圆底烧瓶中90℃回流反应3小时,制得含有Na2S、Na2S2和Na2S3的多硫化物浅黄色碱性水溶液。取面积为1cm×2cm的镍箔(0.1072g,1.8mmol)置于容积为20mL的反应釜聚四氟乙烯内胆中,加入2mL多硫化物浅黄色碱性水溶液,密封反应釜,置于恒温干燥箱中,控温180℃,恒温反应12小时,自然冷却至室温;取出反应后的镍箔,依次用蒸馏水和无水乙醇各洗涤4次,真空干燥箱(0.1 Pa)中60℃干燥30min,得到S2掺杂的三角塔锥状Ni3S2.9化学均质超晶格薄膜电极材料。
本发明在温和条件下利用硫粉和氢氧化钠之间的化学反应获得高活性的S2-和S2 2-碱性水溶液,水热条件下通过调控温度实现掺杂原子在Ni3S2晶格中的均衡分布,最终获得S2掺杂的三角塔锥状Ni3S2.9化学均质超晶格电极材料。整个制备过程操作简便,能耗低,使用原料成本低廉,又无需使用任何化学添加剂,无任何毒害副产物,便于工业化的合成。
本发明的优点是:
1、本发明S2掺杂的三角塔锥状Ni3S2.9化学均质超晶格电极材料具有良好的电化学特性,如良好的电导特性、高比容量和高倍率特性,在锂离子电池等储能设备应用领域具有广泛的应用前景。
2、本发明使用价格低廉的Ni箔、NaOH和硫粉为原料,便于工业化生产获得高附加值的产品。
3、本发明用水作为反应介质,无需用到毒性较大的有机溶剂,属于环境友好型反应。
4、本发明反应条件温和,且不需要用到任何化学添加剂,操作简单,成本低。
附图说明
图1是所有实施例中制备的多硫化物浅黄色碱性水溶液的紫外-可见吸收(UV-vis) 谱图;
图2是所有实施例中不同反应温度下制备的不同S2掺杂量的Ni3S2-x(S2)x材料的X射线衍射(XRD)谱图;
图3是所有实施例中不同反应温度下制备的不同S2掺杂量的Ni3S2-x(S2)x材料的X射线能量色散(EDS)谱图(为消除镍箔的影响,测试用样品从镍箔上刮下);
图4是实施例2制备的超晶格Ni3S1.1(S2)0.9材料的拉曼光谱图;
图5是实施例2制备的超晶格Ni3S1.1(S2)0.9薄膜电极材料的扫描电子显微(SEM) 照片;
图6是实施例2制备的超晶格Ni3S1.1(S2)0.9材料的选区电子衍射(SAED)图案和高分辨透射电子显微(HRTEM)照片;
图7是实施例3制备的Ni3S2.7[Ni3S1.3(S2)0.7]材料的SEM照片;
图8是所有实施例中不同反应温度下制备的不同S2掺杂量的Ni3S2-x(S2)x材料的SAED图案;
图9是实施例4制备的Ni3S2.4[Ni3S1.6(S2)0.4]材料的SEM照片;
图10是实施例5制备的Ni3S2.2[Ni3S1.8(S2)0.2]材料的SEM照片;
图11是实施例6超晶格Ni3S1.1(S2)0.9薄膜电极材料的循环伏安(CV)谱图;
图12是实施例6超晶格Ni3S1.1(S2)0.9薄膜电极材料的恒电流冲放电(GCD)谱图;
图13是实施例6超晶格Ni3S1.1(S2)0.9薄膜电极材料的电化学阻抗(EIS)谱图;
图14是实施例7超晶格Ni3S1.1(S2)0.9薄膜电极材料的电池冲放电循环性能谱图。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例1
在50mL圆底烧瓶中,3.0mmol(96.0mg)硫粉和25mL浓度为6mol/L的NaOH 水溶液90℃回流反应3小时,制得含有Na2S、Na2S2和Na2S3的多硫化物浅黄色碱性水溶液。
活性硫成分分析结果:该浅黄色碱性水溶液通过紫外-可见吸收(UV-vis)光谱检测活性硫的物种类别。如图1示,在250–280nm范围内的强吸收边是S2-的特征吸收,而 300nm处的强吸收峰起源于S2 2-,370nm处的较弱吸收峰起源于S3 2-,没有其他硫物种的吸收峰(S4 2-、S5 2-和S6 2-的吸收峰分别在420nm、438nm和450nm处)出现在吸收光谱中,说明该浅黄色碱性水溶液的活性硫成分主要是S2-、S2 2-和少量的S3 2-。紫外- 可见吸收(UV-vis)光谱见图1。
实施例2
取面积为1cm×2cm的镍箔(0.1072g,1.8mmol)置于容积为20mL的反应釜聚四氟乙烯内胆中,加入2mL实施例1制备的多硫化物浅黄色碱性水溶液,密封反应釜,置于恒温干燥箱中,控温180℃,恒温反应12小时,自然冷却至室温;取出反应后的镍箔,依次用蒸馏水和无水乙醇各洗涤4次,真空干燥箱(0.1 Pa)中60℃干燥30min,得到S2掺杂的镍基硫化物超晶格薄膜电极材料。
产品分析结果:粉末X射线衍射(XRD)分析表明该产品具有六方晶相Ni3S2的所有特征衍射峰,没有出现任何杂质衍射峰,但衍射峰的衍射角略大于六方晶相Ni3S2的标准值,说明S2进入Ni3S2晶格中,取代了S原子的位点,引起键强度的增大,导致晶格收缩。经EDS元素分析,其元素组成为Ni3S2.9(Ni:S=50.81:49.19),根据式子 Ni3S2-x(S2)x,其化学式可表达为Ni3S1.1(S2)0.9,晶格中大约45%的S原子被S2替换。拉曼光谱展现一个典型的S–S振动信号在478cm-1处,而Ni–S活性模振动频次峰出现在 186,198,220,300,320和346cm–1处,基本一致于六方晶相Ni3S2的六个拉曼活性模 (2A1+4E)。扫描电子显微(SEM)照片观察产品的微形貌是由三角形纳米片堆叠成的多阶状三角塔锥,三角纳米片单片厚度约30nm,堆叠成的宝塔高度约1.2μm。选区电子衍射(SAED)图案显示一系列的亚晶胞衍射斑点分布在主衍射斑点之间,呈连续的线分布,标志着该产品具有超晶格结构和良好的公度性。高分辨透射电子显微(HRTEM)照片显示该超晶格结构由两条明暗相间的晶格条纹相互周期性交叉而成,相邻晶格条纹之间的间距为
Figure BDA0002164796940000061
略小于六方晶相Ni3S2的(202)位面间距
Figure BDA0002164796940000062
表明该超晶格结构是以Ni–S和Ni–S2原子层为交替周期的化学均质超晶格。XRD谱图见图2a,EDS谱图见图3a,拉曼光谱见图4,SEM照片见图5,SAED图案见图6a插图和图8a,HRTEM 照片见图6b。
实施例3
取面积为1cm×2cm的镍箔(0.1071g,1.8mmol)置于容积为20mL的反应釜聚四氟乙烯内胆中,加入2mL实施例1制备的多硫化物浅黄色碱性水溶液,密封反应釜,置于恒温干燥箱中,控温160℃,恒温反应12小时,自然冷却至室温;取出反应后的镍箔,依次用蒸馏水和无水乙醇各洗涤4次,真空干燥箱(0.1 Pa)中60℃干燥30min,得到S2掺杂的镍基硫化物薄膜材料。
产品分析结果:该产品经EDS元素分析其元素组成为Ni3S2.7(Ni:S=52.63:47.37),根据式子Ni3S2-x(S2)x,其化学式可表达为Ni3S1.3(S2)0.7,晶格中35%的S原子被S2替换。粉末X射线衍射(XRD)分析表明该产品具有六方晶相Ni3S2的所有特征衍射峰,没有出现任何杂质衍射峰,说明S2进入Ni3S2晶格中,取代了S原子的位点,形成结晶性良好的固溶体。扫描电子显微(SEM)照片观察该产品呈明显的层岩状锥形结构,锥体高度约1.0-3.0μm。选区电子衍射(SAED)图案显示一系列的亚晶胞衍射斑点分布在主衍射斑点之间,呈几乎连续的线分布,标志着该产品已经具有内在的超晶格结构,但超晶格的公度性较差。XRD谱图见图2b,EDS谱图见图3b,SEM照片见图7,SAED图案见图8b。
实施例4
取面积为1cm×2cm的镍箔(0.1069g,1.8mmol)置于容积为20mL的反应釜聚四氟乙烯内胆中,加入2mL实施例1制备的多硫化物浅黄色碱性水溶液,密封反应釜,置于恒温干燥箱中,控温140℃,恒温反应12小时,自然冷却至室温;取出反应后的镍箔,依次用蒸馏水和无水乙醇各洗涤4次,真空干燥箱(0.1 Pa)中60℃干燥30min,得到S2掺杂的镍基硫化物薄膜材料。
产品分析结果:该产品经EDS元素分析其元素组成为Ni3S2..4(Ni:S=55.62:44.38),根据式子Ni3S2-x(S2)x,其化学式可表达为Ni3S1.6(S2)0.4,晶格中20%的S原子被S2替换。粉末X射线衍射(XRD)分析表明该产品具有六方晶相Ni3S2的所有特征衍射峰,没有出现任何杂质衍射峰,说明S2进入Ni3S2晶格中,取代了S原子的位点,形成结晶性良好的固溶体。扫描电子显微(SEM)照片观察该产品呈圆锥状微结构,锥体高度约1.0μm。选区电子衍射(SAED)图案显示在主衍射斑点附近分布着亚晶胞衍射斑点,是掺杂固溶体典型的衍射斑点特征,标志着该产品尚未形成超晶格结构。XRD谱图见图2c,EDS 谱图见图3c,SEM照片见图9,SAED图案见图8c。
实施例5
取面积为1cm×2cm的镍箔(0.1078g,1.8mmol)置于容积为20mL的反应釜聚四氟乙烯内胆中,加入2mL实施例1制备的多硫化物浅黄色碱性水溶液,密封反应釜,置于恒温干燥箱中,控温120℃,恒温反应12小时,自然冷却至室温;取出反应后的镍箔,依次用蒸馏水和无水乙醇各洗涤4次,真空干燥箱(0.1 Pa)中60℃干燥30min,得到S2掺杂的镍基硫化物薄膜材料。
产品分析结果:该产品经EDS元素分析其元素组成为Ni3S2..2(Ni:S=57.87:42.13),根据式子Ni3S2-x(S2)x,其化学式可表达为Ni3S1.8(S2)0.,2,晶格中10%的S原子被S2替换。粉末X射线衍射(XRD)分析表明该产品具有六方晶相Ni3S2的所有特征衍射峰,没有出现任何杂质衍射峰,说明S2进入Ni3S2晶格中,取代了S原子的位点,形成结晶性良好的固溶体。扫描电子显微(SEM)照片显示该产品是由许多不规则的颗粒聚集而成的锥状体,高度1.2-1.5μm。选区电子衍射(SAED)图案显示少量的亚晶胞衍射斑点分布在主衍射斑点附近,标志着该产品尚未形成超晶格结构。XRD谱图见图2d,EDS谱图见图3d,SEM照片见图10,SAED图案见图8d。
实施例6 Ni3S2.9超晶格镍箔电极的电化学性能测试
电化学性能测试在CHI760E型电化学工作站上进行。实施例2制得的Ni3S2.9超晶格镍箔电极作为工作电极,Pt片作为对电极,标准Hg/HgO电极作为参比电极,电解液为2M KOH水溶液。循环伏安(CV)测试结果表明,该Ni3S2.9超晶格镍箔电极具有可逆的氧化还原反应特性。恒电流冲放电(GCD)测试结果表明,该Ni3S2.9超晶格镍箔电极具有稳定的放电平台和良好的库伦效率。电化学阻抗(EIS)结果显示,该Ni3S2.9超晶格镍箔电极的块电极阻抗(Rs)为0.63Ω,电荷转移阻抗(Rct)为0.73Ω,电导能力超过石墨烯材料。CV谱图见图11,GCD谱图见图12,EIS谱见图13。
实施例7 Ni3S2.9超晶格镍箔电极的电池性能测试
切取实施例2制得的Ni3S2.9超晶格薄膜镍箔电极1cm×1cm作为工作电极制作CR2025型纽扣电池,1cm×1cm镍箔电极上Ni3S2.9的载量为2.14mg.cm-2。电池制作在高纯氩气手套箱中进行(H2O<0.5ppm,O2<0.5ppm),金属锂片作为对电极,隔膜为 Celgard 2320,电解质为1M LiPF6,溶解在EC:EMC:DMC=1:1:1(体积比)的电解液中。电池冲放电循环性能测试结果表明,在电流密度200mA g-1放电,电池比容量经100 次冲放电循环后仍高达874mAh g-1,在放电倍率提高到500mA g-1时,经100次冲放电循环后仍维持565mAh g-1的比容量。值得说明的是,该多阶三角塔锥状Ni3S2.9超晶格镍箔电极的电池性能明显优于实施例3-5制备的电极效果,与目前已经见诸报道的各种非超晶格Ni3S2/Ni箔电极相比较,如Ni3S2纳米管/Ni箔电极(Chem.Commun.2014,50, 9361–9364)、Ni3S2纳米片/Ni箔电极(J.Power Sources 2015,293,706–711;Science China Materials 2018,1–12.)以及Ni3S2纳米线/Ni箔电极(J.Mater.Chem.2009,19,7277–7283) 等,在电导能力、比容量、倍率容量和循环稳定性等方面具有明显超越优势。如此优异的电池性能主要得益于该Ni3S2.9超晶格电极材料的结构优势,如超晶格结构能够优化电子输运动力学,赋予良好的电子导电性;多阶塔锥的结构有利于电解液的浸润和扩散,便于电解质输运;三角纳米片多阶层岩结构有利于Li+离子的插入和脱出,减小充放电过程中的体积膨胀;Ni3S2.9超晶格活性材料直接生长在Ni基底上有利于减小电极欧姆阻抗。另外,S2掺杂能够提供更多的活性硫位点以便存储更多的Li+离子,大幅度提高电池的比容量。电池冲放电循环性能测试结果见图14。
以上实施例的分析结果表明,随着反应温度的升高,S2掺杂量增大。当S2掺杂量为45%时,晶格中大约有一半的S原子被S2取代,掺杂原子在晶格中几乎达到均衡分布,形成完美的超晶格结构。本发明采用价格低廉的硫粉和氢氧化钠作为原料,在温和条件下获得高活性的S2-和S2 2-碱性水溶液,经过水热条件下简单的Ni箔自硫化作用即可得到S2掺杂的Ni3S2.9超晶格多阶三角塔锥阵列薄膜电极材料,电化学性能优良,便于工业化生产获得高附加值的产品。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

1.一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料,其特征在于:S2掺杂的Ni3S2.9化学均质超晶格薄膜电极材料,元素组成为Ni3(S)1.1(S2)0.9,属于六方晶相,具有多阶三角纳米片堆叠的三角塔锥状微形貌和内在的超晶格结构,Ni3(S)1.1(S2)0.9均匀生长在镍箔基底上,三角纳米片单片厚度25-30nm,堆叠成的三角塔锥高度1.2-1.5μm,其内在超晶格结构由周期性交替的Ni-S和Ni-S2原子层构成,属于化学均质超晶格。
2.权利要求1所述的三角塔锥状Ni3S2.9均质超晶格薄膜电极材料作为锂离子电池、超级电容器的应用。
3.一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料的制备方法,其特征在于,包括以下步骤:
(1)将硫粉和NaOH水溶液80-100℃回流反应2-3小时,制得含有Na2S、Na2S2和Na2S3的多硫化物浅黄色碱性水溶液;
(2)取一定量的镍箔与适量的多硫化物浅黄色碱性水溶液共置于反应釜聚四氟乙烯内胆中,密封反应釜,置于恒温干燥箱中,控温120-180℃,恒温反应12小时,自然冷却至室温;
(3)步骤(2)反应后所得镍箔依次用蒸馏水和无水乙醇多次洗涤,真空干燥,得到S2掺杂的三角塔锥状Ni3S2.9超晶格薄膜电极材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)中NaOH水溶液浓度为6mol/L,反应物中NaOH和硫粉的摩尔比为50:1。
5.根据权利要求3所述的制备方法,其特征在于,步骤(1)中90℃回流反应3小时。
6.根据权利要求3所述的制备方法,其特征在于,步骤(2)中多硫化物浅黄色碱性水溶液的用量按反应物中硫粉和镍箔的摩尔比0.06-0.6:1控制。
7.根据权利要求3所述的制备方法,其特征在于,步骤(2)中恒温干燥箱自然升温至120-180℃,恒温反应12小时,温度波动±5℃。
8.根据权利要求3所述的制备方法,其特征在于,步骤(3)中真空干燥控温60℃,干燥30min,得到S2掺杂的三角塔锥状Ni3S2.9超晶格薄膜电极材料。
9.根据权利要求3所述的制备方法,其特征在于,把3.0mmol硫粉和25mL浓度为6mol/L的NaOH水溶液置于50mL圆底烧瓶中90℃回流反应3小时,制得含有Na2S、Na2S2和Na2S3的多硫化物浅黄色碱性水溶液;取面积为1cm×2cm、质量为0.1072g的镍箔置于容积为20mL的反应釜聚四氟乙烯内胆中,加入2mL多硫化物浅黄色碱性水溶液,密封反应釜,置于恒温干燥箱中,控温180℃,恒温反应12小时,自然冷却至室温;取出反应后的镍箔,依次用蒸馏水和无水乙醇各洗涤4次,0.1Pa真空干燥箱中60℃干燥30min,得到S2掺杂的三角塔锥状Ni3S2.9化学均质超晶格薄膜电极材料。
CN201910743498.3A 2019-08-13 2019-08-13 一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用 Active CN110544768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910743498.3A CN110544768B (zh) 2019-08-13 2019-08-13 一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910743498.3A CN110544768B (zh) 2019-08-13 2019-08-13 一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110544768A CN110544768A (zh) 2019-12-06
CN110544768B true CN110544768B (zh) 2020-10-30

Family

ID=68711464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910743498.3A Active CN110544768B (zh) 2019-08-13 2019-08-13 一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110544768B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111468140B (zh) * 2020-06-02 2022-11-29 陕西科技大学 一种Ni3S2/NiV-LDH异质纳米锥电催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206807A (zh) * 2015-09-07 2015-12-30 合肥工业大学 一种MoS2/C超晶格异质结纳米片自组装纳米管及其制备方法和应用
CN108677207A (zh) * 2018-05-24 2018-10-19 华南理工大学 一种富含硫空位的Ni3S2纳米棒析氧电催化材料及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271360B (zh) * 2015-10-28 2017-03-08 许昌学院 一种Zn掺杂的CuS超晶格纳米花光电子材料及其制备方法和应用
CN106683905B (zh) * 2016-12-08 2018-06-19 三峡大学 一种多孔纳米二硫化三镍薄膜电极的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206807A (zh) * 2015-09-07 2015-12-30 合肥工业大学 一种MoS2/C超晶格异质结纳米片自组装纳米管及其制备方法和应用
CN108677207A (zh) * 2018-05-24 2018-10-19 华南理工大学 一种富含硫空位的Ni3S2纳米棒析氧电催化材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Highly active and dual-function self-supported multiphase NiS–NiS2–Ni3S2/NF electrodes for overall water splitting;FengJing等;《Journal of Material Chemistry A》;20181231;全文 *
Ni-S二元化合物及Bi2-xPbxNi3Ch2(Ch=S,Se)体系的研究;葛林慧;《学位论文》;20121130;全文 *

Also Published As

Publication number Publication date
CN110544768A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
Forouzandeh et al. Two-dimensional (2D) electrode materials for supercapacitors
Javed et al. Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
Rai et al. Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries
Li et al. A novel hierarchical core-shell structure of NiCo2O4@ NiCo-LDH nanoarrays for higher-performance flexible all-solid-state supercapacitor electrode materials
CN104538595B (zh) 嵌入式纳米金属负载型碳纳米片锂离子电池负极材料及其制备方法和应用
Zhu et al. Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application
Liu et al. Ultrathin nanoribbons of in situ carbon-coated V3O7· H2O for high-energy and long-life Li-ion batteries: synthesis, electrochemical performance, and charge–discharge behavior
Bai et al. A large-scale, green route to synthesize of leaf-like mesoporous CuO as high-performance anode materials for lithium ion batteries
Yang et al. High-performance aqueous asymmetric supercapacitor based on spinel LiMn2O4 and nitrogen-doped graphene/porous carbon composite
Ye et al. In situ fabrication of nitrogen-doped carbon-coated SnO2/SnS heterostructures with enhanced performance for lithium storage
CN105161692A (zh) 一种C/MoS2复合材料的制备方法及其产品和电化学应用
Ni et al. Fabrication of NiO nanoflakes and its application in lithium ion battery
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
CN107317008A (zh) 壳核型碳包覆金属磷化物纳米复合粒子的制备方法及应用
CN107634206B (zh) 一种锂离子电池柔性负极材料及其制备方法
CN111211273A (zh) 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
Kong et al. Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries
Hu et al. Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced electrochemical performance
Abdah et al. Facile synthesis of microwave-etched Ti3C2 MXene/activated carbon hybrid for lithium-ion battery anode
CN107910528B (zh) 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池
Wang et al. Controllable synthesis of Co/Ni basic carbonate composite via regulating Co/Ni ratio with super rate performance for asymmetric solid-state supercapacitor
Feng et al. Carbon quantum dot-coated VSe2 nanosheets as anodes for high-performance potassium-ion batteries
CN110544768B (zh) 一种三角塔锥状Ni3S2.9均质超晶格薄膜电极材料及其制备方法和应用
Hua et al. Green synthesis and electrochemical properties of A3 (PO4) 2 (A= Mn, Zn, and Co) hydrates for supercapacitors with long-term cycling stability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant