CN110523392A - 壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用 - Google Patents

壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用 Download PDF

Info

Publication number
CN110523392A
CN110523392A CN201910888507.8A CN201910888507A CN110523392A CN 110523392 A CN110523392 A CN 110523392A CN 201910888507 A CN201910888507 A CN 201910888507A CN 110523392 A CN110523392 A CN 110523392A
Authority
CN
China
Prior art keywords
magnetic carbon
adsorbent
chitin modified
modified magnetic
nucleocapsid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910888507.8A
Other languages
English (en)
Inventor
王家宏
陈瑶
刘宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910888507.8A priority Critical patent/CN110523392A/zh
Publication of CN110523392A publication Critical patent/CN110523392A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供一种壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用,利用二茂铁用作碳源和铁源,并且通过水热法合成具有高比表面积和丰富含氧官能团的磁性碳核壳材料,再通过三甲基甘氨酸作为修饰剂完成壳聚糖对磁性碳核壳材料表面功能化改性。壳聚糖有大量活泼的羟基和氨基,羟基和氨基具有较强的络合能力,壳聚糖随其分子中含氨基数量的增多,其氨基特性越显著,而氨基可以与未完全络合的三价铬发生配位作用,并且在酸性条件下可使氨基质子化,从而对带负电荷的络合态三价铬进行静电吸附。

Description

壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中 络合态三价铬中的应用
技术领域
本发明属于水中重金属的净化技术领域,涉及一种壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用。
背景技术
冶金、化工、电镀等行业的生产过程会产生大量的含铬废水,对生态环境和人类健康造成危害。制革行业含铬废水中存在大量三价铬,易与水中大量有机无机配体,形成重金属络合物。络合态三价铬结构稳定,且有机物含量较高,严重影响三价铬的去除,因此有必要开发具有选择性的吸附剂,提高其对水体中低浓度络合态三价铬的去除效果。
废水中去除三价铬的主要方法包括萃取法、离子交换法、化学沉淀法、电化学还原法和吸附法。但是废水中有机无机配体与三价铬形成稳定的螯合结构,传统沉淀法、还原法等方法对其去除效率不高。吸附法因为更方便、简单、高效、经济、环保,被用于从溶液中去除重金属。目前,对重金属吸附去除方面研究主要针对游离态重金属,而对络合态重金属的吸附去除方面研究较少,将其用于络合态铬(如Cr(Ⅲ)-EDTA)去除方面的研究尚未见报道。因此,开发具对水体络合态三价铬高效去除的新型吸附剂受到了极大的关注。
发明内容
本发明的目的在于提供一种壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用,利用壳聚糖改性磁性碳核壳吸附剂可以实现对水中低浓度络合态三价铬的吸附,具有良好的环境和经济效益。
本发明是通过以下技术方案来实现:
壳聚糖改性磁性碳核壳吸附剂的制备方法,包括以下步骤:
1)磁性碳核壳材料的制备:用二茂铁作为铁源和碳源,过氧化氢作为氧化剂,在丙酮环境下,水热反应制得磁性碳核壳材料;
2)壳聚糖改性磁性碳核壳吸附剂的制备:将壳聚糖溶于乙酸溶液中,得到壳聚糖的乙酸溶液;将磁性碳核壳材料超声分散在甲醇溶液中,同时添加戊二醛作为交联剂,得到磁性碳核壳材料的甲醇溶液;将壳聚糖的乙酸溶液和磁性碳核壳材料的甲醇溶液混合,并添加三甲基甘氨酸作为修饰剂,加热搅拌反应,反应产物洗涤、干燥,得到壳聚糖改性磁性碳核壳吸附剂。
优选的,步骤1)中,水热反应温度为200℃~240℃,时间为36~60h。
优选的,步骤1)中,步骤2)中,反应温度为40~80℃,时间为4~8h。
优选的,步骤1)中,二茂铁与过氧化氢的质量比为1:(1.25-2),步骤2)中,壳聚糖、磁性碳核壳材料、戊二醛和三甲基甘氨酸的质量比为(2~6):5:15:1。
采用所述的制备方法得到的壳聚糖改性磁性碳核壳吸附剂。
所述的壳聚糖改性磁性碳核壳吸附剂在吸附水体中络合态三价铬中的应用。
优选的,方法为:在欲净化的水体中加入壳聚糖改性磁性碳核壳吸附剂进行吸附,吸附完成后收集壳聚糖改性磁性碳核壳吸附剂。
优选的,吸附时间为5min~8h。
优选的,收集的壳聚糖改性磁性碳核壳吸附剂以HCl和硫脲的混合水溶液为脱附剂进行脱附,脱附后的壳聚糖改性磁性碳核壳吸附剂循环利用。
与现有技术相比,本发明具有以下有益的技术效果:
本发明利用二茂铁用作碳源和铁源,并且通过水热法合成具有高比表面积和丰富含氧官能团的磁性碳核壳材料。再通过三甲基甘氨酸作为修饰剂完成壳聚糖对磁性碳核壳材料表面功能化改性。壳聚糖有大量活泼的羟基和氨基,羟基和氨基具有较强的络合能力,壳聚糖随其分子中含氨基数量的增多,其氨基特性越显著,而氨基可以与未完全络合的三价铬发生配位作用,并且在酸性条件下可使氨基质子化,从而对带负电荷的络合态三价铬进行静电吸附。
本发明所制备的壳聚糖的磁性碳核壳吸附剂材料,对水体中络合态三价铬具有高效吸附效果,且在水体环境中易分离回收,可以通过施加外部磁场快速分离,是一种具有应用前景的新型吸附剂。
本发明制备的壳聚糖功能化磁性碳核壳吸附剂可用作吸附剂快速高效的吸附水体中低浓度络合态三价铬,操作简单,去除效果显著,易分离。
进一步的,吸附剂可再生,吸附剂经硫脲与盐酸混合溶液强酸强络合作用下脱附再生后可循环使用,具有良好的经济和环境效益。
附图说明
图1为Fe3O4@C电镜图。
图2为(a)Fe3O4@C和(b)Fe3O4@C@CS X射线衍射光谱图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明所述的壳聚糖改性磁性碳核壳吸附剂的制备方法,包括以下步骤:
1)磁性碳核壳材料的制备:用二茂铁作为铁源和碳源,过氧化氢作为氧化剂,在丙酮环境下,水热反应制得磁性碳核壳材料(Fe3O4@C);
2)壳聚糖改性磁性碳核壳吸附剂的制备:将壳聚糖溶于乙酸溶液中,得到壳聚糖的乙酸溶液,并将磁性碳核壳材料超声分散在甲醇溶液中,同时添加戊二醛作为交联剂,得到磁性碳核壳材料的甲醇溶液;将壳聚糖的乙酸溶液和磁性碳核壳材料的甲醇溶液混合,并添加三甲基甘氨酸作为修饰剂,接着加热搅拌反应,反应产物冷却后洗涤,干燥,得到壳聚糖改性磁性碳核壳吸附剂(Fe3O4@C@CS);
对水体中低浓度络合态三价铬的去除方法,在欲净化的水体中加入其质量0.0004倍的壳聚糖改性磁性碳核壳吸附剂(Fe3O4@C@CS),在25℃、pH=2~8的条件下吸附水体中浓度为2.5~30mg/L络合态三价铬,吸附时间为5min~8h,然后通过外部磁场收集壳聚糖改性磁性碳核壳吸附剂(Fe3O4@C@CS)。
下面结合具体的实施例和低浓度络合态三价铬去除效果的检测对本发明做进一步的详细说明,所述是对发明的解释而不是限定。
实施例所使用的络合态三价铬的配制:乙二胺四乙酸二钠与六水合硫酸铬完全络合反应得到络合态三价铬溶液。
制备例1
1)将3.23mmol二茂铁在丙酮中超声溶解,并加入3mL过氧化氢溶液,将上述溶液在210℃水热反应48h,反应结束后冷却至室温,洗涤后真空干燥,得到磁性碳核壳材料。
2)将0.4g壳聚糖溶于20mL乙酸溶液中。将0.5g磁性碳核壳材料超声分散于甲醇溶液中,并加入0.1g三甲基甘氨酸,将上述两溶液混合后加入8ml戊二醛溶液,放置在60℃水浴锅中加热搅拌6h,最后将反应后的溶液放置冷却并清洗烘干,得到壳聚糖改性磁性碳核壳吸附剂(Fe3O4@C@CS)。
图1显示制备例1所制备的Fe3O4@C形成了具有粗糙表面的均匀尺寸纳米球颗粒。
图2为制备例1Fe3O4@C(a)和Fe3O4@C-CS(b)的XRD分析图。Fe3O4@C在29.94°、35.44°、43.02°、53.34°、57.06°和62.68°的衍射峰分别对应于立方尖晶石结构磁性Fe3O4颗粒的(220)、(311)、(400)、(422)、(511)和(440)特征峰,Fe3O4@C-CS也有相同特征峰。壳聚糖功能化后在2θ=22.5°出现了一个广泛的峰值,这表示存在非晶态结构的壳聚糖,表明壳聚糖成功改性在Fe3O4@C表面。
制备例2
1)将3.23mmol二茂铁在丙酮中超声溶解,并加入2.5mL过氧化氢溶液,将上述溶液在200℃水热反应60h,反应结束后冷却至室温,洗涤后真空干燥,得到磁性碳核壳材料。
2)将0.2g壳聚糖溶于20mL乙酸溶液中。将0.5g磁性碳核壳材料超声分散于甲醇溶液中,并加入0.1g三甲基甘氨酸,将上述两溶液混合后加入8ml戊二醛溶液,放置在60℃水浴锅中加热搅拌6h,最后将反应后的溶液放置冷却并清洗烘干,得到壳聚糖改性磁性碳核壳吸附剂(Fe3O4@C@CS)。
制备例3
1)将3.23mmol二茂铁在丙酮中超声溶解,并加入3.2mL过氧化氢溶液,将上述溶液在220℃水热反应55h,反应结束后冷却至室温,洗涤后真空干燥,得到磁性碳核壳材料。
2)将0.6g壳聚糖溶于20mL乙酸溶液中。将0.5g磁性碳核壳材料超声分散于甲醇溶液中,并加入0.1g三甲基甘氨酸,将上述两溶液混合后加入8ml戊二醛溶液,放置在50℃水浴锅中加热搅拌5h,最后将反应后的溶液放置冷却并清洗烘干,得到壳聚糖改性磁性碳核壳吸附剂(Fe3O4@C@CS)。
制备例4
1)将3.23mmol二茂铁在丙酮中超声溶解,并加入4mL过氧化氢溶液,将上述溶液在240℃水热反应36h,反应结束后冷却至室温,洗涤后真空干燥,得到磁性碳核壳材料。
2)将0.4g壳聚糖溶于20mL乙酸溶液中。将0.5g磁性碳核壳材料超声分散于甲醇溶液中,并加入0.1g三甲基甘氨酸,将上述两溶液混合后加入8ml戊二醛溶液,放置在80℃水浴锅中加热搅拌4h,最后将反应后的溶液放置冷却并清洗烘干,得到壳聚糖改性磁性碳核壳吸附剂(Fe3O4@C@CS)。
吸附例1
以制备例1中制备的Fe3O4@C@CS吸附剂,对络合态三价铬溶液进行吸附试验。其中,吸附剂和络合态三价铬溶液的质量比为0.0004:1,络合态三价铬初始浓度为5mg/L,温度为25℃,吸附时间为6h。络合态三价铬饱和吸附量为4.65mg/g。
吸附例2
同吸附例1,三价铬离子初始浓度为15mg/L,其他条件不变,测得的三价铬离子饱和吸附量为8.95mg/g。
吸附例3
同吸附例1,三价铬离子初始浓度为25mg/L,其他条件不变,测得的三价铬离子饱和吸附量为9.86mg/g。
吸附例4
同吸附例1,三价铬离子初始浓度为30mg/g,其他条件不变,测得的三价铬离子饱和吸附量为10.15mg/g。
可见,在一定浓度范围内,壳聚糖改性磁性碳核壳吸附剂对络合态三价铬的吸附量随着水体中络合态三价铬浓度的升高而提高。
吸附例5
同吸附例4,吸附剂为磁性碳核壳材料,其他条件不变,测得的三价铬离子饱和吸附量为3.28mg/g。
可见,经壳聚糖改性的磁性碳核壳吸附剂相比于磁性碳核壳材料对络合态三价铬的吸附量得到了显著提高。
吸附例6
同吸附例4,吸附时间为5min,其他条件不变,测得三价铬离子的饱和吸附量为7.95mg/g。
吸附例7
同吸附例4,吸附时间为60min,其他条件不变,测得三价铬离子的饱和吸附量为10.13mg/g。
吸附例8
同吸附例4,吸附时间为240min,其他条件不变,测得三价铬离子的饱和吸附量为10.5mg/g。
吸附例9
同吸附例4,吸附时间为480min,其他条件不变,测得三价铬离子的饱和吸附量为10.65mg/g。
可见,壳聚糖改性磁性碳核壳吸附剂对络合态三价铬可在短时间内达到吸附平衡。并且在吸附达到平衡前,吸附时间越长,壳聚糖改性磁性碳核壳吸附剂对络合态三价铬的吸附量越高。
吸附例10
同吸附例2,溶液pH=2,其他条件不变,测得络合态三价铬的饱和吸附量为5.56mg/g。
吸附例11
同吸附例2,溶液pH=4,其他条件不变,测得络合态三价铬的饱和吸附量为9.12mg/g。
吸附例12
同吸附例2,溶液pH=8,其他条件不变,测得络合态三价铬的饱和吸附量为9.85mg/g。
可见,壳聚糖改性磁性碳核壳吸附剂对络合态三价铬的吸附量在低pH值时会有所抑制,随着pH的升高对络合态三价铬的吸附不受影响。
吸附例13
同吸附例2,在水中Na+,K+浓度为5mmol/L的条件中进行,其他条件不变,测得络合态三价铬的饱和吸附量分别为8.7mg/g和9.15mg/g。
吸附例14
同吸附例2,在水中Na+,K+浓度为20mmol/L的条件中进行,其他条件不变,测得络合态三价铬的饱和吸附量分别为9.51mg/g和9.85mg/g。
吸附例15
同吸附例2,在水中Na+,K+浓度为50mmol/L的条件中进行,其他条件不变,测得络合态三价铬的饱和吸附量分别为9.85mg/g和10.13mg/g。
可见,壳聚糖改性磁性碳核壳吸附剂对络合态三价铬的吸附量随离子强度的增加而增加。
吸附例16
同吸附例4,在吸附平衡后,收集壳聚糖改性磁性碳核壳吸附剂以HCl和硫脲混合溶液为脱附剂进行脱附,脱附混合溶液与壳聚糖改性磁性碳核壳吸附剂的质量比为1500:1,测定第一次脱附再生率(脱附再生率为吸附剂本次吸附络合态三价铬质量与初次吸附的三价铬离子质量比)为97.83%。脱附后吸附剂用去离子水清洗数次,至pH为中性,再次进行吸附实验,实验条件同实施例5。循环进行吸附、脱附再生实验,再生四次后,脱附再生率为96.14%,并且趋于稳定。
可见,壳聚糖改性磁性碳核壳吸附剂经四次再生后,吸附量基本保持不变,表明吸附性能稳定,可循环利用。
本发明公开了一种利用壳聚糖改性磁性碳核壳吸附剂去除复杂水环境中低浓度络合态三价铬的方法。以壳聚糖改性磁性碳核壳吸附剂作为吸附剂,去除低浓度络合态三价铬。所述的方法具体包括以下步骤:(1)合成磁性碳核壳材料;(2)壳聚糖改性磁性碳核壳吸附剂的制备;(3)以壳聚糖改性磁性碳核壳吸附剂为吸附剂,对水体中的络合态三价铬进行吸附。壳聚糖改性磁性碳核壳吸附剂对水环境中络合态三价铬的吸附效果显著。本发明操作简单,材料易得,成本低廉,处理效果显著。

Claims (9)

1.壳聚糖改性磁性碳核壳吸附剂的制备方法,其特征在于,包括以下步骤:
1)磁性碳核壳材料的制备:用二茂铁作为铁源和碳源,过氧化氢作为氧化剂,在丙酮环境下,水热反应制得磁性碳核壳材料;
2)壳聚糖改性磁性碳核壳吸附剂的制备:将壳聚糖溶于乙酸溶液中,得到壳聚糖的乙酸溶液;将磁性碳核壳材料超声分散在甲醇溶液中,同时添加戊二醛作为交联剂,得到磁性碳核壳材料的甲醇溶液;将壳聚糖的乙酸溶液和磁性碳核壳材料的甲醇溶液混合,并添加三甲基甘氨酸作为修饰剂,加热搅拌反应,反应产物洗涤、干燥,得到壳聚糖改性磁性碳核壳吸附剂。
2.根据权利要求1所述的壳聚糖改性磁性碳核壳吸附剂的制备方法,其特征在于,步骤1)中,水热反应温度为200℃~240℃,时间为36~60h。
3.根据权利要求1所述的壳聚糖改性磁性碳核壳吸附剂的制备方法,其特征在于,步骤1)中,步骤2)中,反应温度为40~80℃,时间为4~8h。
4.根据权利要求1所述的壳聚糖改性磁性碳核壳吸附剂的制备方法,其特征在于,步骤1)中,二茂铁与过氧化氢的质量比为1:(1.25-2),步骤2)中,壳聚糖、磁性碳核壳材料、戊二醛和三甲基甘氨酸的质量比为(2~6):5:15:1。
5.采用权利要求1-4任一项所述的制备方法得到的壳聚糖改性磁性碳核壳吸附剂。
6.权利要求5所述的壳聚糖改性磁性碳核壳吸附剂在吸附水体中络合态三价铬中的应用。
7.根据权利要求6所述的应用,其特征在于,方法为:在欲净化的水体中加入壳聚糖改性磁性碳核壳吸附剂进行吸附,吸附完成后收集壳聚糖改性磁性碳核壳吸附剂。
8.根据权利要求7所述的应用,其特征在于,吸附时间为5min~8h。
9.根据权利要求7所述的应用,其特征在于,收集的壳聚糖改性磁性碳核壳吸附剂以HCl和硫脲的混合水溶液为脱附剂进行脱附,脱附后的壳聚糖改性磁性碳核壳吸附剂循环利用。
CN201910888507.8A 2019-09-19 2019-09-19 壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用 Pending CN110523392A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910888507.8A CN110523392A (zh) 2019-09-19 2019-09-19 壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910888507.8A CN110523392A (zh) 2019-09-19 2019-09-19 壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用

Publications (1)

Publication Number Publication Date
CN110523392A true CN110523392A (zh) 2019-12-03

Family

ID=68669348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910888507.8A Pending CN110523392A (zh) 2019-09-19 2019-09-19 壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用

Country Status (1)

Country Link
CN (1) CN110523392A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320347A (zh) * 2020-03-16 2020-06-23 武夷学院 一种生活污水厂二沉池污泥的处理方法
CN113413885A (zh) * 2021-06-30 2021-09-21 沈阳航空航天大学 一种核壳结构的磁性微球吸附剂及其制备方法和应用
CN114044602A (zh) * 2021-11-15 2022-02-15 北京新风航天装备有限公司 一种含铬废水处理与铬资源回收的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617798A (zh) * 2012-04-12 2012-08-01 中国海洋大学 一种壳聚糖衍生物及其制备方法
CN105921134A (zh) * 2016-06-29 2016-09-07 陕西科技大学 一种dtpa-壳聚糖改性磁性吸附剂的制备方法及应用
CN106927547A (zh) * 2017-04-05 2017-07-07 同济大学 一种磁性铁基材料还原破络去除络合态重金属的方法
CN107399800A (zh) * 2017-08-08 2017-11-28 北京市理化分析测试中心 一种高效的络合态重金属离子去除剂及其合成方法
CN108043363A (zh) * 2017-12-13 2018-05-18 武汉理工大学 磁性壳聚糖吸附剂的制备方法
CN109126728A (zh) * 2018-08-27 2019-01-04 成都信息工程大学 一种Fe3O4-壳聚糖的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617798A (zh) * 2012-04-12 2012-08-01 中国海洋大学 一种壳聚糖衍生物及其制备方法
CN105921134A (zh) * 2016-06-29 2016-09-07 陕西科技大学 一种dtpa-壳聚糖改性磁性吸附剂的制备方法及应用
CN106927547A (zh) * 2017-04-05 2017-07-07 同济大学 一种磁性铁基材料还原破络去除络合态重金属的方法
CN107399800A (zh) * 2017-08-08 2017-11-28 北京市理化分析测试中心 一种高效的络合态重金属离子去除剂及其合成方法
CN108043363A (zh) * 2017-12-13 2018-05-18 武汉理工大学 磁性壳聚糖吸附剂的制备方法
CN109126728A (zh) * 2018-08-27 2019-01-04 成都信息工程大学 一种Fe3O4-壳聚糖的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG S ET AL.: ""Preparation of Uniform Magnetic Chitosan Microcapsules and Their Application in Adsorbing Copper Ion(II) and Chromium Ion(III)"", 《INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH》 *
王辉: ""磁性Fe3O4/C核壳纳米粒子的合成、组成和应用"", 《中国博士学位论文全文数据库工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320347A (zh) * 2020-03-16 2020-06-23 武夷学院 一种生活污水厂二沉池污泥的处理方法
CN113413885A (zh) * 2021-06-30 2021-09-21 沈阳航空航天大学 一种核壳结构的磁性微球吸附剂及其制备方法和应用
CN113413885B (zh) * 2021-06-30 2022-06-28 沈阳航空航天大学 一种核壳结构的磁性微球吸附剂及其制备方法和应用
CN114044602A (zh) * 2021-11-15 2022-02-15 北京新风航天装备有限公司 一种含铬废水处理与铬资源回收的方法

Similar Documents

Publication Publication Date Title
Zhang et al. Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater
Huang et al. Highly selective uranium adsorption on 2-phosphonobutane-1, 2, 4-tricarboxylic acid-decorated chitosan-coated magnetic silica nanoparticles
Zhou et al. Cellulose-based amphoteric adsorbent for the complete removal of low-level heavy metal ions via a specialization and cooperation mechanism
Xue et al. Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid
Yuan et al. Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE
Helal et al. Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: Succinyl-β-cyclodextrin-APTES@ maghemite nanoparticles
Yang et al. Efficient and rapid removal of Pb2+ from water by magnetic Fe3O4@ MnO2 core-shell nanoflower attached to carbon microtube: adsorption behavior and process study
Zhao et al. Synthesis of amidoxime-functionalized Fe3O4@ SiO2 core–shell magnetic microspheres for highly efficient sorption of U (VI)
Yuan et al. Glycine derivative-functionalized metal-organic framework (MOF) materials for Co (II) removal from aqueous solution
CN110523392A (zh) 壳聚糖改性磁性碳核壳吸附剂及其制备方法和在吸附水体中络合态三价铬中的应用
Cheng et al. Self-assembly of 2D-metal–organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions
Sun et al. A simple phosphorylation modification of hydrothermally cross-linked chitosan for selective and efficient removal of U (VI)
CN107262073B (zh) 一种镉离子吸附剂及其制备方法和应用
CN102250347B (zh) 天然埃洛石纳米管为基体的螯合型离子交换树脂的制备方法
Zhang et al. Biosorptive removal of cobalt (II) from aqueous solutions using magnetic cyanoethyl chitosan beads
CN107983295B (zh) 核壳结构铁铜双金属材料及其制备方法和应用
Li et al. Preparation of magnetic resin microspheres MP (MMA-DVB-GMA) and the adsorption property to heavy metal ions
CN114832784B (zh) 一种磷酸修饰的二氧化硅微球及其制备方法和应用
CN109569544A (zh) 一种氨基和羧基功能化磁性微球复合吸附剂的制备方法
Ling et al. Formation of uniform mesoporous TiO 2@ C–Ni hollow hybrid composites
Ji et al. Three-dimensional network graphene oxide/sodium alginate aerogel beads with slit-shaped structure: Synthesis, performance and selective adsorption mechanism for Cu (II)
Guo et al. Investigation of antimony adsorption on a zirconium-porphyrin-based metal–organic framework
Liu et al. Facile fabrication of ion-imprinted Fe 3 O 4/carboxymethyl cellulose magnetic biosorbent: removal and recovery properties for trivalent La ions
Tang et al. In situ chemical oxidation-grafted amidoxime-based collagen fibers for rapid uranium extraction from radioactive wastewater
CN101811032B (zh) 一种Cd(Ⅱ)印迹磁性材料的制备及应用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191203