CN110512223B - 无模板制备硅纳米管的熔盐电化学方法 - Google Patents

无模板制备硅纳米管的熔盐电化学方法 Download PDF

Info

Publication number
CN110512223B
CN110512223B CN201910725695.2A CN201910725695A CN110512223B CN 110512223 B CN110512223 B CN 110512223B CN 201910725695 A CN201910725695 A CN 201910725695A CN 110512223 B CN110512223 B CN 110512223B
Authority
CN
China
Prior art keywords
silicon
precursor
metal
cathode
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910725695.2A
Other languages
English (en)
Other versions
CN110512223A (zh
Inventor
肖巍
杨佳榕
翁威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Junlu Technology Co.,Ltd.
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201910725695.2A priority Critical patent/CN110512223B/zh
Publication of CN110512223A publication Critical patent/CN110512223A/zh
Application granted granted Critical
Publication of CN110512223B publication Critical patent/CN110512223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/33Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种无模板制备硅纳米管的熔盐电化学方法,包括:设置阴极和阳极并置于熔盐电解质中,在阴极电解硅前驱物获得硅纳米管,其中,在电解硅前驱物时,添加与硅形成低熔点合金的金属或相应金属的前驱物。本发明在熔盐电解中加入金属及金属前驱物共还原生成硅纳米管,该硅纳米管形貌可有效缓解其作为电池材料在充放电过程中的体积变化,并显著提高锂离子电池的循环稳定性和倍率性能。

Description

无模板制备硅纳米管的熔盐电化学方法
技术领域
本发明涉及电化学材料制备的技术领域,具体涉及一种无模板制备硅纳米管的熔盐电化学方法。
背景技术
随着现代社会的发展,人类对能源的需要与日俱增,传统化石能源带来很多环境问题,且不能满足人类的需求,因此亟待寻找新的可替代的绿色能源。锂离子电池具有能量密度高、使用寿命长、额定电压高、绿色环保等诸多优点,在商业电子耗材和电动汽车领域有着重要应用。电极材料是电池的核心,决定电池的性能。而传统的碳负材料理论比容量低,难以满足较大功率器件对高能量密度电池材料的需求。
硅的理论比容量是碳材料的10倍,来源丰富,价格低廉,被认为是最有潜力的负极材料。但充放电过程中,锂离子的嵌入或脱出引起的体积变化使得电极材料出现裂纹甚至粉化,导致电池性能衰减、循环性能下降等问题。因此,研究者们致力于寻找空心结构的纳米材料来减缓不可逆的体积变化,同时,纳米线或纳米管等微观结构可以提供较短的锂离子扩散路径。并且,给硅纳米管中加入金属可以增加其导电性,益于电池性能的提升。目前,硅纳米管的制备方法主要为化学气相沉积法(典型文献:Adv.Mater.14(2014)1219-1221;Nanotechnology 21(2010)055603;J.Mater.Chem.A3(2015)11117;Adv.Mater.2002 14(17)1219-1221)或模板法(典型文献:NATURENANOTECHNOLOGY.7(2012)309-314;J.Am.Chem.Soc.131(2009)3679-3689;Angew.Chem.Int.Ed.43(2004)63-66;Nano Lett.9(2009)1511-1516)以及刻蚀法(典型文献:IEEE TRANSACTIONS ONNANOTECHNOLOGY.16(2017)130-134)等方法。但由于步骤繁多工艺复杂等原因不利于商业大规模生产。
发明内容
本发明的目的在于提供一种无模板制备硅纳米管的熔盐电化学方法,该方法制得的硅纳米管能有效缓解其作为电池材料在充放电过程中的体积变化,并显著提高锂离子电池的循环稳定性和倍率性能。
本发明解决上述技术问题所采用的方案是:
一种无模板制备硅纳米管的熔盐电化学方法,包括:
设置阴极和阳极并置于熔盐电解质中,在阴极电解硅前驱物获得硅纳米管,其中,在电解硅前驱物时,添加与硅形成低熔点合金的金属或相应金属的前驱物;
上述熔盐电解质为LiCl,NaCl,KCl、CaCl2,MgCl2的一元或多元混盐;
金属前驱物为相应金属对应的氯化盐、硝酸盐、碳酸盐或氯酸盐中的一种或多种。
进一步地,硅前驱物直接作为固态阴极或溶解于熔盐中进行电解。
进一步地,硅前驱物包括CaSiO3、Na2SiO3、K2SiO3、MgSiO3、BaSiO3、Al2(SiO3)3及SiO2中的一种或多种。
进一步地,金属前驱物添加于含有硅前驱物的固态阴极中或溶解于熔盐中。
进一步地,金属为Zn、Fe、Co、Ni、Cu、Ag、Sn、Bi、Au、Pt中的一种或多种。
进一步地,金属前驱物和硅前驱物的摩尔比为(0.01-100):1。
进一步地,电解温度为400-1000℃。
进一步地,电解槽压低于熔盐碱金属析出电压,高于金属前驱物中金属析出的电压。
本发明还提供一种根据上述的无模板制备硅纳米管的熔盐电化学方法制得的纳米管,纳米管的外径为80-600nm,壁厚为5-200nm。
与现有技术相比,本发明至少具有以下有益效果:本发明的熔盐电解法通过金属共还原生成硅纳米管的方法中,以硅前驱物直接作为固态阴极电解或溶解于熔盐电解,同时将金属前驱物添加于固态阴极中或溶解于熔盐中电解,利用液相-固相生长机制,电解过程中首先形成硅与金属的液态合金,随后合金中的硅饱和析出,形成硅纳米管,由此制备的硅纳米管中由于同时引入了金属颗粒增加了材料的导电性,熔盐电解法提供一种一步可控无模板的硅纳米管制备方法,操作简单,绿色环保,周期短;制备出的掺杂金属的硅纳米管形貌可有效缓解其作为电池材料在充放电过程中的体积变化,并显著提高锂离子电池的循环稳定性和倍率性能,同时操作简单一步合成,不需要模板,有望实现工业中大规模生产。
附图说明
图1是实施例一中电解产物的电镜图;
图2是实施例一中电解产物的TEM图;
图3是实施例一中电解产物的XRD图。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
实施例1
以CaCl2-NaCl共晶熔盐作为高温电解质,放于有氩气保护气的高温炉内,升温至250℃干燥48h后,再升温至850℃使共晶熔盐熔化,以镍片为阴极,石墨棒为阳极,在2.6V槽压下预电解12h,以除去熔盐电解质中的杂质。将AgCl粉末与SiO2粉末混合,压片后制成阴极制片,以石墨棒为阳极,将阴阳极插入已经熔化的高温熔盐中,在2.0V下电解12h。电解结束后,待阴极电解产物在氩气氛围中冷却至室温后,分别用去离子水与乙醇清洗三次,干燥后得到电解产物。
本发明将得到的电解产物进行扫描电镜分析,结果如图1所示;将电解产物进行透射电镜分析,结果如图2所示,观察到中空的纳米管结构。将电解产物进行XRD扫描分析,结果如图3所示,两组衍射峰所对应的主要成分为硅和银。
实施例2
以CaCl2熔盐作为高温电解质,放于有氩气保护气的高温炉内,升温至250℃干燥48h后,再升温至850℃使熔盐熔化,以镍片为阴极,石墨棒为阳极,在2.6V槽压下预电解12h。将Cu粉末与CaSiO3粉末混合,压片后制成阴极制片,以石墨棒为阳极,将阴阳极插入已经熔化的高温熔盐中,在2.4V下电解10h。电解结束后,待阴极电解产物在氩气氛围中冷却至室温后,分别用去离子水与乙醇清洗三次,干燥后得到电解产物。将得到的电解产物进行扫描电镜分析,观察到中空的纳米管结构。对电解产物进行XRD扫描分析,两组衍射峰所对应的主要成分为硅和铜。
为了说明上述制得的硅纳米管的电学性能,以去离子水为溶剂,将实施例2所得产物分别与聚丙烯酸、羧甲基纤维素钠、Super P按质量比为6:1:1:2均匀混合后,涂覆于铜箔上,在120℃的真空干燥箱中干燥12h,将干燥好的铜箔制成电极片。在充满氩气氛围的手套箱中,以电极片为正极,以锂片为负极,以1M LiPF6/DEC/EC(DEC与EC的体积比为1:1)/5%FEC为电解液,以聚丙烯微孔膜Celgard2400为隔膜,制成CR2016型锂离子电池。用蓝电电池测试仪对组装的锂离子电池进行充放电测试,电压范围为0.01-1.5V,并且依次在电流密度为50、100、200、500、1000、100mAg-1下各循环10圈进行循环性能测试。经过40圈循环后电池的比容量为873mAh g-1,重新以100mAg-1的电流密度循环时,电池的比容量为1329mAh g-1
实施例3
以KCl熔盐作为高温电解质,放于有氩气保护气的高温炉内,升温至250℃干燥48h后,再升温至800℃使熔盐熔化,以镍片为阴极,石墨棒为阳极,在2.6V槽压下预电解12h。将CuO粉末与Na2SiO3粉末熔解于熔盐中,以石墨棒为阳极,以碳布为阴极,将阴阳极插入已经熔化的高温熔盐中,在2.4V下电解4h。电解结束后,待阴极电解产物在氩气氛围中冷却至室温后,分别用去离子水与乙醇清洗三次,干燥后得到电解产物。将得到的电解产物进行扫描电镜分析,观察到中空的纳米管结构。将电解产物进行XRD扫描分析,两组衍射峰所对应的主要成分为硅和铜。
以去离子水为溶剂,将上述电解所得产物分别与海藻酸钠、SuperP按质量比为6:2:2均匀混合后,涂覆于铜箔上,在120℃的真空干燥箱中干燥12h,将干燥好的铜箔制成电极片。在充满氩气氛围的手套箱中,以电极片为正极,以锂片为负极,以1M LiPF6/DEC/EC(DEC与EC的体积比为1:1)/5%FEC为电解液,以聚丙烯微孔膜Celgard2400为隔膜,制成CR2016型锂离子电池。用蓝电电池测试仪对组装的锂离子电池进行充放电测试,电压范围为0.01-1.5V,并且依次在电流密度为50、100、200、500、1000、100mAg-1下各循环10圈进行循环性能测试。经过40圈循环后电池的比容量为896mAh g-1,重新以100mAg-1的电流密度循环时,电池的比容量为1597mAh g-1
实施例4
以CaCl2-NaCl共晶熔盐作为高温电解质,放于有氩气保护气的高温炉内,升温至250℃干燥48h后,再升温至750℃使共晶熔盐熔化,以镍片为阴极,石墨棒为阳极,在2.6V槽压下预电解12h。将HAuCl4粉末与Al2(SiO3)3粉末混合,压片制成阴极,以石墨棒为阳极,将阴阳极插入已经熔化的高温熔盐中,在2.4V下电解2h。电解结束后,待阴极电解产物在氩气氛围中冷却至室温后,分别用去离子水与乙醇清洗三次,干燥后得到电解产物。将得到的电解产物进行扫描电镜分析,观察到中空的纳米管结构。将电解产物进行XRD扫描分析,两组衍射峰所对应的主要成分为硅和金。
以去离子水为溶剂,将上述电解所得产物分别与海藻酸钠、羧甲基纤维素钠、Super P按质量比为6:1:1:2均匀混合后,涂覆于铜箔上,在120℃的真空干燥箱中干燥12h,将干燥好的铜箔制成电极片。在充满氩气氛围的手套箱中,以电极片为正极,以锂片为负极,以1M LiPF6/DEC/EC(DEC与EC的体积比为1:1)/5%FEC为电解液,以聚丙烯微孔膜Celgard 2400为隔膜,制成CR2016型锂离子电池。用蓝电电池测试仪对组装的锂离子电池进行充放电测试,电压范围为0.01-1.5V,并且依次在电流密度为50、100、200、500、1000、100mAg-1下各循环10圈进行循环性能测试。经过40圈循环后电池的比容量为983mAh g-1,重新以100mAg-1的电流密度循环时,电池的比容量为1513mAh g-1
实施例5
以KCl-NaCl共晶熔盐作为高温电解质,放于有氩气保护气的高温炉内,升温至250℃干燥48h后,再升温至800℃使共晶熔盐熔化,以镍片为阴极,石墨棒为阳极,在2.6V槽压下预电解12h。将HAuCl4粉末与Na2SiO3粉末熔解于熔盐中,以石墨棒为阳极,以石墨纸为阴极,将阴阳极插入已经熔化的高温熔盐中,在2.0V下电解12h。电解结束后,待阴极电解产物在氩气氛围中冷却至室温后,分别用去离子水与乙醇清洗三次,干燥后得到电解产物。将得到的电解产物进行扫描电镜分析,观察到中空的纳米管结构。将电解产物进行XRD扫描分析,两组衍射峰所对应的主要成分为硅和金。
以去离子水为溶剂,将上述电解所得产物分别与海藻酸钠、SuperP按质量比为7:2:1均匀混合后,涂覆于铜箔上,在120℃的真空干燥箱中干燥12h,将干燥好的铜箔制成电极片。在充满氩气氛围的手套箱中,以电极片为正极,以锂片为负极,以1M LiPF6/DEC/EC(DEC与EC的体积比为1:1)/5%FEC为电解液,以聚丙烯微孔膜Celgard2400为隔膜,制成CR2016型锂离子电池。用蓝电电池测试仪对组装的锂离子电池进行充放电测试,电压范围为0.01-1.5V,并且依次在电流密度为50、100、200、500、1000、100mAg-1下各循环10圈进行循环性能测试。经过40圈循环后电池的比容量为889mAh g-1,重新以100mAg-1的电流密度循环时,电池的比容量为1406mAh g-1
实施例6
以NaCl熔盐做高温电解质,放于有氩气保护气的高温炉内,升温至250℃干燥48h后,再升温至750℃使熔盐熔化,以镍片为阴极,石墨棒为阳极,在2.6V槽压下预电解12h,再将Pt粉末与MgSiO3粉末一起放于高温熔盐中熔解一段时间后,以镍片为阴极导电基底,以石墨棒为阳极,将阴阳极插入已经熔化的高温熔盐中,在2.0V下电解4h。电解结束后,待阴极电解产物在氩气氛围中冷却至室温后,分别用去离子水与乙醇清洗三次,干燥后得到电解产物。将得到的电解产物进行扫描电镜分析,观察到中空的纳米管结构。将电解产物进行XRD扫描分析,两组衍射峰所对应的主要成分为硅和铂。
以去离子水为溶剂,将上述电解所得产物分别与聚丙烯酸、羧甲基纤维素钠、Super P按质量比为7:1:1:1均匀混合后,涂覆于铜箔上,在120℃的真空干燥箱中干燥12h,将干燥好的铜箔制成电极片。在充满氩气氛围的手套箱中,以电极片为正极,以锂片为负极,以1M LiPF6/DEC/EC(DEC与EC的体积比为1:1)/5%FEC为电解液,以聚丙烯微孔膜Celgard 2400为隔膜,制成CR2016型锂离子电池。用蓝电电池测试仪对组装的锂离子电池进行充放电测试,电压范围为0.01-1.5V,并且依次在电流密度为50、100、200、500、1000、100mAg-1下各循环10圈进行循环性能测试。经过40圈循环后电池的比容量为997mAh g-1,重新以100mAg-1的电流密度循环时,电池的比容量为1488mAh g-1
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (6)

1.一种无模板制备硅纳米管的熔盐电化学方法,其特征在于,包括:
设置阴极和阳极并置于熔盐电解质中,在阴极电解硅前驱物获得硅纳米管,其中,在电解硅前驱物时,添加与硅形成低熔点合金的金属前驱物,其中,电解温度为400-1000℃;
上述熔盐电解质为LiCl、NaCl、KCl、CaCl2、MgCl2的一元或多元混盐;
金属前驱物为金属对应的氯化盐、硝酸盐、碳酸盐或氯酸盐中的一种或多种,其中,所述金属为Zn、Fe、Co、Ni、Cu、Ag、Sn、Bi、Au、Pt中的一种或多种。
2.如权利要求1所述的无模板制备硅纳米管的熔盐电化学方法,其特征在于,硅前驱物直接作为固态阴极或溶解于熔盐中进行电解。
3.如权利要求1所述的无模板制备硅纳米管的熔盐电化学方法,其特征在于,硅前驱物包括CaSiO3、Na2SiO3、K2SiO3、MgSiO3、BaSiO3、Al2(SiO3)3及SiO2中的一种或多种。
4.如权利要求1所述的无模板制备硅纳米管的熔盐电化学方法,其特征在于,金属前驱物添加于含有硅前驱物的固态阴极中或溶解于熔盐中。
5.如权利要求1所述的无模板制备硅纳米管的熔盐电化学方法,其特征在于,金属前驱物和硅前驱物的摩尔比为(0.01-100):1。
6.如权利要求1所述的无模板制备硅纳米管的熔盐电化学方法,其特征在于,电解槽压低于熔盐碱金属析出电压,高于金属前驱物中金属析出的电压。
CN201910725695.2A 2019-08-07 2019-08-07 无模板制备硅纳米管的熔盐电化学方法 Active CN110512223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910725695.2A CN110512223B (zh) 2019-08-07 2019-08-07 无模板制备硅纳米管的熔盐电化学方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910725695.2A CN110512223B (zh) 2019-08-07 2019-08-07 无模板制备硅纳米管的熔盐电化学方法

Publications (2)

Publication Number Publication Date
CN110512223A CN110512223A (zh) 2019-11-29
CN110512223B true CN110512223B (zh) 2020-12-01

Family

ID=68624646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910725695.2A Active CN110512223B (zh) 2019-08-07 2019-08-07 无模板制备硅纳米管的熔盐电化学方法

Country Status (1)

Country Link
CN (1) CN110512223B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215591B (zh) * 2021-04-30 2024-05-14 武汉大学 一种无额外添加诱导剂制备二氧化硅纳米管及硅纳米管的熔盐电化学方法
RU2770846C1 (ru) * 2021-11-23 2022-04-22 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Электролитический способ получения наноразмерных осадков кремния в расплавленных солях

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457811A (en) * 1982-12-20 1984-07-03 Aluminum Company Of America Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly
CN101070598A (zh) * 2007-03-26 2007-11-14 中南大学 一种熔盐电解法制备太阳级硅材料的方法
CN101724898A (zh) * 2008-10-10 2010-06-09 比亚迪股份有限公司 一种太阳能级多晶硅材料的制备方法
CN101736354A (zh) * 2008-11-06 2010-06-16 北京有色金属研究总院 电化学法制备硅纳米粉、硅纳米线和硅纳米管中的一种或几种的方法
CN101979712A (zh) * 2010-12-01 2011-02-23 武汉大学 单质硅的制备方法
CN103173780A (zh) * 2013-03-01 2013-06-26 中南大学 一种半连续熔盐电解制备太阳级多晶硅材料的方法及装置
CN103572312A (zh) * 2012-08-07 2014-02-12 中国科学院大连化学物理研究所 一种自持硅纳米线阵列的制备方法
CN103911627A (zh) * 2012-12-31 2014-07-09 北京有色金属研究总院 一种熔盐电解添加剂及其用于制备硅复合材料方法
CN104419944A (zh) * 2013-08-19 2015-03-18 韩国原子力研究院 电化学制备硅膜的方法
CN104704149A (zh) * 2012-05-31 2015-06-10 德克萨斯大学系统董事会 由熔融盐中的二氧化硅通过电沉积在金属上制备薄膜太阳能级硅
CN104831306A (zh) * 2015-04-13 2015-08-12 江苏华富储能新技术股份有限公司 超细硅基合金粉体及其电化学制备方法
CN109930176A (zh) * 2018-08-14 2019-06-25 华北理工大学 一种熔盐制备硅镍合金的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457811A (en) * 1982-12-20 1984-07-03 Aluminum Company Of America Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly
CN101070598A (zh) * 2007-03-26 2007-11-14 中南大学 一种熔盐电解法制备太阳级硅材料的方法
CN101724898A (zh) * 2008-10-10 2010-06-09 比亚迪股份有限公司 一种太阳能级多晶硅材料的制备方法
CN101736354A (zh) * 2008-11-06 2010-06-16 北京有色金属研究总院 电化学法制备硅纳米粉、硅纳米线和硅纳米管中的一种或几种的方法
CN101979712A (zh) * 2010-12-01 2011-02-23 武汉大学 单质硅的制备方法
CN104704149A (zh) * 2012-05-31 2015-06-10 德克萨斯大学系统董事会 由熔融盐中的二氧化硅通过电沉积在金属上制备薄膜太阳能级硅
CN103572312A (zh) * 2012-08-07 2014-02-12 中国科学院大连化学物理研究所 一种自持硅纳米线阵列的制备方法
CN103911627A (zh) * 2012-12-31 2014-07-09 北京有色金属研究总院 一种熔盐电解添加剂及其用于制备硅复合材料方法
CN103173780A (zh) * 2013-03-01 2013-06-26 中南大学 一种半连续熔盐电解制备太阳级多晶硅材料的方法及装置
CN104419944A (zh) * 2013-08-19 2015-03-18 韩国原子力研究院 电化学制备硅膜的方法
CN104831306A (zh) * 2015-04-13 2015-08-12 江苏华富储能新技术股份有限公司 超细硅基合金粉体及其电化学制备方法
CN109930176A (zh) * 2018-08-14 2019-06-25 华北理工大学 一种熔盐制备硅镍合金的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Liquid-Tin-Assisted Molten Salt Electrodeposition;Junjun Peng等;《Adv. Funct. Mater.》;20171107;第28卷;第1703551-1—1703551-6页 *
Preparation of high-purity straight silicon nanowires by molten salt electrolysis;Jie Zhang等;《Journal of Energy Chemistry》;20190416;第40卷;第171-179页 *
电化学制备硅纳米线;杨娟玉等;《无机化学学报》;20090430;第25卷(第4期);第756-760页 *

Also Published As

Publication number Publication date
CN110512223A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
Von Lim et al. Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction
Hao et al. Hierarchical macroporous Si/Sn composite: Easy preparation and optimized performances towards lithium storage
Xie et al. Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries
CN104617278B (zh) 一种纳米硅金属复合材料及其制备方法
Wang et al. Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries
CN109786670A (zh) 一种高首效的锂离子二次电池负极活性材料的制备方法
Fan et al. NiSe 2 nanooctahedra as anodes for high-performance sodium-ion batteries
Xu et al. Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries
Xie et al. ZnO/Ni/C composite hollow microspheres as anode materials for lithium ion batteries
Tian et al. Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes
CN112151799A (zh) 一种三维多孔互联骨架锂金属电池负极材料及其制备方法
CN111048763A (zh) 一种纳米锡硅复合负极材料及其制备方法和应用
Nulu et al. Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries
CN110512223B (zh) 无模板制备硅纳米管的熔盐电化学方法
Su et al. Red phosphorus embedded in TiO 2/C nanofibers to enhance the potassium-ion storage performance
CN110627031A (zh) 一种钼掺杂磷化钴碳珊瑚片复合材料的制备方法
CN114314673B (zh) 一种片状FeOCl纳米材料的制备方法
Cao et al. Sb&Sb 2 O 3@ C-enhanced flexible carbon cloth as an advanced self-supporting anode for sodium-ion batteries
Gu et al. TiO2 nanotubes array on carbon cloth as a flexibility anode for sodium-ion batteries
Hong et al. Template-free synthesis of hierarchical NiO microtubes as high performance anode materials for Li-ion batteries
Li et al. Porous Ni3 (PO4) 2 thin film as a binder-free and low-cost anode of a high-capacity lithium-ion battery
CN110600710B (zh) 硫化铁-碳复合材料及其制备方法、锂离子电池负极材料、锂离子电池负极片和锂离子电池
Liu et al. Synthesis of FeO-nanowires/NiCo2O4-nanosheets core/shell heterostructure as free-standing electrode with enhanced lithium storage properties
CN112310385A (zh) 二氧化钼纳米颗粒镶嵌碳纳米片组装银耳状纳米球材料及其制备和应用
He et al. Hybrid SnO2@ NiCo2O4 heterostructure with improved capacitive performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231013

Address after: Room 2203-016, Guoshou Building, No. 39-1 Longhua Road, Longhua District, Haikou City, Hainan Province, 570100

Patentee after: Hainan Pfik Technology Co.,Ltd.

Address before: 430072 Hubei Province, Wuhan city Wuchang District of Wuhan University Luojiashan

Patentee before: WUHAN University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240529

Address after: 510000 Guangzhou Tianhe District, Guangdong Province, China, No. 259 Huangpu Avenue Middle, First Floor Self Compiled 77

Patentee after: Guangzhou Junlu Technology Co.,Ltd.

Country or region after: China

Address before: Room 2203-016, Guoshou Building, No. 39-1 Longhua Road, Longhua District, Haikou City, Hainan Province, 570100

Patentee before: Hainan Pfik Technology Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right