CN110523425B - 一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法 - Google Patents

一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法 Download PDF

Info

Publication number
CN110523425B
CN110523425B CN201910773046.XA CN201910773046A CN110523425B CN 110523425 B CN110523425 B CN 110523425B CN 201910773046 A CN201910773046 A CN 201910773046A CN 110523425 B CN110523425 B CN 110523425B
Authority
CN
China
Prior art keywords
molybdenum dioxide
graphene oxide
full
photocatalyst
reduced graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910773046.XA
Other languages
English (en)
Other versions
CN110523425A (zh
Inventor
陈伟凡
尧牡丹
王佳
王立中
柳丽芸
方晓辰
徐强
刘正
刘越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201910773046.XA priority Critical patent/CN110523425B/zh
Publication of CN110523425A publication Critical patent/CN110523425A/zh
Application granted granted Critical
Publication of CN110523425B publication Critical patent/CN110523425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及半导体光催化剂制备技术领域,具体公开了一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法。所述的全光谱响应光催化剂为氮掺杂还原氧化石墨烯负载二氧化钼的复合物,所述负载二氧化钼的质量占比为90%‑99.9%。本发明以钼酸盐、氧化石墨烯、燃料和助燃剂等为原料,通过溶液燃烧法得到前驱体,再在还原气氛下热处理,制备得到一种新型的具有全谱光响应范围的光催化剂,即二氧化钼/氮掺杂还原氧化石墨烯(N‑rGO),二者复合增强了光催化剂的吸附性,进一步提高光催化剂催化效率。该全光谱响应光催化剂在紫外、可见和近红外光辐照下光催化降解去除有机染料,在处理有机染料水污染方面具有广阔的应用前景。

Description

一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制 备方法
技术领域
本发明属于半导体光催化剂制备技术领域,具体涉及一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法。
背景技术
21世纪人类面临日益严重的水污染问题,为了解决这个问题,利用绿色清洁的可再生的太阳能为驱动力的光降解技术是一种有效的应对办法。目前,大部分光催化剂只能响应紫外光或者可见光(TiO2、ZnO、CdS、g-C3N4等),无法充分利用太阳能,尤其是占太阳能能量比重约50%的红外光,所以寻找全谱催化剂尤为重要。其中,氧化钼是一种过渡金属氧化物,因其在传感器、催化剂、电致变色和光致变色等方面具有潜在的应用价值备受关注。目前,二氧化钼及其复合物在光催化领域的应用有少量报道,如Xijin Xu研究了MoO2在超级电容器电极及其光催化中应用性能,发现MoO2在紫外光辐照下有一定的降解有机染料的光催化活性[Ceram.Int.42(2016)2198–2203],Huaming Li报道了与g-C3N42相比,MoO2/g-C3N4在可见光辐照下的催性能明显改善[Appl.Surf.Sci.457(2018)1142–1150],然而,迄今为止,科学家们并没有发现MoO2全谱光催化性能及其潜在的重要应用。
2004年,英国曼彻斯特物理学家Kostya Novoselov和Andre Geim利用剥落法首次制备出石墨烯纳米片石墨烯,由于其优越的性能,被认为是一种未来革命性的材料。在光催化方面,石墨烯上的C原子之间通过sp2杂化形成很强的σ键,使其具有良好的导电性,可作为很好的电子受体,能捕获电子,有效地防止电子和空穴的复合,提高光催化活性,并且过量的电子在石墨烯表面的快速传递,从而促进反应的进行。近年来,石墨烯基的光催化材料也有相关的报道,如M.Rakibuddin等制备了一种新的石墨烯气溶胶异质结构,用于有机污染物的光催化降解[Sol.Energ.Mat.Sol.C 162(2017)62–71],A.Iwase和P.D.Tran等人研究了BiO4V/rGO和Cu2O/rGO复合材料的光催化活性[J.Am.Chem.Soc.133(2011)11054–11057和d Nanoscale,4(2012)3875-3878],这些研究都说明石墨烯能促进光催化活性的提高,但其制备过程都较为复杂,产率不高,且现有技术并未公开二氧化钼/氮掺杂还原氧化石墨烯全光谱响应光催化剂的制备方法。
发明内容
本发明所要解决的技术问题是:针对现有技术中有关二氧化钼/氮掺杂还原氧化石墨烯全光谱响应光催化剂并无公开报道的缺陷与不足,提供一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法。本发明以钼酸盐、氧化石墨烯、燃料和助燃剂等为原料,通过溶液燃烧法得到前驱体,再在还原气氛下热处理,制备得到一种新型的具有全谱光响应范围的光催化剂,即二氧化钼/氮掺杂还原氧化石墨烯(N-rGO),二氧化钼与N-rGO复合增强了光催化剂的吸附性,进一步提高光催化剂催化效率,在处理有机染料水污染方面具有广阔的应用前景。
本发明采用如下技术方案,来实现发明目的。
首先,本发明公开了一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂。
该全光谱响应光催化剂为氮掺杂还原氧化石墨烯负载二氧化钼的复合物,所述负载二氧化钼的质量占比为90%-99.9%。
进一步地,所述的全光谱响应光催化剂,用于在紫外、可见和近红外光辐照下光催化降解去除有机染料。
其次,本发明公开了一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法。
该制备方法包括以下步骤:S1氧化石墨烯水溶胶的准备;S2根据设计目标产物前驱体的制备量及二氧化钼的质量占比,将氧化石墨烯水溶胶与钼酸盐混合并加入有机燃料和助燃剂进行燃烧,得到前驱体;S3前驱体在还原气氛下的热处理,得到全谱光响应范围的光催化剂。
进一步地,步骤S1所述氧化石墨烯水溶胶的准备包括制备、透析纯化、稀释与标定步骤。
更进一步地,所述制备采用Hummers法;所述透析纯化具体为:将制备所得到的氧化石墨烯水溶胶,装入到透析袋,放入去离子水中透析纯化,得到储备氧化石墨烯水溶胶。
更进一步地,所述稀释与标定具体为:将透析纯化后所得到的氧化石墨烯水溶胶,用去离子水稀释氧化石墨烯水溶胶至20±2mg/mL,并用重量法来精确标定。
进一步地,步骤S2所述的将氧化石墨烯水溶胶与钼酸盐混合并加入有机燃料和助燃剂进行燃烧,具体为:以克-摩尔质量份数计,在步骤S1所得到的含1克份数的氧化石墨烯水溶胶中,加入0.08-7.8摩尔份数的钼酸盐、以及钼酸盐摩尔数5-20倍的有机燃料和钼酸盐的摩尔数为0.5-36倍的助燃剂,加入去离子水溶解混合均匀,超声分散2-3小时,经加热浓缩后,放入400-600℃马弗炉中引燃并保温2-10分钟,得到前驱体。
更进一步地,所述钼酸盐为钼酸铵;所述助燃剂为硝酸铵;所述燃料为甘氨酸、柠檬酸、尿素中的一种或两种。
进一步地,步骤S3所述的在还原气氛下的热处理为:将步骤S2所得到的前驱体,放入通有还原气体的管式炉中,500-800℃保温1-3小时,得到二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂。
更进一步地,所述的还原气体为氢气、氮氢混合气、一氧化碳中的一种或两种。
有益效果:
(1)本发明以钼酸盐、氧化石墨烯、燃料和助燃剂等为原料,通过溶液燃烧法得到前驱体,再在还原气氛下热处理,制备得到一种新型的具有全谱光响应范围的光催化剂,即二氧化钼/氮掺杂还原氧化石墨烯(N-rGO),二氧化钼与N-rGO复合增强了光催化剂的吸附性,进一步提高光催化剂催化效率。本发明的二氧化钼/氮掺杂还原氧化石墨烯可以在紫外-可见-近红外光辐照下降解有机染料,在处理有机染料水污染方面具有广阔的应用前景。
(2)本发明制备方法简单方便快捷,产率高,对设备要求低,无需分散剂,重复利用率高,绿色环保。
附图说明
图1为对比例样品的X射线衍射图谱;
图2为对比例样品的扫描电镜照片和EDS图谱;
图3为实施例1样品的X射线衍射图谱;
图4为实施例1样品的扫描电镜照片和EDS图谱;
图5为实施例1样品的光吸收图谱。
具体实施方式
下面结合具体实施例对本发明作进一步的说明,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
对比例:
称取3.708g钼酸铵、8.64g硝酸铵和3.375g甘氨酸,加入去离子水溶解混合均匀,超声分散2小时,加热浓缩后放入500℃马弗炉中引燃并保温5分钟,再将得到的产物放入通有H2/N2(5%/95%)混合气体的管式炉中,700℃保温3小时,即得二氧化钼光催化剂。
图1为对比例样品的X射线衍射图谱。由图可知,样品的X射线特征衍射峰与MoO2(JCPDS No.78-1069)完全吻合,可以判断为MoO2
图2为对比例样品的扫描电镜照片和EDS图谱。由图可知,样品主要由纳米颗粒和纳米棒组成,含有Mo和O两种元素。
实施例1:
根据Hummers法制备氧化石墨烯水溶胶,装入到透析袋,放入去离子水中透析纯化,得到储备氧化石墨烯水溶胶,根据需要稀释氧化石墨烯水溶胶约20mg/mL,经过重量法,其浓度为21.26mg/mL,准确量取7.5mL氧化石墨烯水溶胶,称取3.708g钼酸铵、8.64g硝酸铵和3.375g甘氨酸,加入去离子水溶解混合均匀,超声分散2小时,加热浓缩后放入500℃马弗炉中引燃并保温5分钟,再将得到的产物放入通有H2/N2(5%/95%)混合气体的管式炉中,700℃保温3小时,即得二氧化钼/氮掺杂还原氧化石墨烯复合光催化剂A。
图3为实施例1样品A的X射线衍射图谱。由图可知,样品的X射线特征衍射峰与MoO2(JCPDS No.78-1069)完全吻合,可以判断为MoO2,但是由于氮掺杂还原氧化石墨烯含量太少,并未观察到氮掺杂还原氧化石墨烯的特征衍射峰。
图4为实施例1样品A的扫描电镜照片和EDS图谱。由图可知,样品主要是由纳米颗粒、纳米棒和一些薄膜状物质组成,其中薄膜状物质可能是还原氧化石墨烯,纳米颗粒和纳米棒负载在薄膜上。EDS图谱显示样品含有Mo、O、C和N四种元素,C、O和N三种元素的分布几乎一致表明薄膜状物质是氮掺杂还原氧化石墨烯。
图5为实施例1样品A的光吸收图谱。由图可知,样品在紫外、可见和近红外波段都具有很强的光吸收能力,具有作为全谱光催化剂的潜力。
实施例2:
根据Hummers法制备氧化石墨烯水溶胶,装入到透析袋,放入去离子水中透析纯化,得到储备氧化石墨烯水溶胶,根据需要稀释氧化石墨烯水溶胶约20mg/mL,经过重量法,其浓度为21.26mg/mL,准确量取7.5mL氧化石墨烯水溶胶,称取3.708g钼酸铵、8.64g硝酸铵和8.646g柠檬酸,加入去离子水溶解混合均匀,超声分散3小时,加热浓缩后放入400℃马弗炉中引燃并保温10分钟,再将得到的产物放入通有CO气体的管式炉中,500℃保温1小时,即得二氧化钼/氮掺杂还原氧化石墨烯复合光催化剂B。
实施例3:
根据Hummers法制备氧化石墨烯水溶胶,装入到透析袋,放入去离子水中透析纯化,得到储备氧化石墨烯水溶胶,根据需要稀释氧化石墨烯水溶胶约20mg/mL,经过重量法,其浓度为21.26mg/mL,准确量取7.5mL氧化石墨烯水溶胶,称取3.708g钼酸铵、8.64g硝酸铵和2.702g尿素,加入去离子水溶解混合均匀,超声分散2.5小时,加热浓缩后放入600℃马弗炉中引燃并保温2分钟,再将得到的产物放入通有H2气体的管式炉中,800℃保温3小时,即得二氧化钼/氮掺杂还原氧化石墨烯复合光催化剂C。
实施例4:
根据Hummers法制备氧化石墨烯水溶胶,装入到透析袋,放入去离子水中透析纯化,得到储备氧化石墨烯水溶胶,根据需要稀释氧化石墨烯水溶胶约20mg/mL,经过重量法,其浓度为21.26mg/mL,准确量取10mL氧化石墨烯水溶胶,称取3.136g钼酸铵、7.47g硝酸铵和3.0g甘氨酸,加入去离子水溶解混合均匀,超声分散2小时,加热浓缩后放入500℃马弗炉中引燃并保温5分钟,再将得到的产物放入通有H2/N2(5%/95%)混合气体的管式炉中,700℃保温3小时,即得二氧化钼/氮掺杂还原氧化石墨烯复合光催化剂D。
实施例5:
根据Hummers法制备氧化石墨烯水溶胶,装入到透析袋,放入去离子水中透析纯化,得到储备氧化石墨烯水溶胶,根据需要稀释氧化石墨烯水溶胶约20mg/mL,经过重量法,其浓度为21.26mg/mL,准确量取1mL氧化石墨烯水溶胶,称取30.578g钼酸铵、71.35g硝酸铵和27.88g甘氨酸,加入去离子水溶解混合均匀,超声分散2小时,加热浓缩后放入500℃马弗炉中引燃并保温5分钟,再将得到的产物放入通有H2/N2(5%/95%)混合气体的管式炉中,700℃保温3小时,即得二氧化钼/氮掺杂还原氧化石墨烯复合光催化剂E。
实施例6:样品A的光催化实验(并与对比例样品比较)
50mL20 mg/L罗丹明B溶液中放入50mg实施例1所制备的样品A恒定30℃,分别在紫外、可见和近红外光辐照下进行催化降解,同时以对比例所制备的样品在相同条件下进行对比试验,试验结果如下表所示:
Figure GDA0002232080300000081
由表1可知,实施例1样品复合光催化剂A在紫外、可见和近红外光辐照下对溶液中的罗丹明B均显示强烈的去除性能,在同样的实验条件下,与对比例样品相比,其去除效率大幅度提高。
同样地,将实施例2-5所得到的样品复合光催化剂B、C、D、E进行各类图谱分析,得到的X射线衍射图谱、EDS图谱、光吸收图谱与实施例1所得到的样品复合光催化剂A各类图谱基本一致。
同样地,将实施例2-5所得到的样品复合光催化剂B、C、D、E按照实施例6的实验步骤进行光催化实验,并与对比例比较,所得到的光催化实验结果同样显示:样品复合光催化剂B、C、D、E,在紫外、可见和近红外光辐照下对溶液中的罗丹明B均显示强烈的去除性能,在同样的实验条件下,与对比例样品相比,其去除效率大幅度提高。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都涵盖在本发明范围内。

Claims (8)

1.一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂,其特征在于:所述的光催化剂为氮掺杂还原氧化石墨烯负载二氧化钼的复合物,所述负载二氧化钼的质量占比为90%-99.9%;所述的全光谱响应光催化剂,用于在紫外、可见和近红外光辐照下光催化降解去除有机染料;
所述的二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法包括以下步骤:
S1:氧化石墨烯水溶胶的准备;
S2:根据设计目标产物前驱体的制备量及二氧化钼的质量占比,将氧化石墨烯水溶胶与钼酸盐混合并加入有机燃料和助燃剂进行燃烧,得到前驱体;
S3:前驱体在还原气氛下的热处理,得到全谱光响应范围的光催化剂;
所述钼酸盐为钼酸铵;所述助燃剂为硝酸铵;所述燃料为甘氨酸、柠檬酸、尿素中的一种或两种。
2.根据权利要求1所述的一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法,其特征在于,包括以下步骤:
S1:氧化石墨烯水溶胶的准备;
S2:根据设计目标产物前驱体的制备量及二氧化钼的质量占比,将氧化石墨烯水溶胶与钼酸盐混合并加入有机燃料和助燃剂进行燃烧,得到前驱体;
S3:前驱体在还原气氛下的热处理,得到全谱光响应范围的光催化剂;
所述钼酸盐为钼酸铵;所述助燃剂为硝酸铵;所述燃料为甘氨酸、柠檬酸、尿素中的一种或两种。
3.根据权利要求2所述的一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法,其特征在于,步骤S1所述氧化石墨烯水溶胶的准备包括制备、透析纯化、稀释与标定步骤。
4.根据权利要求3所述的一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法,其特征在于,所述制备采用Hummers法;所述透析纯化具体为:将制备所得到的氧化石墨烯水溶胶,装入到透析袋,放入去离子水中透析纯化,得到氧化石墨烯水溶胶。
5.根据权利要求4所述的一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法,其特征在于,所述稀释与标定具体为:将透析纯化后所得到的氧化石墨烯水溶胶,用去离子水稀释氧化石墨烯水溶胶至20±2mg/mL,并用重量法来精确标定。
6.根据权利要求2所述的一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法,其特征在于,步骤S2所述的将氧化石墨烯水溶胶与钼酸盐混合并加入有机燃料和助燃剂进行燃烧,具体为:以克-摩尔质量份数计,在步骤S1所得到的含1克份数的氧化石墨烯水溶胶中,加入0.08-7.8摩尔份数的钼酸盐以及钼酸铵摩尔数5-20倍的有机燃料和钼酸盐的摩尔数为0.5-36倍的助燃剂,加入去离子水溶解混合均匀,超声分散2-3小时,经加热浓缩后,放入400-600℃马弗炉中引燃并保温2-10分钟,得到前驱体。
7.根据权利要求2所述的一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法,其特征在于,步骤S3所述的在还原气氛下的热处理为:将步骤S2所得到的前驱体,放入通有还原气体的管式炉中,500-800℃保温1-3小时,得到二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂。
8.根据权利要求7所述的一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂的制备方法,其特征在于,所述的还原气体为氢气、氮氢混合气、一氧化碳中的一种或两种。
CN201910773046.XA 2019-08-21 2019-08-21 一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法 Active CN110523425B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910773046.XA CN110523425B (zh) 2019-08-21 2019-08-21 一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910773046.XA CN110523425B (zh) 2019-08-21 2019-08-21 一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN110523425A CN110523425A (zh) 2019-12-03
CN110523425B true CN110523425B (zh) 2021-02-09

Family

ID=68662379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910773046.XA Active CN110523425B (zh) 2019-08-21 2019-08-21 一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN110523425B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995065A (zh) * 2020-08-24 2020-11-27 河北雄安迈嵘环保科技有限公司 一种改善污染水体氨氮指标制剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347877A (zh) * 2013-07-31 2015-02-11 北京海特远舟新能源科技有限公司 一种纳米级石墨烯基复合材料及其制备方法
CN108686696B (zh) * 2018-04-27 2019-12-31 江苏大学 一种氮掺杂还原氧化石墨烯载CdTe/CdS异质结复合光催化剂的制备方法及应用
CN108609658B (zh) * 2018-05-02 2020-10-30 江西善纳新材料科技有限公司 一种还原氧化钨/氮掺杂石墨烯复合物的制备方法
CN109473650B (zh) * 2018-11-09 2020-11-06 东北大学秦皇岛分校 一种MoO2/rGO复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Facile fabrication of molybdenum dioxide/nitrogen-doped graphene hybrid as high performance anode material for lithium ion batteries;Xia Wang等;《JOURNAL OF POWER SOURCES》;20150115;第274卷;全文 *

Also Published As

Publication number Publication date
CN110523425A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal
Jiang et al. Understanding dual-vacancy heterojunction for boosting photocatalytic CO2 reduction with highly selective conversion to CH4
Liu et al. Recent advancements in gC 3 N 4-based photocatalysts for photocatalytic CO 2 reduction: a mini review
Xu et al. Enhanced photocatalytic activity by the construction of a TiO 2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly
Yang et al. Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity
Gu et al. Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity
CN111450819A (zh) 生物炭改性钒酸铋催化剂、制备方法及其应用
CN109908959B (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
Li et al. Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production
Zheng et al. In-situ construction of morphology-controllable 0D/1D g-C3N4 homojunction with enhanced photocatalytic activity
Morawski et al. Influence of the calcination of TiO2-reduced graphite hybrid for the photocatalytic reduction of carbon dioxide
Yu et al. Preparation of BiPO4-polyaniline hybrid and its enhanced photocatalytic performance
Wang et al. Synergistic effect of the MoO 2/CeO 2 S-scheme heterojunction on carbon rods for enhanced photocatalytic hydrogen evolution
Li et al. Introduction of crystalline hexagonal-C3N4 into g-C3N4 with enhanced charge separation efficiency
Che et al. Fabrication of molybdenum doped carbon nitride nanosheets for efficiently photocatalytic water splitting
Liu et al. Ultrathin Ni/V-layered double hydroxide nanosheets for efficient visible-light-driven photocatalytic nitrogen reduction to ammonia
CN110523425B (zh) 一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法
Zhang et al. Enhanced electron density of the π-conjugated structure and in-plane charge transport to boost photocatalytic H2 evolution of g-C3N4
Yan et al. Z-scheme K-C3N4/Ag/Ag3PMo12O40 heterojunction with improved visible light photodegradation of formaldehyde
Zhao et al. Network of graphene/black phosphorus/ZnO for enhanced photocatalytic dye removal under visible light
CN113578358B (zh) 一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用
CN109999884A (zh) 一种多掺杂石墨烯复合纳米材料及其制备方法和应用
CN110639581B (zh) 一种WP2/g-C3N4异质结光催化剂的制备方法
Jiang et al. Immobilizing CsPbBr 3 perovskite nanocrystals on nanoporous carbon powder for visible-light-driven CO 2 photoreduction
Liu et al. Enhanced visible light photocatalytic water-splitting activity over LaVO 4/gC 3 N 4 with oxygen defects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant