CN110528024B - 一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法 - Google Patents

一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法 Download PDF

Info

Publication number
CN110528024B
CN110528024B CN201910724859.XA CN201910724859A CN110528024B CN 110528024 B CN110528024 B CN 110528024B CN 201910724859 A CN201910724859 A CN 201910724859A CN 110528024 B CN110528024 B CN 110528024B
Authority
CN
China
Prior art keywords
graphene oxide
catalytic electrode
molybdenum disulfide
carbon fiber
reduced graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910724859.XA
Other languages
English (en)
Other versions
CN110528024A (zh
Inventor
柳丽芬
唐丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910724859.XA priority Critical patent/CN110528024B/zh
Publication of CN110528024A publication Critical patent/CN110528024A/zh
Application granted granted Critical
Publication of CN110528024B publication Critical patent/CN110528024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明提供了一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法,属于水解制氢的能源化利用技术领域,涉及应用一步水热合成法,在导电基底上制备负载型硫化钼/还原氧化石墨烯,及进一步化学还原沉积钌形成电催化产氢性能优良的催化电极。在炭纤维布表面原位水热合成、化学还原沉积制备复合钌/二硫化钼/还原氧化石墨烯高性能催化导电双功能膜电极。此方法制备的双功能膜电极具有良好的催化导电性能。该功能膜用作电催化产氢的材料。本发明的效果和益处是该法制备出的催化导电双功能膜电极能够显著提高电催化产氢的效果。在电催化产氢过程中,可使产氢过电位大幅度降低,二硫化钼导电性提高,氢更易从催化剂表面脱附逸出。

Description

一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制 备方法
技术领域
本发明属于能源化技术利用技术领域,涉及应用一步水热合成法制备负载型硫化钼/还原氧化石墨烯,及进一步化学还原沉积钌形成最终催化电极。以炭纤维布作为基底,原位生长、化学还原沉积制备催化导电双功能膜电极。通过电催化(EC)技术分解水,进行能源化产氢的操作。
背景技术
电催化析氢反应(Hydrogen evolution reaction,简称HER)是指使用催化剂通过电化学方法产生氢气。反应过程中,通过质子或水分子的减少,在经历质子放电步骤(或称电化学步骤,Volmer反应)与复合脱附步骤(Tafel反应)及(或)电化学脱附步骤(Heyrovsky反应)后产生气态氢。类似于许多化学反应,电化学过程必须克服一定的活化能势垒(电化学过程中称为过电位)才能发生。因此,反应过程中,通常需要电催化剂的帮助来降低过电位,从而提高反应速率和效率。理想的HER电催化剂应具有良好平衡的氢键和氢气释放性能。利用密度泛函理论,Norskov预测了层状MoS2边缘部位的高HER活性。近年的电化学研究也证实了这一预测。
二硫化钼二维层状材料具有比表面积大、成本低廉和催化活性高等特点,被视为非常有前景的电催化析氢催化剂,并有望代替贵金属Pt基电催化剂。层状MoS2纳米晶热力学不稳定的边缘位点是氢气产生的活性位点,即MoS2电催化活性受其端基长度影响,因此从纳米尺度上对MoS2材料进行合理设计和构建,通过对活性位点数量、催化活性及导电性的优化和调控,可有效提高MoS2的析氢催化性能。铂族金属中的钌性质稳定,耐腐蚀性很强,将其掺杂在纳米材料中,可对材料电子态、导电性及载流子浓度进行改变。将钌沉积在二硫化钼/还原氧化石墨烯@炭纤维布表面,将其制成导电催化双功能膜,用于电催化析氢,目前仍属崭新的研究内容。
发明内容
本发明的目的是提供一种催化导电双功能膜电极的制备方法,解决了电催化产氢过程中过电位较高,二硫化钼导电性差,氢不易脱附等问题。
本发明的技术方案:
一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法,步骤如下:
1)将四水合钼酸铵(NH4)6Mo7O24·4H2O、硫脲CH4N2S与尿素CO(NH2)2按摩尔比1:10:1.35溶解于还原氧化石墨烯分散液中,将混合物超声20min,得到混合溶液a;
2)将炭纤维布称重后,卷曲放入高压密闭反应器中,然后将混合溶液a倒入该高压密闭反应器,密封高压密闭反应器;
3)将高压密闭反应器在220℃下恒温24h,取出,自然冷却,得到二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜b;
4)取出制备的二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜b,去离子水与乙醇交替真空抽滤清洗干净后,在50℃~60℃温度条件下真空干燥;
5)将干燥后的二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜b上的多余粉末刷除干净,得到催化电极膜c,称重;
6)按钌Ru占催化电极膜上二硫化钼/还原氧化石墨烯重的2%~20%,将三氯化钌RuCl3溶于水中,加入盐酸HCl,使Ru:Cl的摩尔比为1:6,将溶液混合均匀后,将催化电极膜c放入其中,浸泡24h后,用去离子水与乙醇交替洗涤,在50℃~60℃温度条件下真空干燥,得到催化电极膜d;
7)将硼氢化钠NaBH4和氢氧化钠NaOH溶于水中,得到混合溶液e,用混合溶液e浸泡催化电极膜d 2h后,去离子水与乙醇交替洗涤,在50℃~60℃下,真空干燥箱烘干,得到钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜。
钌与硼氢化钠的摩尔比为1:10,硼氢化钠与氢氧化钠的摩尔比为3:2。
本发明的有益效果:本发明制备出的催化导电双功能膜电极能够显著提高电催化产氢的效果。在电催化产氢过程中,可使产氢过电位大幅度降低,二硫化钼导电性提高,氢更易从催化剂表面脱附逸出。
附图说明
图1是功能膜电极X射线衍射(XRD)图。
图中:横坐标表示衍射角度(2θ),单位°,纵坐标表示相对强度。
图2是双功能膜电极扫描电子显微镜(SEM)图。
图3是双功能膜电极能量色散X射线光谱(EDX)图。
图4是双功能膜电极线性扫描伏安(LSV)图,图中,横坐标表示相对于可逆氢电极的过电位,纵坐标表示电流密度;
图5是双功能膜电极电子阻抗谱(EIS)图。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
将4.57g四水合钼酸铵(NH4)6Mo7O24·4H2O,2.47g硫脲CH4N2S和0.3g尿素CO(NH2)2溶解于60ml自制0.22g/l还原氧化石墨烯中,将混合物超声20min,得到均匀混合溶液;将7cm×12cm炭纤维布称重后,卷曲贴壁放入100ml高压反应釜聚四氟乙烯内衬中,然后将上述混合溶液倒入该反应釜,密封反应釜;将反应釜在220℃下恒温24h,取出,自然冷却;取出制备的二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜,去离子水与乙醇交替真空抽滤清洗干净后,在真空干燥箱中60℃烘干备用;将上述干燥后的催化电极膜上的多余粉末刷除干净,称重。
按Ru占上述催化剂粉末质量5%进行以下操作:将0.1g三氯化钌RuCl3溶于100ml水中,加入100μl 36wt%~38wt%盐酸HCl,浸泡24h后,去离子水与乙醇交替洗涤,在真空干燥箱中50℃烘干待用;将0.022g硼氢化钠NaBH4和0.016g氢氧化钠NaOH溶于50ml水中,用此混合溶液浸泡上述催化电极膜2h后,用去离子水与乙醇交替洗涤,在真空干燥箱中50℃烘干,得到钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜。
X射线衍射图:制备的催化导电膜电极的主要成分为六方相二硫化钼,与JCPDS卡No.87-2416相匹配。
扫描电子显微镜:钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜表面被类纳米花状二硫化钼均匀覆盖,其上沉积着片状钌。
能量色散X射线光谱:复合材料由碳、氧、钼、硫、钌等元素都成。
功能膜电催化产氢性能检验:在CHI660E电化学工作站中,功能膜作为工作电极,碳棒作为对电极,氧化汞作为参比电极,在1M KOH溶液中进行了测试。从线性扫描伏安图上,可以看出,该催化电极膜达到电流密度为10mA/cm2的产氢过电位仅为~50mV。相比于以往报道中制备的二硫化钼@钼网、二硫化钼/还原氧化石墨烯@钼网、钴(硒)掺杂二硫化钼在电流密度为10mA/cm2时,产氢过电位需在100mV以上,本发明有了非常大幅度的提升。从电化学阻抗谱可以看出,电极表面电荷转移速率相差不大,但氢气脱附速率,钌/二硫化钼/还原氧化石墨烯@炭纤维布明显优于二硫化钼/还原氧化石墨烯@炭纤维布及二硫化钼@炭纤维布催化电极膜。

Claims (1)

1.一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法,其特征在于,步骤如下:
1)将四水合钼酸铵(NH4)6Mo7O24·4H2O、硫脲CH4N2S与尿素CO(NH2)2按摩尔比1:10:1.35溶解于还原氧化石墨烯分散液中,将混合物超声20min,得到混合溶液a;
2)将炭纤维布称重后,卷曲放入高压密闭反应器中,然后将混合溶液a倒入该高压密闭反应器,密封高压密闭反应器;
3)将高压密闭反应器在220℃下恒温24h,取出,自然冷却,得到二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜b;
4)取出制备的二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜b,去离子水与乙醇交替真空抽滤清洗干净后,在50℃~60℃温度条件下真空干燥;
5)将干燥后的二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜b上的多余粉末刷除干净,得到催化电极膜c,称重;
6)按钌Ru占催化电极膜上二硫化钼/还原氧化石墨烯重量的2%~20%,将三氯化钌RuCl3溶于水中,加入盐酸HCl,使Ru:Cl的摩尔比为1:6,将溶液混合均匀后,将催化电极膜c放入其中,浸泡24h后,用去离子水与乙醇交替洗涤,在50℃~60℃温度条件下真空干燥,得到催化电极膜d;
7)将硼氢化钠NaBH4和氢氧化钠NaOH溶于水中,得到混合溶液e,用混合溶液e浸泡催化电极膜d 2h后,去离子水与乙醇交替洗涤,在50℃~60℃下,真空干燥烘干,得到钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极膜;
钌与硼氢化钠的摩尔比为1:10,硼氢化钠与氢氧化钠的摩尔比为3:2。
CN201910724859.XA 2019-08-07 2019-08-07 一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法 Active CN110528024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910724859.XA CN110528024B (zh) 2019-08-07 2019-08-07 一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910724859.XA CN110528024B (zh) 2019-08-07 2019-08-07 一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法

Publications (2)

Publication Number Publication Date
CN110528024A CN110528024A (zh) 2019-12-03
CN110528024B true CN110528024B (zh) 2021-05-11

Family

ID=68661443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910724859.XA Active CN110528024B (zh) 2019-08-07 2019-08-07 一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法

Country Status (1)

Country Link
CN (1) CN110528024B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403629A (zh) * 2021-06-07 2021-09-17 嘉寓氢能源科技(辽宁)有限公司 一种电解水制氢系统用催化剂及其制备方法
CN113430560B (zh) * 2021-07-09 2022-11-15 北京化工大学 一种双金属单原子负载MoS2碳纸基材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780414A (zh) * 2010-01-25 2010-07-21 上海电力学院 一种PtRuNi/C三元合金纳米催化剂及其制备方法
CN102886260A (zh) * 2012-10-24 2013-01-23 南京大学 一种钯钌/多壁碳纳米管催化剂及其制备方法
CN103157808A (zh) * 2013-02-01 2013-06-19 天津商业大学 一种金铂钌合金纳米粒子及其胶体分散体系的制备方法
CN105780049A (zh) * 2016-04-20 2016-07-20 华中科技大学 一种痕量铂修饰硫化钼高效析氢催化剂及其制备方法
CN106987857A (zh) * 2017-03-09 2017-07-28 陕西科技大学 单层金属结构二硫化钼/氧化还原石墨烯复合物及其制备方法
CN108191075A (zh) * 2017-12-29 2018-06-22 太原学院 一种微生物电解池中MoS2/过渡金属/石墨烯复合析氢电极的制备方法及应用
CN109569734A (zh) * 2018-12-19 2019-04-05 武汉轻工大学 一种甲壳素基Ru/C催化剂的制备方法
CN110465291A (zh) * 2019-08-09 2019-11-19 太原理工大学 一种单原子贵金属型催化剂Ru/Cr2O3及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780414A (zh) * 2010-01-25 2010-07-21 上海电力学院 一种PtRuNi/C三元合金纳米催化剂及其制备方法
CN102886260A (zh) * 2012-10-24 2013-01-23 南京大学 一种钯钌/多壁碳纳米管催化剂及其制备方法
CN103157808A (zh) * 2013-02-01 2013-06-19 天津商业大学 一种金铂钌合金纳米粒子及其胶体分散体系的制备方法
CN105780049A (zh) * 2016-04-20 2016-07-20 华中科技大学 一种痕量铂修饰硫化钼高效析氢催化剂及其制备方法
CN106987857A (zh) * 2017-03-09 2017-07-28 陕西科技大学 单层金属结构二硫化钼/氧化还原石墨烯复合物及其制备方法
CN108191075A (zh) * 2017-12-29 2018-06-22 太原学院 一种微生物电解池中MoS2/过渡金属/石墨烯复合析氢电极的制备方法及应用
CN109569734A (zh) * 2018-12-19 2019-04-05 武汉轻工大学 一种甲壳素基Ru/C催化剂的制备方法
CN110465291A (zh) * 2019-08-09 2019-11-19 太原理工大学 一种单原子贵金属型催化剂Ru/Cr2O3及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Single-atom ruthenium based catalyst for enhanced hydrogen evolution";Dewen Wang 等,;《Applied Catalysis B:Environmental》;20190221;第249卷;第91-97页 *
"Synthesis of Cu-MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction";Feng Li 等,;《Journal of Power Sources》;20150517;第15-22页 *

Also Published As

Publication number Publication date
CN110528024A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
Wang et al. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review
Song et al. Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting
Zheng et al. In Situ Formed Bimetallic Carbide Ni6Mo6C Nanodots and NiMoO x Nanosheet Array Hybrids Anchored on Carbon Cloth: Efficient and Flexible Self-Supported Catalysts for Hydrogen Evolution
Ma et al. Single-atom catalysts for electrochemical energy storage and conversion
Li et al. Heterostructured MoO2@ MoS2@ Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting
Wei et al. Hairy sphere-like Ni9S8/CuS/Cu2O composites grown on nickel foam as bifunctional electrocatalysts for hydrogen evolution and urea electrooxidation
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
Mou et al. Enhanced electrochemical reduction of carbon dioxide to formate with in-situ grown indium-based catalysts in an aqueous electrolyte
Wang et al. Heterostructure engineering of iridium species on nickel/molybdenum nitride for highly-efficient anion exchange membrane water electrolyzer
Kim et al. Bimetallic-metal organic framework-derived Ni3S2/MoS2 hollow spheres as bifunctional electrocatalyst for highly efficient and stable overall water splitting
Chen et al. Castoff derived Biomass‒carbon supported MoS2 nanosheets for hydrogen evolution reaction
Yan et al. Defects-rich nickel nanoparticles grown on nickel foam as integrated electrodes for electrocatalytic oxidation of urea
Zhao et al. Correlating alkaline hydrogen electrocatalysis and hydroxide binding energies on Mo-modified Ru catalysts
Hou et al. Cobalt-molybdenum disulfide supported on nitrogen-doped graphene towards an efficient hydrogen evolution reaction
Li et al. Transition metal-based self-supported anode for electrocatalytic water splitting at a large current density
Yin et al. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction
CN110528024B (zh) 一种钌/二硫化钼/还原氧化石墨烯@炭纤维布催化电极的制备方法
Pérez-Sosa et al. Enhanced performance of urea electro-oxidation in alkaline media on PtPdNi/C, PtNi/C, and Ni/C catalysts synthesized by one-pot reaction from organometallic precursors
Liu et al. Mutual promotion by structural design and intrinsic activity coupling of CNTs/MoC/CoNiMo for water splitting and urea electrolysis
Huang et al. Molybdenum carbide nanosheets decorated with Ni (OH) 2 nanoparticles toward efficient hydrogen evolution reaction in alkaline media
He et al. Carbon coated and nitrogen doped hierarchical NiMo-based electrocatalysts with high activity and durability for efficient borohydride oxidation
Zheng et al. Flower-like 1T-MoS 2/NiCo 2 S 4 on a carbon cloth substrate as an efficient electrocatalyst for the hydrogen evolution reaction
Zhang et al. Design of molybdenum phosphide@ nitrogen-doped nickel-cobalt phosphide heterostructures for boosting electrocatalytic overall water splitting
Zhang et al. Synthesis self-supporting bulk porous NiMo@ MoS2 electrocatalyst to enhance hydrogen evolution in alkaline conditions
Park et al. Synergistic Ru-Ni-Cu interface for stable hydrogen evolution on 1% Ru-Ni@ Cu alloy grown directly on carbon paper electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant