CN110515015A - 一种新型微型磁传感器及其加工工艺 - Google Patents

一种新型微型磁传感器及其加工工艺 Download PDF

Info

Publication number
CN110515015A
CN110515015A CN201910568625.0A CN201910568625A CN110515015A CN 110515015 A CN110515015 A CN 110515015A CN 201910568625 A CN201910568625 A CN 201910568625A CN 110515015 A CN110515015 A CN 110515015A
Authority
CN
China
Prior art keywords
new micro
magnetic sensor
shaped
magnetic
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910568625.0A
Other languages
English (en)
Inventor
唐书辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Xin Mei Nanosecond Science And Technology Co Ltd
Original Assignee
Guizhou Xin Mei Nanosecond Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Xin Mei Nanosecond Science And Technology Co Ltd filed Critical Guizhou Xin Mei Nanosecond Science And Technology Co Ltd
Priority to CN201910568625.0A priority Critical patent/CN110515015A/zh
Publication of CN110515015A publication Critical patent/CN110515015A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/038Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/10Connecting leads to windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/125Other insulating structures; Insulating between coil and core, between different winding sections, around the coil

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供的一种新型微型磁传感器及其加工工艺;包括主体和连接线,所述主体通过外绝缘层包裹两个相对称的磁性装置,所述两个对称的磁性装置内均绕制有线圈,线圈串联后与连接线连接,所述磁性装置为U型结构。产品的输入电流与输出电流比例对称;项目产品的铁、铜损耗极小,在工频的情况下铁损耗几乎为极低;项目产品体积小、被测电流宽,且可调;由于项目产品的铁、铜损耗极小,因此长期使用不发热,安全可靠。

Description

一种新型微型磁传感器及其加工工艺
技术领域
本发明涉及一种新型微型磁传感器及其加工工艺。
背景技术
磁传感器,就是把磁场、电流、应力应变、温度、光等引起敏感元件磁性能的变化转换成电信号,以这种方式来检测相应物理量的器件。其实出特点是可以非接触测量,检测信号几乎不受被测物的影响,耐污染、噪声强,即使在很恶劣的环境条件下也能够可靠地工作,坚固耐用,寿命长。
最早的磁传感器是用磁铁的指南性作指南针航海。其后,作为感知磁场和磁通的元器件,相继开发出探测线圈,磁通门磁强计,半导体霍尔元件和磁电阻元件,铁磁薄膜各向异性磁电阻元器件,还有使用块状铁氧体磁芯的应力传感器,使用热敏铁氧体磁芯的温度传感器,利用亚铁磁石榴石磁光效应的光纤电流传感器,利用电流的电磁效应的电感磁传感器,等等。总之,磁传感器的种类甚多,更新换代频繁。
磁传感器通常都是组装在机器、设备内部来使用的。现代整机正迅速向小型轻便、多功能、智能化方向发展。
对于利用电流的电磁效应的电感磁传感器而言,由于输入的电流范围大,因而要求输入电流与输出电流必须成比例对称;同时要求传感器的铁损耗、铜损耗要低,只有这样,才能保证传感器的灵敏性、稳定性和使用寿命。
发明内容
为解决上述技术问题,本发明提供了一种新型微型磁传感器及其加工工艺。
本发明通过以下技术方案得以实现。
本发明提供的一种新型微型磁传感器;包括主体和连接线,所述主体通过外绝缘层包裹两个相对称的磁性装置,所述两个对称的磁性装置内均绕制有线圈,线圈串联后与连接线连接,所述磁性装置为U型结构。
所述线圈在磁性装置内绕制有两层。
所述两层线圈之间设置有绝缘层。
所述两个对称磁性装置通过环氧树脂固定在主体内。
所述磁性装置内导磁材料为Fe基纳米晶。
一种新型微型磁传感器的加工工艺,包括以下步骤:
①选用Fe基纳米晶作为导磁材料,并将导磁材料加工为U型;
②将导磁材料使用模具支撑为两个相对的U型且有一定间隔,
③将支撑好的导磁材料浸入环氧树脂并待其固化后整形;
④在两个相对的U型导磁材料上连续绕制线圈;
⑤二次浸入环氧树脂作为外绝缘层;
⑥引出连接线并封装。
所述步骤①中的Fe基纳米晶为Fe、MCu、Si、AL合金。
所述步骤①中Fe基纳米晶的成型方法为配好的合金材料放入电磁感应加热炉中,通过电磁感应加热到熔化状态导入模具,再通过极快速度冷却成型。
所述步骤②中两个相对的U型的间隔为0.9~1.2mm。
所述步骤④中线圈仅绕在U型导磁材料的U型中间连接部。
本发明的有益效果在于:项目产品的输入电流与输出电流比例对称;项目产品的铁、铜损耗极小,在工频的情况下铁损耗几乎为极低;项目产品体积小、被测电流宽,且可调;由于项目产品的铁、铜损耗极小,因此长期使用不发热,安全可靠。
附图说明
图1是本发明的结构示意图;
图2是本发明的导磁体结构示意图;
图3是本发明的导磁体尺寸示意图;
图中:1-主体,2-连接线,3-磁性装置。
具体实施方式
下面进一步描述本发明的技术方案,但要求保护的范围并不局限于所述。
一种新型微型磁传感器;包括主体1和连接线2,所述主体1通过外绝缘层包裹两个相对称的磁性装置3,所述两个对称的磁性装置3内均绕制有线圈,线圈串联后与连接线2连接,所述磁性装置3为U型结构。
所述线圈在磁性装置3内绕制有两层。
所述两层线圈之间设置有绝缘层。
所述两个对称磁性装置3通过环氧树脂固定在主体1内。
所述磁性装置3内导磁材料为Fe基纳米晶。
一种新型微型磁传感器的加工工艺,包括以下步骤:
①选用Fe基纳米晶作为导磁材料,并将导磁材料加工为U型;
②将导磁材料使用模具支撑为两个相对的U型且有一定间隔,
③将支撑好的导磁材料浸入环氧树脂并待其固化后整形;
④在两个相对的U型导磁材料上连续绕制线圈;
⑤二次浸入环氧树脂作为外绝缘层;
⑥引出连接线并封装。
所述步骤①中的Fe基纳米晶为Fe、MMn、Mo、Ti、Co、Nb、BCu、Si、AL合金。
铁基纳米晶软磁材料的配方如下:
Fe:72.5%-73.8%±0.1,根据用途的不同Fe的含量可以在72.5%-73.8%之间调整变化。
Cu:0.9%±0.01。
Si:8.5%±0.3。
Al:3%±0.5。
M:15.1%-13.8%。在M中:Mn:2%-2.2%;Mo:2.2%-2.4%;
Ti:3%-3.2%;Co:2.1%-2.3%;Nb:3%-3.1%:B:1.5%-1.9%。
各种M的添加误差≯±0.1%.
合金元素在铁基纳米晶软磁材料中的作用:
所述步骤①中Fe基纳米晶的成型方法为配好的合金材料放入电磁感应加热炉中,通过电磁感应加热到熔化状态导入模具,再通过极快速度冷却成型。
所述步骤②中两个相对的U型的间隔为0.9~1.2mm,如图3所示导磁材料的外长L1为15~17mm,内长L2为11~13mm,U型口的间隔为0.9~1.2mm,U型边的间隔为6~8mm。
所述步骤④中线圈仅绕在U型导磁材料的U型中间连接部。
事实上,由于纳米晶是由非晶态的玻璃态合金通过低温超细化晶粒实现的,所以纳米晶的内部组织主要有两种状态,一是非晶态的合金组织,二是超细化的细晶粒组织,合金元素主要是以固溶状态和晶界析出的形势存在,因此材料的成分和组织状态是决定材料性能的主要因素。我们通过大量实验表明:影响铁基纳米晶软磁材料性能的主要原因是铁基纳米晶软磁材料的成分及显微组织状态,材料的成分是决定材料性能的根本因素,这靠材料配方确定;而材料的显微组织状态是靠材料制作中的工艺参数实现的。研究表明:材料晶体的磁导率主要与晶体交换能、磁晶的各项异性、磁致伸缩系数有关,与纳米晶的晶粒形状、晶粒大小、表面取向、合金元素的种类、数量,以及合金元素弥散分布状态等有关,二这些材料的组织状态参数,就是由材料生产的工艺参数确定的,试验得出:材料的晶粒大小不仅与处理的磁性能关系重大,而且还与材料的组织稳定性、项目稳定性有关,一般晶粒越细小、材料的磁性能越好,但稳定性越差,晶粒越大材料的稳定性越好。
导磁材料生产方法:
纳米晶磁性材料的生产方法一般是现将配方好的合金材料放入电磁感应加热炉中,通过电磁感应加热到熔化状态,再通过极快速度冷却,获得非晶态玻璃态金属,最后在对非晶态金属进行退火,让其在退火温度下生成超细化晶粒,这种超细晶粒的尺寸一般在10-20nm左右,这就是纳米晶。目前铁基纳米晶合金研究和应用最广的就是纳米晶带材,纳米晶带材的制备方法目前已经比较成熟:根据冷却方式的不同,一般是采用单辊法和双辊法,单辊法是将熔化的金属液体在重力或气体压力作用下通过喷嘴喷射到高速旋转的金属辊轮表面【如铜钼或钢辊等、或由旋转的轮或盘掠过金属溶液进行抽取,连续形成薄带,双辊法目前在工业上很少采用。形成带材后,再讲其进行退火处理,让其组织成为超细晶粒结构。
项目产品采用了常用的单辊法生产铁基纳米晶软磁材料,只是由于材料的配方发生了重大改变,因此工艺参数也发生了重大改变。
项目产品工艺参数:
合金熔化温度:由于材料中含有了较多的难熔金属Co、Nb、Mo、Ti等,所以合金熔化温度比其他配方合金要高一些,我们采用的是1500℃-2800℃根据需要的材料性能不同,材料成分配方的不同,合金熔化温度也不同,一般成分中M含量越高,熔化温度也越高。
退火温度:由于材料中含有了较多的难熔金属,项目产品的退火温度也较高,我们采用的是300℃-650℃,退火时间1-8h;根据材料成分配方的不同、对材料显微组织状态要求不同、对晶粒度大小要求不同,退火温度和保温时间也不同。
根据用户提出的性能要求,根据我们研究的成果进行配方,其后将原材料进行粉碎,粉碎到5cm以下即可,将粉碎的原材料放入熔化炉,通电加热到规定温度,保温20-30分钟,通过喷嘴喷射到高速旋转的金属辊轮表面,连续形成薄带。最后将薄带放入真空度为1x10-1∽-2的真空热处理炉中,采用特殊装置,控制真空热处理炉中的氧气含量另外专利叙诉,在500℃-650℃的温度下,保温2-5h。自然冷却后即成项目产品。

Claims (10)

1.一种新型微型磁传感器,其特征在于:包括主体(1)和连接线(2),所述主体(1)通过外绝缘层包裹两个相对称的磁性装置(3),所述两个对称的磁性装置(3)内均绕制有线圈,线圈串联后与连接线(2)连接,所述磁性装置(3)为U型结构。
2.如权利要求1所述的新型微型磁传感器,其特征在于:所述线圈在磁性装置(3)内绕制有两层。
3.如权利要求2所述的新型微型磁传感器,其特征在于:所述两层线圈之间设置有绝缘层。
4.如权利要求1所述的新型微型磁传感器,其特征在于:所述两个对称磁性装置(3)通过环氧树脂固定在主体(1)内。
5.如权利要求1所述的新型微型磁传感器,其特征在于:所述磁性装置(3)内导磁材料为Fe基纳米晶。
6.一种新型微型磁传感器的加工工艺,包括以下步骤:
①选用Fe基纳米晶作为导磁材料,并将导磁材料加工为U型;
②将导磁材料使用模具支撑为两个相对的U型且有一定间隔,
③将支撑好的导磁材料浸入环氧树脂并待其固化后整形;
④在两个相对的U型导磁材料上连续绕制线圈;
⑤二次浸入环氧树脂作为外绝缘层;
⑥引出连接线并封装。
7.如权利要求6所述的新型微型磁传感器的加工工艺,其特征在于:所述步骤①中的Fe基纳米晶为Fe、M(Mn、Mo、Ti、Co、Nb、B)Cu、Si、AL合金。
8.如权利要求6所述的新型微型磁传感器的加工工艺,其特征在于:所述步骤①中Fe基纳米晶的成型方法为配好的合金材料放入电磁感应加热炉中,通过电磁感应加热到熔化状态导入模具,再通过极快速度冷却成型。
9.如权利要求6所述的新型微型磁传感器的加工工艺,其特征在于:所述步骤②中两个相对的U型的间隔为0.9~1.2mm。
10.如权利要求6所述的新型微型磁传感器的加工工艺,其特征在于:所述步骤④中线圈仅绕在U型导磁材料的U型中间连接部。
CN201910568625.0A 2019-10-21 2019-10-21 一种新型微型磁传感器及其加工工艺 Pending CN110515015A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910568625.0A CN110515015A (zh) 2019-10-21 2019-10-21 一种新型微型磁传感器及其加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910568625.0A CN110515015A (zh) 2019-10-21 2019-10-21 一种新型微型磁传感器及其加工工艺

Publications (1)

Publication Number Publication Date
CN110515015A true CN110515015A (zh) 2019-11-29

Family

ID=68622484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910568625.0A Pending CN110515015A (zh) 2019-10-21 2019-10-21 一种新型微型磁传感器及其加工工艺

Country Status (1)

Country Link
CN (1) CN110515015A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153895A (ja) * 1999-11-24 2001-06-08 Makome Kenkyusho:Kk 電流センサ
US6262510B1 (en) * 1994-09-22 2001-07-17 Iancu Lungu Electronically switched reluctance motor
JP2002022705A (ja) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd 磁気センサ及び磁界検出方法並びに装置
KR100996979B1 (ko) * 2010-04-19 2010-11-26 국제통신공업 주식회사 무정전전원장치용 분말자성 블록코아 리액터 및 그 제조방법
WO2014075407A1 (zh) * 2012-11-19 2014-05-22 中国科学院上海微系统与信息技术研究所 微机械磁场传感器及其应用
CN107300683A (zh) * 2017-06-26 2017-10-27 美新微纳传感系统有限公司 磁传感装置及其自动校准方法、电流传感器
CN107526046A (zh) * 2017-07-18 2017-12-29 上海交通大学 一种平面电感型磁传感器
CN108226825A (zh) * 2018-01-08 2018-06-29 上海交通大学 一种软磁薄膜平面线圈复合磁传感器及其制备方法
CN210604942U (zh) * 2019-06-27 2020-05-22 贵州鑫湄纳米科技有限公司 一种新型微型磁传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262510B1 (en) * 1994-09-22 2001-07-17 Iancu Lungu Electronically switched reluctance motor
JP2001153895A (ja) * 1999-11-24 2001-06-08 Makome Kenkyusho:Kk 電流センサ
JP2002022705A (ja) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd 磁気センサ及び磁界検出方法並びに装置
KR100996979B1 (ko) * 2010-04-19 2010-11-26 국제통신공업 주식회사 무정전전원장치용 분말자성 블록코아 리액터 및 그 제조방법
WO2014075407A1 (zh) * 2012-11-19 2014-05-22 中国科学院上海微系统与信息技术研究所 微机械磁场传感器及其应用
CN107300683A (zh) * 2017-06-26 2017-10-27 美新微纳传感系统有限公司 磁传感装置及其自动校准方法、电流传感器
CN107526046A (zh) * 2017-07-18 2017-12-29 上海交通大学 一种平面电感型磁传感器
CN108226825A (zh) * 2018-01-08 2018-06-29 上海交通大学 一种软磁薄膜平面线圈复合磁传感器及其制备方法
CN210604942U (zh) * 2019-06-27 2020-05-22 贵州鑫湄纳米科技有限公司 一种新型微型磁传感器

Similar Documents

Publication Publication Date Title
Zhukov et al. Giant magnetoimpedance in rapidly quenched materials
CN109716463A (zh) 纳米晶合金磁芯、磁芯组件和纳米晶合金磁芯的制造方法
CN104934179B (zh) 强非晶形成能力的铁基纳米晶软磁合金及其制备方法
CN102543347B (zh) 一种铁基纳米晶软磁合金及其制备方法
CN105719826A (zh) 一种纳米晶磁芯的磁场热处理方法
Zhang et al. Effects of Cobalt Addition in Nanocrystalline ${\rm Fe} _ {83.3}{\rm Si} _ {4}{\rm B} _ {8}{\rm P} _ {4}{\rm Cu} _ {0.7} $ Soft Magnetic Alloy
CN111057970B (zh) 一种高磁导率的非晶纳米晶合金的制备方法
JPS6225741B2 (zh)
CN105845307B (zh) 由中合金钢成分开发形成的铁基非晶态软磁合金及其应用
CN102915820A (zh) 高非晶形成能力的钴基块体非晶软磁合金及其制备方法
CN110387500A (zh) 一种高磁感高频铁基纳米晶软磁合金及其制备方法
CN107154299A (zh) 一种高磁饱和强度铁基非晶软磁合金、其制备方法及应用
Shuai et al. Stress-induced giant magneto-impedance effect of amorphous CoFeNiSiPB ribbon with magnetic field annealing
CN109576607A (zh) 一种FeCoNi基软磁高熵合金及应用
Urata et al. Fe–Si–B–P–Cu Nanocrystalline Alloy Ribbons With High Saturation Magnetic Flux Density Prepared Using Industrial Materials
CN105002447B (zh) 一种提高Fe‑Si‑B‑P系块体非晶合金非晶形成能力的方法
EP0095830B1 (en) Amorphous metals and articles made thereof
Nowosielski et al. Thermal and magnetic propertiesof selected Fe-based metallic glasses
CN210604942U (zh) 一种新型微型磁传感器
CN110515015A (zh) 一种新型微型磁传感器及其加工工艺
Roy et al. Alloy development through rapid solidification for soft magnetic application
CN100372033C (zh) 漏电保护器用抗直流偏磁互感器磁芯及其制造方法
CN109207871A (zh) 一种非晶-纳米晶软磁合金及其制备方法
US20160319412A1 (en) Tunable Anisotropy of Co-Based Nanocomposites for Magnetic Field Sensing and Inductor Applications
Wang et al. Heating rate dependence of magnetic properties for Fe-based nanocrystalline alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination