CN110535127B - 基于加权低碳积分的需求响应控制方法 - Google Patents

基于加权低碳积分的需求响应控制方法 Download PDF

Info

Publication number
CN110535127B
CN110535127B CN201910836823.0A CN201910836823A CN110535127B CN 110535127 B CN110535127 B CN 110535127B CN 201910836823 A CN201910836823 A CN 201910836823A CN 110535127 B CN110535127 B CN 110535127B
Authority
CN
China
Prior art keywords
carbon
low
user
time period
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910836823.0A
Other languages
English (en)
Other versions
CN110535127A (zh
Inventor
陈嵘
喻洁
张占龙
吴珏炜
汤茜
赵肖旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Jiangsu Electric Power Co ltd Zhenjiang Power Supply Branch
Southeast University
Original Assignee
State Grid Jiangsu Electric Power Co ltd Zhenjiang Power Supply Branch
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Jiangsu Electric Power Co ltd Zhenjiang Power Supply Branch, Southeast University filed Critical State Grid Jiangsu Electric Power Co ltd Zhenjiang Power Supply Branch
Priority to CN201910836823.0A priority Critical patent/CN110535127B/zh
Publication of CN110535127A publication Critical patent/CN110535127A/zh
Application granted granted Critical
Publication of CN110535127B publication Critical patent/CN110535127B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/84Greenhouse gas [GHG] management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/16Energy services, e.g. dispersed generation or demand or load or energy savings aggregation

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Power Engineering (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于加权低碳积分的需求响应控制方法,包括以下步骤:一、引入碳排放因素,计算行业平均碳排放量;步骤二、根据各行业用户用电情况建立加权低碳积分;步骤三、在需求响应期间,用户根据需求,基于加权低碳积分对补偿金额进行修正。本发明考虑各个用户碳排放量,建立针对各行业用户的加权低碳积分,低碳积分较高用户获得奖励,低碳积分较低用户获得惩罚,在加权低碳积分基础上实行需求响应的调度管理,提高了用户合理利用电力的有效、规范性,保护环境,减少碳排放量;本发明同时考虑需求侧管理和低碳排放的发电量,降低碳排放量,使用户合理使用电能,降低了用电成本。

Description

基于加权低碳积分的需求响应控制方法
技术领域
本发明涉及一种基于加权低碳积分的需求响应控制方法,属于电力需求侧控制技术领域。
背景技术
随着全球温度的不断上升,气候变暖问题逐渐成为当前人类面临的重大环境问题之一。针对碳排放问题,如果缺乏有效的激励措施降低碳排放量,人类环境问题将更加严峻。电力需求响应按照响应信号可分为价格型和激励型,前者指用户根据电价信息调整用电行为,后者指用户根据电力调度机构制定实施的激励政策调整用电行为。
加权低碳积分制度是一种具有正向激励的操作制度,在实行需求响应的基础上,根据各行业的平均碳排放建立加权低碳积分,对于高于行业平均碳排放的用户根据加权低碳积分实行惩罚,对于低于行业平均碳排放的用户根据加权低碳积分进行奖励。通过加权低碳积分的需求响应督促用户减少碳排放,能够提高能源利用效率。但是,现有需求响应的实行存在没有考虑环境因素的不足。
发明内容
本发明的目的在于提供一种基于加权低碳积分的需求响应控制方法,弥补现有需求响应的实行没有考虑环境因素的不足,在实行需求响应的基础上,根据各个行业的碳排放量建立加权低碳积分对用户进行奖惩,提高用户合理利用能源的规范、有效性,降低用户碳排放量,保护环境,提高能源利用率。
本发明的目的通过以下技术方案予以实现:
一种基于加权低碳积分的需求响应控制方法,包括以下步骤:
步骤一:引入碳排放因素,计算行业平均碳排放量;
步骤二:根据各行业用户用电情况建立加权低碳积分;
步骤三:在需求响应期间,用户根据需求,基于加权低碳积分对补偿金额进行修正。
本发明的目的还可以通过以下技术措施来进一步实现:
进一步的,步骤一中计算燃气、水、非金属矿物制品行业使用电力产生的碳排放量公式:
Caverage=Paveragecaverage
式中:Caverage为行业平均碳排放量;Paverage为行业平均消耗电量;caverage为单位电量碳排放量。
进一步的,步骤二对于每个用户建立加权低碳积分,其公式为
Figure GDA0003066239000000021
式中:
Figure GDA0003066239000000022
为属于k用户第t年低碳积分,
Figure GDA0003066239000000023
为属于k用户第t-1年低碳积分;β为权重比例,体现积分制定者偏好度,β取值范围在0.5至1.5之间;Caverage为行业平均碳排放量;ck为k用户碳排放量;Ek为k用户单位能耗的总产值。
进一步的,步骤三通过加权低碳积分制度,在管理用户侧负荷的同时,考虑低碳的因素,促进资源有效环保的利用,满足传统机组发电成本和可调负荷集群的调度费用最小,其调度的目标函数为:
Figure GDA0003066239000000024
Figure GDA0003066239000000025
Figure GDA0003066239000000026
Figure GDA0003066239000000027
Figure GDA0003066239000000028
Figure GDA0003066239000000029
式中:
Figure GDA00030662390000000210
为传统机组i在时间段t的发电成本;
Figure GDA00030662390000000211
表示时段t的调度成本;T为参与低碳积分的时间段;N是传统机组的数量;M表示参与需求响应的用户;
Figure GDA00030662390000000212
是传统机组i在时段t的发电量;ai、bi是传统机组i的成本系数,ai、bi分别取0.3,1;
Figure GDA00030662390000000213
为用户k在t时间段的电价;
Figure GDA00030662390000000214
表示用户k在t时间段实施低碳积分削减的电量;
Figure GDA00030662390000000215
表示用户k在t时间段实施低碳积分前预测电量;
Figure GDA00030662390000000216
是用户k时段t的实际用电量;Sprice为低碳积分的基准值;S1为基础低碳积分价格;S2为阶梯型低碳积分补偿价格;
Figure GDA00030662390000000217
为基准低碳积分值;η为单个低碳积分区间取值大小;σ为奖励系数。
进一步的,对目标函数的约束条件为:
(1)保证发电与用电平衡的系统功率平衡约束条件为:
Figure GDA0003066239000000031
式中,
Figure GDA0003066239000000032
是传统机组i在时段t的发电量;
Figure GDA0003066239000000033
是用户k在时段t的实际用电量;N是传统机组的数量;M表示参与需求响应的用户;
(2)发电侧传统机组的功率上下限约束条件为
Figure GDA0003066239000000034
式中,
Figure GDA0003066239000000035
是传统机组i在时段t的发电量;Pi,max为传统机组i在时段t的最大发电量;Pi,min为传统机组i在时段t的最小发电量;
(3)发电侧传统机组的爬坡约束条件为
Figure GDA0003066239000000036
式中:Pi,max是机组i出力上限;RUi是机组i爬坡速度增加的上限;二进制变量
Figure GDA0003066239000000037
表示机组i在时段t是否投入运行,
Figure GDA0003066239000000038
机组投入运行,
Figure GDA0003066239000000039
机组退出运行;
(4)负荷约束条件为
Figure GDA00030662390000000310
式中:Pk,max、Pk,min分别是用户k用电量上下限,由区域内小时响应负荷总量决定。
与现有技术相比,本发明的有益效果是:考虑各个用户碳排放量,建立针对各行业用户的加权低碳积分,低碳积分较高用户获得奖励,低碳积分较低用户获得惩罚,在加权低碳积分基础上实行需求响应的调度管理,提高了用户合理利用电力的有效、规范性,保护环境,减少碳排放量;本发明同时考虑需求侧管理和低碳排放的发电量,降低碳排放量,使用户合理使用电能,降低了用电成本。
附图说明
图1为基于低碳积分的需求响应流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
如图1所示,基于加权低碳积分的需求响应控制方法,步骤一:引入碳排放因素,计算行业平均碳排放量,计算燃气、水、非金属矿物制品行业使用电力产生的碳排放量公式:
Caverage=Paveragecaverage
式中:Caverage为行业平均碳排放量;Paverage为行业平均消耗电量;caverage为单位电量碳排放量;
实施例某地各行业平均碳排放量如表1所示;
表1:
行业 平均碳排放(x10<sup>3</sup>kg)
A 1.246
B 1.906
C 0.928
D 0.801
E 0.977
步骤二对于每个用户建立加权低碳积分,其公式为
Figure GDA0003066239000000041
式中:
Figure GDA0003066239000000042
为属于k用户第t年低碳积分,
Figure GDA0003066239000000043
为属于k用户第t-1年低碳积分;β为权重比例,体现积分制定者偏好度,β取值范围在0.5至1.5之间;Caverage为行业平均碳排放量;ck为k用户碳排放量;Ek为k用户单位能耗的总产值;
实施例对参与需求响应的用户建立低碳积分,β取1,其加权低碳积分如表2所示;
表2:
Figure GDA0003066239000000044
Figure GDA0003066239000000051
步骤三通过加权低碳积分制度,在管理用户侧负荷的同时,考虑低碳的因素,促进资源有效环保的利用,满足传统机组发电成本和可调负荷集群的调度费用最小,其调度的目标函数为:
Figure GDA0003066239000000052
Figure GDA0003066239000000053
Figure GDA0003066239000000054
Figure GDA0003066239000000055
Figure GDA00030662390000000518
Figure GDA0003066239000000056
式中:
Figure GDA0003066239000000057
为传统机组i在时间段t的发电成本;
Figure GDA0003066239000000058
表示时段t的调度成本;T为参与低碳积分的时间段;N是传统机组的数量;M表示参与需求响应的用户;
Figure GDA0003066239000000059
是传统机组i在时段t的发电量;ai、bi是传统机组i的成本系数,ai、bi分别取0.3,1;
Figure GDA00030662390000000510
为用户k在t时间段的电价;
Figure GDA00030662390000000511
表示用户k在t时间段实施低碳积分削减的电量;
Figure GDA00030662390000000512
表示用户k在t时间段实施低碳积分前预测电量;
Figure GDA00030662390000000513
是用户k时段t的实际用电量;Sprice为低碳积分的基准值;S1为基础低碳积分价格;S2为阶梯型低碳积分补偿价格;
Figure GDA00030662390000000514
为基准低碳积分值;η为单个低碳积分区间取值大小;σ为奖励系数。
对目标函数的约束条件为:
(1)保证发电与用电平衡的系统功率平衡约束条件为:
Figure GDA00030662390000000515
式中,
Figure GDA00030662390000000516
是传统机组i在时段t的发电量;
Figure GDA00030662390000000517
是用户k在时段t的实际用电量;N是传统机组的数量;M表示参与需求响应的用户;
(2)发电侧传统机组的功率上下限约束条件为
Figure GDA0003066239000000061
式中,
Figure GDA0003066239000000062
是传统机组i在时段t的发电量;Pi,max为传统机组i在时段t的最大发电量;Pi,min为传统机组i在时段t的最小发电量;
(3)发电侧传统机组的爬坡约束条件为
Figure GDA0003066239000000063
式中:Pi,max是机组i出力上限;RUi是机组i爬坡速度增加的上限;二进制变量
Figure GDA0003066239000000064
表示机组i在时段t是否投入运行,
Figure GDA0003066239000000065
机组投入运行,
Figure GDA0003066239000000066
机组退出运行;
(4)负荷约束条件为
Figure GDA0003066239000000067
式中:Pk,max、Pk,min分别是用户k用电量上下限,由区域内小时响应负荷总量决定。
实施例中单个低碳积分区间取值为10;20为奖励系数,对于用户的低碳积分补偿如表3所示
表3:
用户编号 低碳积分
1 0.4891
2 0.5291
3 0.6891
4 0.3191
5 0.6991
本发明考虑各个用户碳排放量,建立针对各行业用户的加权低碳积分,低碳积分较高用户获得奖励,低碳积分较低用户获得惩罚,在加权低碳积分基础上实行需求响应的调度管理,提高了用户合理利用电力的有效、规范性,保护环境,减少碳排放量;本发明同时考虑需求侧管理和低碳排放的发电量,降低碳排放量,使用户合理使用电能,降低了用电成本。
除上述实施例外,本发明还可以有其他实施方式,凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围内。

Claims (1)

1.一种基于加权低碳积分的需求响应控制方法,包括以下步骤:
步骤一:引入碳排放因素,计算行业平均碳排放量;
步骤二:根据各行业用户用电情况建立加权低碳积分;
步骤三:在需求响应期间,用户根据需求,基于加权低碳积分对补偿金额进行修正;
其特征在于,步骤一中计算燃气、水、非金属矿物制品行业使用电力产生的碳排放量公式:
Caverage=Paveragecaverage
式中:Caverage为行业平均碳排放量;Paverage为行业平均消耗电量;caverage为单位电量碳排放量;
步骤二对于每个用户建立加权低碳积分,其公式为
Figure FDA0003066238990000011
式中:
Figure FDA0003066238990000012
为属于k用户第t年低碳积分,
Figure FDA0003066238990000013
为属于k用户第t-1年低碳积分;β为权重比例,体现积分制定者偏好度,β取值范围在0.5至1.5之间;Caverage为行业平均碳排放量;ck为k用户碳排放量;Ek为k用户单位能耗的总产值;
步骤三通过加权低碳积分制度,在管理用户侧负荷的同时,考虑低碳的因素,促进资源有效环保的利用,满足传统机组发电成本和可调负荷集群的调度费用最小,其调度的目标函数为:
Figure FDA0003066238990000014
Figure FDA0003066238990000015
Figure FDA0003066238990000016
Figure FDA0003066238990000017
Figure FDA0003066238990000018
Figure FDA0003066238990000021
式中:
Figure FDA0003066238990000022
为传统机组i在时间段t的发电成本;
Figure FDA0003066238990000023
表示时段t的调度成本;T为参与低碳积分的时间段;N是传统机组的数量;M表示参与需求响应的用户;Pi t是传统机组i在时段t的发电量;ai、bi是传统机组i的成本系数,ai、bi分别取0.3,1;
Figure FDA0003066238990000024
为用户k在t时间段的电价;
Figure FDA0003066238990000025
表示用户k在t时间段实施低碳积分削减的电量;
Figure FDA0003066238990000026
表示用户k在t时间段实施低碳积分前预测电量;
Figure FDA0003066238990000027
是用户k时段t的实际用电量;Sprice为低碳积分的基准值;S1为基础低碳积分价格;S2为阶梯型低碳积分补偿价格;
Figure FDA0003066238990000028
为基准低碳积分值;η为单个低碳积分区间取值大小;σ为奖励系数;
对目标函数的约束条件为:
(1)保证发电与用电平衡的系统功率平衡约束条件为:
Figure FDA0003066238990000029
式中,Pi t是传统机组i在时段t的发电量;
Figure FDA00030662389900000210
是用户k在时段t的实际用电量;N是传统机组的数量;M表示参与需求响应的用户;
(2)发电侧传统机组的功率上下限约束条件为
Figure FDA00030662389900000211
式中,Pi t是传统机组i在时段t的发电量;Pi,max为传统机组i在时段t的最大发电量;Pi,min为传统机组i在时段t的最小发电量;
(3)发电侧传统机组的爬坡约束条件为
Figure FDA00030662389900000212
式中:Pi,max是机组i出力上限;RUi是机组i爬坡速度增加的上限,二进制变量si t表示机组i在时段t是否投入运行,
Figure FDA00030662389900000213
机组投入运行,
Figure FDA00030662389900000214
机组退出运行;
(4)负荷约束条件为
Figure FDA00030662389900000215
式中:Pk,max、Pk,min分别是用户k用电量上、下限,由区域内小时响应负荷总量决定。
CN201910836823.0A 2019-09-05 2019-09-05 基于加权低碳积分的需求响应控制方法 Active CN110535127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910836823.0A CN110535127B (zh) 2019-09-05 2019-09-05 基于加权低碳积分的需求响应控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910836823.0A CN110535127B (zh) 2019-09-05 2019-09-05 基于加权低碳积分的需求响应控制方法

Publications (2)

Publication Number Publication Date
CN110535127A CN110535127A (zh) 2019-12-03
CN110535127B true CN110535127B (zh) 2021-07-13

Family

ID=68666935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910836823.0A Active CN110535127B (zh) 2019-09-05 2019-09-05 基于加权低碳积分的需求响应控制方法

Country Status (1)

Country Link
CN (1) CN110535127B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369386B (zh) * 2020-03-03 2023-06-06 宁波工程学院 基于同步算法的智能电网需求侧管理方法
CN113162025B (zh) * 2021-01-27 2023-03-24 四川大学 一种含需求响应的电气互联网络分散式低碳经济调度方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130246133A1 (en) * 2009-10-26 2013-09-19 Ron Dembo Systems and methods for incentives
CN104766237A (zh) * 2015-04-28 2015-07-08 超越联创环境投资咨询(北京)有限公司 一种碳积分形成及交易的方法及其体系

Also Published As

Publication number Publication date
CN110535127A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2019184344A1 (zh) 一种微能源网多目标运行控制方法
CN112837181B (zh) 计及需求响应不确定性的综合能源系统的调度方法
JP4920123B1 (ja) 電力需要計画調整装置、電力需要計画調整方法、及びプログラム
CN110535127B (zh) 基于加权低碳积分的需求响应控制方法
CN111446711B (zh) 一种基于需求响应的荷储联合优化运行方法
WO2013084300A1 (ja) 電力需要計画調整装置、方法及びプログラム
CN112116150A (zh) 一种负荷聚合商参与蓄热式电采暖电力市场调节方法
CN109064079A (zh) 基于负荷分类的电力需求响应基线计算方法的选取方法
CN107565585A (zh) 储能装置调峰回报时间预测方法及其模型创建方法
CN111832807B (zh) 计及负荷特性和需求响应的多微电网协调优化调度方法
CN105243445A (zh) 基于电器用电效用分级和用户用电行为识别的削峰方法
WO2013084299A1 (ja) 水力発電計画調整装置、水力発電計画調整方法及びプログラム
CN104951995A (zh) 需求者调整计划拟定方法以及需求者调整计划拟定装置
CN110880776A (zh) 控制储能系统中储能设备充放电的方法和装置
CN102156918A (zh) 智能电网播报系统及方法
CN117559430A (zh) 一种用户侧资源多层协同调控方法及系统
CN108364120A (zh) 基于用户用电偏离度的智能小区需求响应切负荷方法
CN115358559A (zh) 考虑综合需求响应的综合能源系统源储容量优化配置方法
CN115049314A (zh) 一种干线运输自备车队规模优化方法
CN115207906A (zh) 一种考虑高载能负荷参与调控的多时间尺度调度方法
CN110826778B (zh) 一种主动适应新能源发展的负荷特性优化计算方法
Watari et al. Improving duck curve by dynamic pricing and battery scheduling based on a deep reinforcement learning approach
CN117973819B (zh) 一种用于电能储放优化的储能管理系统及方法
CN114529323B (zh) 一种基于效率损失比的需求响应激励决策优化方法
CN113067329B (zh) 一种电力系统的可再生能源适应性优化方法及终端

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant