CN110527016B - 用于发光显示器的离子导电电化学发光水凝胶及其制备方法 - Google Patents

用于发光显示器的离子导电电化学发光水凝胶及其制备方法 Download PDF

Info

Publication number
CN110527016B
CN110527016B CN201910636196.6A CN201910636196A CN110527016B CN 110527016 B CN110527016 B CN 110527016B CN 201910636196 A CN201910636196 A CN 201910636196A CN 110527016 B CN110527016 B CN 110527016B
Authority
CN
China
Prior art keywords
hydrogel
solution
ion
electrochemiluminescence
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910636196.6A
Other languages
English (en)
Other versions
CN110527016A (zh
Inventor
李菲
郭晓锦
李迎春
李亚北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910636196.6A priority Critical patent/CN110527016B/zh
Publication of CN110527016A publication Critical patent/CN110527016A/zh
Application granted granted Critical
Publication of CN110527016B publication Critical patent/CN110527016B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Medicinal Preparation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种用于发光显示器的离子导电电化学发光水凝胶及其制备方法。该电化学发光水凝胶是通过将氯化钠/三联吡啶氯化钌/三正丙胺吸附在阴离子型聚丙烯酰胺水凝胶的三维网络结构中而形成的复合电化学发光水凝胶。具体是将单体丙烯酰胺、单体丙烯酸钠、交联剂甲叉双丙烯酰胺、导电介质氯化钠、电化学发光体系三联吡啶氯化钌/三正丙胺、引发剂过硫酸铵和加速剂四甲基乙二胺混合形成红色透明溶液,室温下或烘箱加热成胶。本发明制备的电化学发光水凝胶有效固定了电化学发光物质,不仅保留水凝胶良好的透光性和可拉伸性,还具有良好的导电性、均一性和电化学发光性质,该水凝胶可应用于发光显示器,具有可循环、低引发电压等优点。

Description

用于发光显示器的离子导电电化学发光水凝胶及其制备方法
技术领域
本发明属于复合材料合成与应用领域,涉及一种用于发光显示器的离子导电电化学发光水凝胶(NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶)的制备。
背景技术
电化学发光由于高灵敏度、稳定性和简单性,在生物分析和环境分析等领域得到了广泛的研究。Ru(bpy)3Cl2/TPA作为经典的电化学发光体系,具有良好的可循环性、稳定性和发光强度,应用于电化学发光器件能够更好地满足日益增长的低成本、一次性或可重复使用显示器的需求,有望成为有机发光二极管的替代品。
水凝胶是一类在水中能够溶胀又不能被水溶解的交联聚合物的统称,其中阴离子型聚丙烯酰胺(APAM)水凝胶兼具吸附性、絮凝性、分散性等特点,在食品、环境等领域中的应用十分广阔。导电水凝胶作为水凝胶重要的分支,具有良好的导电性、透光性、可拉伸性等,可作为发光显示器的低成本基底材料,极大地拓宽了水凝胶在能源、电子显示器、电学检测等领域的应用。
导电水凝胶可分为普通水凝胶、电子导电水凝胶和离子导电水凝胶。其中离子导电水凝胶通常将离子液体或无机盐离子(如氯化钠等)和水凝胶相结合以改善水凝胶的导电性,但是离子液体具有水溶性差、毒性大、成本较高等缺点,限制了其应用。氯化钠具有离子迁移速率高、水溶性好、环境友好、成本低、化学和热稳定性高、生物相容性好、可大规模生产等优点,不仅是提高水凝胶导电性的理想选择,而且可提高水凝胶的保水能力。
目前简单的物理掺杂不能有效地固定介质(电化学发光体系及导电离子),制成的复合电化学发光水凝胶在使用环境下(如含水相),所掺杂的介质容易扩散流失,影响了其显示性能,提高了应用成本。
发明内容
本发明的目的在于提供一种用于发光显示器的离子导电电化学发光水凝胶及其制备方法。本发明利用阴离子型聚丙烯酰胺水凝胶骨架引入静电吸附作用,更好地固定电化学发光物质(如Ru(bpy)3 2+),从而获得性能稳定的电化学发光水凝胶。
为达到上述目的,本发明采用了以下技术方案:
一种离子导电电化学发光水凝胶,该离子导电电化学发光水凝胶包括阴离子型聚丙烯酰胺(APAM)水凝胶基底,以及分散在该水凝胶基底的三维网络结构中的电化学发光物质和离子导电介质。
优选的,所述离子导电电化学发光水凝胶是通过将电化学发光物质和离子导电介质吸附在阴离子型聚丙烯酰胺水凝胶的三维网络结构而形成的复合电化学发光水凝胶,其中,电化学发光物质选自三联吡啶氯化钌/三正丙胺电化学发光体系(Ru(bpy)3Cl2/TPA),离子导电介质选自氯化钠(NaCl),在阴离子型聚丙烯酰胺水凝胶的交联体系中三联吡啶氯化钌的摩尔浓度为0.1mM~10mM,三正丙胺的摩尔浓度为1mM~100mM,氯化钠的摩尔浓度为0.1M~1M。
优选的,所述离子导电电化学发光水凝胶的电导率为0.005s/m~0.05s/m。
优选的,所述离子导电电化学发光水凝胶的发光电位为1.0V~5.0V。
上述离子导电电化学发光水凝胶的制备方法,包括以下步骤:
1)将单体丙烯酰胺(AM)、单体丙烯酸钠(NaAA)和交联剂甲叉双丙烯酰胺(MBAA)于水中混合均匀,得到溶液a;
2)将电化学发光物质三联吡啶氯化钌(Ru(bpy)3Cl2)及三正丙胺(TPA)与溶液a混合均匀,得到红色透明溶液b;
3)将离子导电介质氯化钠(NaCl)与红色透明溶液b混合均匀,得到红色透明溶液c;
4)将红色透明溶液c、引发剂过硫酸铵(APS)和加速剂四甲基乙二胺(TEMED)充分混合,得到最终混合溶液d;所述溶液d中,AM的摩尔浓度为2.0M~2.5M,NaAA的摩尔浓度为0.3M~0.4M,MBAA的摩尔浓度0.01M~0.15M,APS的摩尔浓度为3mM~5mM,TEMED的摩尔浓度为60mM~70mM;
5)对最终混合溶液d进行热交联处理(如继续在室温下或加热至更高温度),得到红色透明水凝胶。
优选的,所述步骤1)中,AM:MBAA:NaAA的质量比为100:(1~15):(20~25),以保证交联后形成的APAM水凝胶具有适宜的力学性质和对交联体系中的掺杂物质的吸附能力。
优选的,所述溶液d中,Ru(bpy)3Cl2的摩尔浓度为0.1mM~10mM,TPA的摩尔浓度为1mM~100mM,以保证电化学发光水凝胶(NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶)具有较好的电化学发光性质。
优选的,所述溶液d中,导电介质NaCl的摩尔浓度为0.1M~1M,以保证电化学发光水凝胶(NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶)具有较好的导电性。
优选的,所述步骤4)中,AM:APS:TEMED的质量比为100:(0.5~1):(0.1~10),以保证电化学发光水凝胶(NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶)合理的成胶速度和水凝胶硬度。
优选的,所述热交联处理具体包括以下步骤:将聚合前溶液(即所述溶液d)于20~30℃下静置0.5~3小时;或者将聚合前溶液(即所述溶液d)置于50~70℃烘箱中≤1小时。
优选的,所述烘箱的温度为60~65℃。
本发明的有益效果体现在:
本发明制备了一种电化学发光水凝胶(如NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶),制备方法操作简单,反应条件温和,制备成本低,有利于批量生产。不仅充分利用阴离子型聚丙烯酰胺水凝胶多孔的三维网络结构来均匀掺杂电化学发光物质和离子导电介质,而且利用该水凝胶的负电骨架引入静电吸附作用对电化学发光物质等掺杂物质进行有效的吸附固定。该电化学发光水凝胶可应用于发光显示器领域,具有可循环、低引发电压等优点。
进一步的,所制得的NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶不仅保留水凝胶良好的透光性和可拉伸性,还具有良好的导电性、电化学发光性质和均一性。
进一步的,通过控制交联剂MBAA用量(比例不宜过低),避免聚合前溶液不能成胶。
进一步的,通过控制离子导电介质NaCl的用量(比例不宜过大),避免因发生淬灭影响水凝胶中电化学发光物质的发光强度。
附图说明
图1为本发明实施例1制备的NaCl/Ru(bpy)3Cl2/TPA/APAM电化学发光水凝胶的应用原理图;其中:1为离子导电电化学发光水凝胶,2为导电铜胶带。
图2为本发明实施例1制备的NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶的形貌直观图。
图3为本发明实施例1制备的NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶的红外光谱图。
图4为本发明实施例1制备的NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶与APAM水凝胶的微观形貌图。
图5为本发明实施例1制备的NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶的电化学发光图(0-1.5V)。
图6为本发明实施例1制备的NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶的电化学发光图(0-3.0V)。
图7为本发明实施例1制备的NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶与聚丙烯酰胺PAAm水凝胶扩散实验(水中)结果图。
图8为本发明实施例1制备的NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶的电化学发光直观图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。所述实施例用于解释本发明,而非对本发明保护范围的限制。
(一)制备离子导电电化学发光水凝胶(NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶)
通过将氯化钠/三联吡啶氯化钌/三正丙胺(NaCl/Ru(bpy)3Cl2/TPA)吸附进APAM水凝胶三维网络结构中而形成复合电化学发光水凝胶。具体是将单体(AM、NaAA)、交联剂MBAA、离子导电介质NaCl、电化学发光体系Ru(bpy)3Cl2/TPA、引发剂APS和加速剂TEMED依次混合形成红色透明溶液,将红色透明溶液进行热交联处理,形成红色透明水凝胶。
实施例1:
1)用天平称量0.1564g的AM、0.02g的MBAA及0.0362g的NaAA,将称量的固体粉末(AM、MBAA、NaAA)依次溶解于500μL去离子水中,室温震荡混合2~3分钟得到无色澄清溶液。
2)用天平称量0.0037g的Ru(bpy)3Cl2、0.0072g的TPA及0.0292g的NaCl,将称量的物质(Ru(bpy)3Cl2、TPA、NaCl)依次加入上述1)的无色澄清溶液中并室温震荡混合2~3分钟得到红色透明溶液。
3)向2)的红色透明溶液中加入用天平称量0.0009g的APS及0.0078g的TEMED,室温震荡混合2~3分钟充分溶解并加水至总体积为1mL,得到最终混合溶液。
4)将最终混合溶液在室温下静置60分钟后得到目标水凝胶(图2)。
目标水凝胶经红外测试可得(图3),在3430cm-1处为酰胺基中胺基-NH2的伸缩振动吸收峰;1668cm-1为酰胺基上羰基-C=O的伸缩振动吸收峰;在1560cm-1处为羧基盐特征吸收峰。产物出峰位置与APAM特征基团吻合,说明成功合成阴离子型聚丙烯酰胺。
经对比观察,APAM水凝胶为无色透明状,而所制备的目标水凝胶为红色透明水凝胶,颜色由无色向红色的转变证明目标水凝胶中存在电化学发光物质Ru(bpy)3Cl2。APAM水凝胶电导率为0.00672s/m,而目标水凝胶的电导率为0.01881s/m(经导电性能测试可知目标水凝胶具有良好的导电性能),目标水凝胶的电导率的提高证明目标水凝胶中存在NaCl。
经扫描电镜(SEM)观察APAM水凝胶和目标水凝胶(图4),结果表明,未掺杂电化学发光物质等的APAM水凝胶为多孔的微观结构(图4a),其微孔的直径约为10μm~20μm(图4b,即图4a的局部放大图)。然而目标水凝胶内部无多孔结构(图4c及图4c的局部放大结果图4d),即原本的多孔结构被所掺杂物质均匀填充。经过两者对比,证明NaCl/Ru(bpy)3Cl2/TPA在APAM水凝胶的三维多孔结构中成功掺杂,即形成了NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶。
综上所述,所制备的目标水凝胶(图2中的红色透明水凝胶)为NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶。
实施例2:
1)用天平称量0.1564g的AM、0.02g的MBAA及0.0362g的NaAA,将称量的上述固体粉末(AM、MBAA、NaAA)依次溶解于500μL去离子水中,室温震荡混合2~3分钟得到无色澄清溶液。
2)用天平称量0.0008g的Ru(bpy)3Cl2、0.0014g的TPA及0.0292g的NaCl,将称量的物质(Ru(bpy)3Cl2、TPA、NaCl)依次加入上述1)的无色澄清溶液中并室温震荡混合2~3分钟得到红色透明溶液。
3)向2)的红色透明溶液中加入用天平称量0.0009g的APS及0.0078g的TEMED,室温震荡混合2~3分钟充分溶解并加水至总体积为1mL,得到最终混合溶液。
4)将最终混合溶液在室温下静置60分钟后得到红色透明的水凝胶。
经鉴定,所制备的红色透明水凝胶为NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶。
经导电性能测试可知,NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶具有良好的导电性能,其电导率为0.01652s/m。
实施例3:
1)用天平称量0.1564g的AM、0.02g的MBAA及0.0362g的NaAA,将称量的上述固体粉末(AM、MBAA、NaAA)依次溶解于500μL去离子水中,室温震荡混合2~3分钟得到无色澄清溶液。
2)用天平称量0.0037g的Ru(bpy)3Cl2、0.0072g的TPA及0.0058g的NaCl,将称量的物质(Ru(bpy)3Cl2、TPA、NaCl)依次加入上述1)的无色澄清溶液中并室温震荡混合2~3分钟得到红色透明溶液。
3)向2)的红色透明溶液中加入用天平称量0.0009g的APS及0.0078g的TEMED,室温震荡混合2~3分钟充分溶解并加水至总体积为1mL,得到最终混合溶液。
4)将最终混合溶液在60℃烘箱中加热30分钟后得到红色透明的水凝胶。
经鉴定,所制备的红色透明水凝胶为NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶。
经导电性能测试可知,NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶具有良好的导电性能,其电导率为0.01864s/m。
(二)制备的电化学发光水凝胶复合材料应用于发光显示器
取制得的离子导电电化学发光水凝胶1,即NaCl/Ru(bpy)3Cl2/TPA/APAM水凝胶一片(拉伸性良好),置于ITO导电玻璃和导电铜胶带2之间,将水凝胶连通于电路之间(图1),经过电化学发光性能测试可知,所制备的离子导电电化学发光水凝胶1的电化学发光信号的最低引发电压低至1.0V(图5),而且电化学发光产生的光信号随着电压升高不断增强(图6),经电化学发光检测仪检测,光强由0逐渐升高至12000a.u.,其中电化学发光信号λmax=610nm,即红色光信号(图8)。
将制备的掺杂0.0292g的NaCl、0.0037g的Ru(bpy)3Cl2和0.0072g的TPA的聚丙烯酰胺PAAm水凝胶作为对照组,观察经过掺杂的APAM水凝胶和PAAm水凝胶接触水时Ru(bpy)3Cl2的扩散情况:取直径D=2cm、厚度d=1mm的水凝胶置于4mL的去离子水中,浸泡3~5分钟,进行浸泡液颜色的对比(图7),可以看出,左边的APAM水凝胶浸泡液,颜色接近于无色,右边的PAAm水凝胶浸泡液颜色为橙色,即PAAm水凝胶中有更多的Ru(bpy)3Cl2扩散至水中,证明相比于PAAm水凝胶,目标水凝胶中所掺杂的Ru(bpy)3Cl2更加有效地(通过静电吸附作用)固定在水凝胶的三维结构中。
以上实验表明本发明制备的水凝胶复合材料可以通过调节施加电压产生可视化的电化学发光信号,且稳定地固定了电化学发光物质,更具有实际应用价值。
总之,本发明制备的电化学发光水凝胶中,APAM为水凝胶基底,掺杂进入的NaCl起离子传导作用,Ru(bpy)3Cl2/TPA为电化学发光物质,不仅充分利用APAM水凝胶多孔的三维网络结构来掺杂电化学发光物质和导电介质,而且利用该水凝胶的负电骨架对带正电的Ru(bpy)3 2+通过静电吸附实现固定。本发明制备工艺简单、反应条件温和、成本低,稳定性好,同时引入静电吸附作用固定电化学发光物质,可有效抑制其扩散。所制备的电化学发光水凝胶,不仅保留水凝胶良好的透光性和可拉伸性,而且还具有良好的导电性、均一性和电化学发光性质。此外,还具有可循环、低引发电压等优点,可有效的利用电化学发光体系Ru(bpy)3Cl2/TPA拓宽水凝胶在发光显示器中的应用,更好地满足发光显示的需求。

Claims (9)

1.一种离子导电电化学发光水凝胶,其特征在于:该离子导电电化学发光水凝胶包括阴离子型聚丙烯酰胺水凝胶基底,以及分散在该水凝胶基底中的电化学发光物质和离子导电介质;
所述离子导电电化学发光水凝胶是通过将电化学发光物质和离子导电介质吸附在阴离子型聚丙烯酰胺水凝胶的三维网络结构中而形成的复合电化学发光水凝胶,包括以下步骤:1)将丙烯酰胺、丙烯酸钠和交联剂于水中混合均匀,得到溶液a;
2)将电化学发光物质与溶液a混合均匀,得到溶液b;
3)将离子导电介质与溶液b混合均匀,得到溶液c;
4)将溶液c、引发剂和加速剂混合均匀得到溶液d,溶液d中丙烯酰胺的浓度为2.0M~2.5M,丙烯酸钠的浓度为0.3M~0.4M,交联剂的浓度0.01M~0.15M,引发剂的浓度为3mM~5mM,加速剂的浓度为60mM~70mM;
5)通过交联反应由溶液d生成分散有电化学发光物质和离子导电介质的水凝胶;
其中,电化学发光物质选自三联吡啶氯化钌/三正丙胺电化学发光体系,离子导电介质选自氯化钠,在阴离子型聚丙烯酰胺水凝胶的交联体系中三联吡啶氯化钌的浓度为0.1mM~10mM,三正丙胺的浓度为1mM~100mM,氯化钠的浓度为0.1M~1M;
所述离子导电电化学发光水凝胶的电化学发光信号的最低引发电压低至1.0V,而且电化学发光产生的光信号随着电压升高不断增强,光强由0逐渐升高至12000a.u.。
2.根据权利要求1所述一种离子导电电化学发光水凝胶,其特征在于:所述离子导电电化学发光水凝胶的电导率为0.005s/m~0.05s/m。
3.根据权利要求1所述一种离子导电电化学发光水凝胶,其特征在于:所述离子导电电化学发光水凝胶的发光电位为1.0V~5.0V。
4.一种如权利要求1所述的离子导电电化学发光水凝胶的制备方法,其特征在于:包括以下步骤:
1)将丙烯酰胺、丙烯酸钠和交联剂于水中混合均匀,得到溶液a;
2)将电化学发光物质与溶液a混合均匀,得到溶液b;
3)将离子导电介质与溶液b混合均匀,得到溶液c;
4)将溶液c、引发剂和加速剂混合均匀得到溶液d,溶液d中丙烯酰胺的浓度为2.0M~2.5M,丙烯酸钠的浓度为0.3M~0.4M,交联剂的浓度0.01M~0.15M,引发剂的浓度为3mM~5mM,加速剂的浓度为60mM~70mM;
5)通过交联反应由溶液d生成分散有电化学发光物质和离子导电介质的水凝胶。
5.根据权利要求4所述的制备方法,其特征在于:所述步骤1)中,交联剂选自甲叉双丙烯酰胺,丙烯酰胺:甲叉双丙烯酰胺:丙烯酸钠的质量比为100:(1~15):(20~25)。
6.根据权利要求4所述的制备方法,其特征在于:所述电化学发光物质选自三联吡啶氯化钌/三正丙胺电化学发光体系,所述溶液d中,三联吡啶氯化钌的浓度为0.1mM~10mM,三正丙胺的摩尔浓度为1mM~100mM。
7.根据权利要求4所述的制备方法,其特征在于:所述离子导电介质选自氯化钠,所述溶液d中,氯化钠的浓度为0.1M~1M。
8.根据权利要求4所述的制备方法,其特征在于:所述步骤4)中,引发剂选自过硫酸铵,加速剂选自四甲基乙二胺,丙烯酰胺:过硫酸铵:四甲基乙二胺的质量比为100:(0.5~1):(0.1~10)。
9.根据权利要求4所述的制备方法,其特征在于:所述步骤5)具体包括以下步骤:将溶液d静置0.5~3小时,或者将溶液d置于50~70℃烘箱中≤1小时,得到离子导电电化学发光水凝胶。
CN201910636196.6A 2019-07-15 2019-07-15 用于发光显示器的离子导电电化学发光水凝胶及其制备方法 Active CN110527016B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910636196.6A CN110527016B (zh) 2019-07-15 2019-07-15 用于发光显示器的离子导电电化学发光水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910636196.6A CN110527016B (zh) 2019-07-15 2019-07-15 用于发光显示器的离子导电电化学发光水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN110527016A CN110527016A (zh) 2019-12-03
CN110527016B true CN110527016B (zh) 2021-02-26

Family

ID=68660297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910636196.6A Active CN110527016B (zh) 2019-07-15 2019-07-15 用于发光显示器的离子导电电化学发光水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN110527016B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370591B1 (ko) * 2000-11-09 2003-02-05 광주과학기술원 초다공성 폴리(알릴아민) 하이드로겔 및 그의 제조방법
CN102336995B (zh) * 2011-07-08 2013-07-10 西安交通大学 一种新型发光高分子水凝胶的制备方法
CN104880746B (zh) * 2015-06-19 2016-11-02 西安交通大学 一种可变焦光学透镜系统及其制备
CN106604482B (zh) * 2016-11-25 2018-06-12 东莞市联洲知识产权运营管理有限公司 一种交流电致发光器件的制备方法
CN107446084A (zh) * 2017-07-24 2017-12-08 南京师范大学 一种耐水发光水凝胶及其制备方法
CN108586643B (zh) * 2017-10-30 2019-09-10 福州大学 一种电致化学发光水凝胶复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN110527016A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
Dueramae et al. Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery
Ai et al. Highly flexible, self-healable and conductive poly (vinyl alcohol)/Ti3C2Tx MXene film and it’s application in capacitive deionization
Wang et al. A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors
Stevens et al. Proton conducting gel/H3PO4 electrolytes
CN109935476B (zh) 具有良好性能的两性凝胶聚合物电解质及其制备、应用
Bu et al. Design of highly stretchable deep eutectic solvent‐based ionic gel electrolyte with high ionic conductivity by the addition of zwitterion ion dissociators for flexible supercapacitor
CN109608592B (zh) 一种聚离子液体固态电解质的交联聚合制备的方法
Zhang et al. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels
CN113004459B (zh) 一种高透明、高拉伸、高导电离子水凝胶的制备方法
AU2021221410B2 (en) Electrically active hydrophilic bio-polymers
CN111477953B (zh) 一种具有自愈合功能的全固态聚合物电解质及其制备方法
CN110527016B (zh) 用于发光显示器的离子导电电化学发光水凝胶及其制备方法
Yan et al. A stretchable, compressible and anti‐freezing ionic gel based on a natural deep eutectic solvent applied as a strain sensor
Pang et al. Cellulose eutecticgel electrolytes based on ethylene glycol/zinc chloride deep eutectic solvent for flexible solid-state capacitors
Zhang et al. Cellulose nanofiber hydrogel with high conductivity electrolytes for high voltage flexible supercapacitors
Feng et al. Phosphoric acid/glycerol-based anti-freezing organohydrogel electrolyte for flexible supercapacitor with excellent low-temperature stability
Reiter et al. Poly (ethyl methacrylate) and poly (2-ethoxyethyl methacrylate) based polymer gel electrolytes
CN115259307A (zh) 一种用于电容去离子技术的离子交换凝胶电极的制备方法
CN113035584B (zh) 用于高性能全固态超级电容器的凝胶聚合物电解质
JP2014197661A (ja) ゲル電解質およびその製造方法、当該ゲル電解質を用いた電気化学素子
CN114560968A (zh) 一种超声响应型高分子荧光水凝胶材料、制备方法及应用
Yu et al. Synthesis of styrene–acrylate emulsion by glow discharge electrolysis plasma and its application for the conservation of simulated disrupting murals in Dunhuang Mogao grottoes
Ye et al. Conducting Polymer Hydrogel Driven By Sodium Chloride as High Performance Flexible Supercapacitor Electrode
CN115772237B (zh) 一种基于可聚合咪唑型低共熔溶剂的导电弹性体的制备方法
CN115651118B (zh) 水下自粘附、自修复的透明离子导电弹性体及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant