CN110504195A - 反应腔体的水气监测方法 - Google Patents

反应腔体的水气监测方法 Download PDF

Info

Publication number
CN110504195A
CN110504195A CN201910777150.6A CN201910777150A CN110504195A CN 110504195 A CN110504195 A CN 110504195A CN 201910777150 A CN201910777150 A CN 201910777150A CN 110504195 A CN110504195 A CN 110504195A
Authority
CN
China
Prior art keywords
aqueous vapor
reaction cavity
wavelength
emission spectrum
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910777150.6A
Other languages
English (en)
Other versions
CN110504195B (zh
Inventor
张年亨
陈敏敏
叶荣鸿
刘立尧
胡展源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Original Assignee
Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Integrated Circuit Manufacturing Co Ltd filed Critical Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Priority to CN201910777150.6A priority Critical patent/CN110504195B/zh
Publication of CN110504195A publication Critical patent/CN110504195A/zh
Application granted granted Critical
Publication of CN110504195B publication Critical patent/CN110504195B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种反应腔体的水气监测方法,主要包含:对反应腔体内官能基的发射光谱的光谱信号强度波形或者光谱强度比波形进行分析,判断在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰,进而判定反应腔体中是否存在水气,并驱动相关设备采取维护措施去除水气,并进行循环监测,至判定不存在水气为止。据此,能够在不增加太多检测设备的情况下,对工艺过程中相关数据进行运算判断,就能够完成对反应腔体内的残余水气的监测,并在不停机的条件下能够持续监测水气,并能够排除水气至工艺要求,进而提升半导体加工工艺的技术节点。

Description

反应腔体的水气监测方法
技术领域
本发明涉及半导体制造技术领域,特别涉及一种反应腔体的水气监测方法。
背景技术
在半导体器件的制造过程中,在部分工艺中,如果水气进入反应腔体内,则会影响到半导体制造工艺的质量,进而影响半导体器件的良率。例如,利用光阻做掩膜进行刻蚀,水气残留较高则与光阻产生反应从而产生了工艺上的干扰。在干法刻蚀工艺中,水气会产生等离子体杂质而影响工艺正常的进行。参阅图1所示,水气残余量较高的情况下,进行大马士革工艺所形成的表面形态的照片,反应了关键尺寸存在差异。在刻蚀工艺中,水气的高残余会造成工艺效能的缺陷,影响刻蚀率、造成关键尺寸存在差异,影响机台的回线时间。
在半导体制造领域,现有技术的水气监测方法有的需要停机检测;或需要投入新的昂贵的便携式检测设备,但也不能够较好的与现有的反应腔体很好的结合,检测复杂;也有需要采用耗材进行监测,需要更换检测耗材,增加成本也增加检测时间。
工艺过程中湿法清洗等湿法工作或设备维护时反应腔体湿法清洗维护,会给反应腔体带来水气。随着技术节点要求的不断提升,影响关键尺寸的各要素对工艺改进和突破都需得到重视。在尽量少增加新的检测设备的情况下,能够完成对反应腔体中残留的水气进行监测,能够以最小的成本完成技术节点的提升。
现有技术的问题在于,如何才能够完成对水气的监测;如何才能够尽量减少检测设备的增加成本;如何才能够进行不停机监测。
发明内容
为了解决以上技术问题,本发明提供一种反应腔体的水气监测方法,其目的在于尽量降低检测设备成本,完成对反应腔体内的残余水气的监测,并减少停机时间,能够持续监测水气,并能够排除水气至工艺要求,进而提升半导体加工工艺的技术节点。
为了达到上述目的,本发明提供了一种反应腔体的水气监测方法,包括:
S1:提供一光谱信号侦测器,所述反应腔体中包含一官能基生成器,利用所述光谱信号侦测器采集所述反应腔体内官能基的发射光谱;
S2:提供一发射光谱信号处理设备,接收所述发射光谱,并根据所述发射光谱得到所述发射光谱的光谱信号强度波形,所述光谱信号强度波形的横坐标为发射光谱的波长,纵坐标为发射光谱的强度;
S3:判断所述光谱信号强度波形在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰;
S4:若存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中含有水气,需对半导体制造设备进行维护,并返回步骤S1;
S5:若不存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中不含有水气,结束监测。
为了达到上述目的,本发明还提供了一种反应腔体的水气监测方法,提供一水气监测系统,该反应腔体包含一标准状态和一待监测状态,所述水气监测系统包括一光谱信号侦测器、一官能基生成器、一发射光谱信号处理设备;
在所述标准状态时,利用所述光谱信号侦测器采集所述标准状态下所述反应腔体内官能基的标准发射光谱;所述发射光谱信号处理设备存储所述标准发射光谱数据值,包括标准发射光谱的波长和标准发射光谱的强度;
所述水气监测方法,包括:
S1:在所述待监测状态,利用所述光谱信号侦测器采集所述反应腔体内官能基的发射光谱;
S2:利用所述发射光谱信号处理设备接收所述发射光谱,并将所述发射光谱与所述标准光谱进行同波长强度比运算,得到一光谱强度比波形,所述光谱强度比波形的横坐标为波长,纵坐标为发射光谱的强度与标准发射光谱的强度的比值;
S3:判断所述光谱强度比波形在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰;
S4:若存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中含有水气,需对半导体制造设备进行维护,并返回步骤S1;
S5:若不存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中不含有水气,结束监测。
优选地,在上述第二种水气监测方法,步骤S3还包含一步骤S31:设定第一波峰、第二波峰、第三波峰的峰值阈值为1.5。
优选地,进行了光谱强度比波形的峰值阈值设定后,步骤S4还包含一步骤S40:所述第一波峰、或第二波峰、或第三波峰的峰值大于或等于1.5时,则认为存在所述第一波峰、第二波峰、第三波峰。
优选地,进行了光谱强度比波形的峰值阈值设定后,步骤S5还包含一步骤S50:所述第一波峰、第二波峰、第三波峰的峰值均小于1.5时,则认为不存在所述第一波峰、第二波峰、第三波峰。
优选地,在上述第二种水气监测方法,进一步定义,所述标准状态为所述反应腔体进行湿法工作前,所述待监测状态为所述反应腔体进行湿法工作后。
优选地,在上述第一种和第二种水气监测方法中,所述步骤S4中所述对半导体制造设备进行维护包含对所反应腔体进行烘干维护。
优选地,在上述第一种和第二种水气监测方法中,所述官能基生成器为半导体制造设备中等离子体生成器。
优选地,所述反应腔体为等离子刻蚀工艺中的反应腔体。
优选地,所述等离子体生成器包含一双频电容耦合等离子体生成器,所述双频电容耦合等离子体生成器包含一高频功率源和一低频功率源。
优选地,在上述第一种和第二种水气监测方法中,所述反应腔体包含一测量窗口,所述测量窗口材质为石英,所述光谱信号侦测器安装于所述测量窗口处。
优选地,上述第一种和第二种水气监测方法用于光阻为遮掩的等离子刻蚀工艺。
优选地,上述第一种和第二种水气监测方法用于用于接触孔刻蚀工艺或大马士革刻蚀工艺。
优选地,在上述第一种和第二种水气监测方法中,所述S3中包括步骤S3a:判断所述光谱信号强度波形在波长为656.0±5nm处是否存在一第一波峰,在波长为484.5±5nm处是否存在一第二波峰,在波长为308.5±5nm处是否存在一第三波峰。步骤S3a的波长窗口比S3的波长窗口小,因此,满足步骤S3a的情况下,则一定满足步骤S3,步骤S3为虚步骤,直接执行步骤S3a即可完成步骤S3。
优选地,上述第一种和第二种水气监测方法用于用于22nm以下技术节点的工艺中。
与现有技术相比,本发明提供了一种反应腔体的水气监测方法,主要包含:对反应腔体内官能基的发射光谱的光谱信号强度波形或者光谱强度比波形进行分析,判断在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰,进而判定反应腔体中是否存在水气,并驱动相关设备采取维护措施去除水气,并进行循环监测,至判定不存在水气为止。据此,能够在不增加太多检测设备的情况下,对工艺过程中相关数据进行运算判断,就能够完成对反应腔体内的残余水气的监测,并在不停机的条件下能够持续监测水气,并能够排除水气至工艺要求,进而提升半导体加工工艺的技术节点。
附图说明
图1为反应腔体中水气残留量较高时大马士革工艺所形成的表面形态的照片。
图2为采用本发明的水气监测方法后大马士革工艺所形成的表面形态的照片。
图3为本发明所提供的一种水气监测的系统。
图4为对一湿法维护后的反应腔体进行光谱侦测并与湿法维护前的反应腔体的光谱强度进行比值后绘制的光谱强度比波形图。
图5为对一湿法维护后的反应腔体进行烘干维护60秒和180秒后侦测到光谱强度比波形图。
附图标记说明。
反应腔体11
官能基生成器12
高频功率源121
低频功率源122
光谱信号侦测器13
发射光谱信号处理设备14
测量窗口15
官能基21
发射光谱22
第一波长区221
第二波长区222
第三波长区223
烘干维护六十秒后光谱强度比波形图31
烘干维护一百八十秒后光谱强度比波形图32。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。
参阅图3所示,为了能够对反应腔体11内的残余水气进行实时监测,本发明提供一种反应腔体11的水气监测系统,包括:一官能基生成器12,所述官能基生成器12用以在反应腔体11中产生官能基21,所述官能基具有一发射光谱22;一光谱信号侦测器13,所述光谱信号侦测器13用以采集所述发射光谱22;一发射光谱信号处理设备14,所述发射光谱信号处理设备14能够接收所述发射光谱22的数据,并对该数据进行处理。本实施例中,所述发射光谱信号处理设备14还提供一显示界面14,用以显示相关数据或波形图或操作界面。
所述官能基生成器12为半导体制造设备中等离子体生成器。所述反应腔体为等离子刻蚀工艺中的反应腔体。所述等离子体生成器包含一双频电容耦合等离子体生成器,所述双频电容耦合等离子体生成器包含一高频功率源121和一低频功率源122。所述高频功率源121用于生成等离子体。所述高频功率源121和一低频功率源122的频率通常选择60MHz/2MHz;27.1MHz/2MHz;160MHz/13.56 MHz。本发明提供一实施例,所述高频功率源121的频率为60MHz,所述低频功率源122的频率为2MHz。所述高频功率源121,用以产生等离子体22。在该实施例中,水气电离为官能基:H基和OH基。根据光谱学理论,H基的光谱为:Hα的波长λ1 =656.3nm,Hβ的波长为λ2 = 486.1nm;OH基在AΣ+(ν=0)→XΠ(ν=0)之间的跃迁,OH基的波长为λ3 = 309nm。
为了能够获得所述发射光谱22,需要在反应腔体上设置一透光的窗口,在前述的实施例的基础上,本发明提供一实施例,所述反应腔体11包含一测量窗口15,所述测量窗口15材质为石英,所述光谱信号侦测器13安装于所述测量窗口15处。
参阅图4所示,采用本反应腔体的水气监测方法,来监测一湿法维护后的反应腔体进行光谱侦测并与湿法维护前的反应腔体的光谱强度进行比值后绘制的光谱强度比波形图。从该光谱强度比波形图可以看出,在波长为656.0±10nm即第一波长区221处存在一第一波峰,在波长为484.5±10nm即第二波长区222处存在一第二波峰,在波长为308.5±10nm即第三波长区223处存在一第三波峰。该光谱强度比在该三处区域的波峰值均大于5(无量纲),在第一波峰峰值高达20。对比前述光谱理论分析,则可以认定该反应腔体中残余水气较高。
对图4进一步分析,由于该三个波长区的光谱的集中度较高,可以对该三个波长区进一步限定,波长为656.0±5nm为第一波长区221,波长为484.5±5nm为第二波长区222,波长为308.5±5nm为第三波长区223。与理论上分析出的光谱波长也在所述三个波长区域内。
参阅图5所示,采用本反应腔体的水气监测方法,来监测湿法维护后的反应腔体的水气监测,并对该反应腔体进行烘干维护,波形图31是进行烘干维护60秒后的反应腔体内光谱强度比的波形图,波形图32是进行烘干维护180秒后的反应腔体内光谱强度比的波形图。特别地,图4所示的波形图实质上是未进行烘干维护(或进行烘干维护0秒后)的反应腔体内光谱强度比的波形图。随着烘干维护的时间长度的增加,水气排出反应腔体之外。参阅图5所示,至烘干维护60秒后,第一波峰峰值、第二波峰峰值小于1.5,第三波峰峰值大于1.5;至烘干维护180秒后,第一波峰峰值、第二波峰峰值、第三波峰峰值均小于1.5。
根据上述实施例的分析,本发明提供了两种基础的反应腔体的水气监测方法。
第一种反应腔体的水气监测方法,包括如下步骤:
S1:提供一光谱信号侦测器,所述反应腔体中包含一官能基生成器,利用所述光谱信号侦测器采集所述反应腔体内官能基的发射光谱;
S2:提供一发射光谱信号处理设备,接收所述发射光谱,并根据所述发射光谱得到所述发射光谱的光谱信号强度波形,所述光谱信号强度波形的横坐标为发射光谱的波长,纵坐标为发射光谱的强度;
S3:判断所述光谱信号强度波形在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰;
S4:若存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中含有水气,需对半导体制造设备进行维护,并返回步骤S1;
S5:若不存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中不含有水气,结束监测。
光的波粒二象性理论中,光场中某点的光强指的是通过该点的平均能流密度,粒子数量越多则能量越大,进行光谱分析,即绘制出光的波长和光强的关系图,可以知道对应该波长的粒子的数量的多少。在第一种方法中,只需要对所需分析的特定波长区域内进行是否存在波峰的判断,而其他波长处(即表征其他官能团的多少)的波峰不需判断。因此,第一种方法的关键步骤为S3。本方法可以用于实时测量,只需关注S3中所述的三个波长区域内是否存在波峰。三个波长区域内对波峰的光强值分别设定一阈值,只要有一个超过阈值,则认定含有水气(换句话说,水气含量超标)。如果均小于其设定的各自的阈值,则认定不含有水气(换句话说,水气含量小于标准规定的数值)。当含有水气的时候,需要进行烘干维护,将水气排出腔体外,再循环实时监测水气含量,直至三个波长区域内的波峰值均小于各自阈值,停止烘干维护,也停止监测,直至下一次某工艺引入或生成水气之后再启动水气监测。
与前述水气监测方法的第一实施例相比,本发明提供第二实施例,即第二种反应腔体的水气监测方法,包括如下步骤:
首先,定义该反应腔体包含一标准状态和一待监测状态。标准状态定义为,在某一工艺中,不含水气的反应腔体中物质含量状态。待监测状态定义为,在同一工艺中,含有水气的反应腔体中物质含量状态。例如,实时测量时,在干法刻蚀工艺过程中,反应腔体内含有刻蚀气体,如果不含水气(比如进行湿法维护前的反应腔体内含有刻蚀气体,或者烘干维护后的反应腔体)则为标准状态,该标准状态是一可设计及定义的状态。如果含有水气,则为待监测状态。
再次,需要对标准状态进行基础数据的测量存储。在所述标准状态时,利用所述光谱信号侦测器采集所述标准状态下所述反应腔体内官能基的标准发射光谱;所述发射光谱信号处理设备存储所述标准发射光谱数据值,包括标准发射光谱的波长和标准发射光谱的强度。
基础数据测量完成后,进行监测过程如下所述:
所述水气监测方法,包括:
S1:在所述待监测状态,利用所述光谱信号侦测器采集所述反应腔体内官能基的发射光谱;
S2:利用所述发射光谱信号处理设备接收所述发射光谱,并将所述发射光谱与所述标准光谱进行同波长强度比运算,得到一光谱强度比波形,所述光谱强度比波形的横坐标为波长,纵坐标为发射光谱的强度与标准发射光谱的强度的比值;
S3:判断所述光谱强度比波形在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰;
S4:若存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中含有水气,需对半导体制造设备进行维护,并返回步骤S1;
S5:若不存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中不含有水气,结束监测。
在第二种方法的基础上,判断是否存在波峰的方法进一步限定为阈值判断。设定第一波峰、第二波峰、第三波峰的峰值阈值为1.5。
进行了光谱强度比波形的峰值阈值设定后,步骤S4还包含一步骤S40:所述第一波峰、或第二波峰、或第三波峰的峰值大于或等于1.5时,则认为存在所述第一波峰、第二波峰、第三波峰。
相应地,进行了光谱强度比波形的峰值阈值设定后,步骤S5还包含一步骤S50:所述第一波峰、第二波峰、第三波峰的峰值均小于1.5时,则认为不存在所述第一波峰、第二波峰、第三波峰。
与第一种反应腔体的水气监测方法相比,第二种反应腔体的水气监测方法引入一标准状态的概念,对检测到的数据进行无量纲化处理,并且,可以排除其他基团光谱的数据影响。第二种反应腔体的水气监测方法更方便设定阈值,峰值越接近1,则表明水气含量越接近标准状态中水气的含量要求。通过烘干维护,排除水气,若按同样衰减率来看待水气排出的过程,换句话说,烘干时长T,水分减少比率相同,举个例子来说,相同时间,从8%变为4%,从4%变为2%(而不是0%)。水分排出为指数型衰减。参考图4和图5所示,0-60秒水气排出较快,60-180秒水气排出较慢,通过试验可以得出,如图5中纵坐标值1.5水平线,设定1.5为峰值阈值比较经济。
工艺过程中,湿法清洗器件表面、或者对腔体的湿法清洗维护,会带来水气。清洗液中往往含有水,比如1号液(NH4OH、H2O2、H2O)、2号液(HCl、H2O2、H2O)、3号液(H2SO4、H2O)、4号液(H2O、HF)等中均含有水。因此,本发明所提供的第二种反应腔体的水气监测方法中所述标准状态为所述反应腔体进行湿法工作前,所述待监测状态为所述反应腔体进行湿法工作后。
干法刻蚀中利用真空状态下,利用高频辉光使刻蚀气体成为等离子(含有效的刻蚀官能基团),对器件进行刻蚀。刻蚀过程中有采用光阻进行遮掩,也有采用硬掩膜板进行遮掩,水气会对光阻性能产生影响,而且,有些光刻胶也是水溶性的,水气甚至会融入进光刻胶中。在能够进行干法刻蚀的半导体设备中,含有等离子体生成器。为了监控工艺过程中刻蚀官能基团的密度分布等情况,半导体设备中通常带有光电光谱发射仪,能够进行光谱的侦测。因此,本方法可以应用于等离子刻蚀工艺中。而对应的该反应腔体可以为等离子刻蚀工艺所使用的反应腔体,这样,就自带等离子生成器。为了减少水气对光阻的影响,本发明提供的水气监测的方法可以用于光阻为遮掩的等离子刻蚀工艺,用来监测工艺前或工艺中的反应腔体中的水气含量是否超标。
接触孔刻蚀工艺或大马士革刻蚀工艺(含单双大马士革刻蚀工艺)中对刻蚀的尺寸均匀性要求均很高,因此,需要减少水气的含量至标准要求以下。参阅图2所示,为采用本发明提供的水气监测方法,并对水气进行排除,至水气含量达到要求后,进行大马士革工艺所形成的器件表面的显微照片,与图1相比,关键尺寸的均匀性也比较好。
本发明提供的水气监测方法,有助于提高关键尺寸的精度和一致性等方面的性能。该方法可以用于65/55nm、45/40nm、32/28nm、或≤22nm以下技术节点工艺中。
以上所述即为本发明提供的实施例的主要技术方案,主要包含:对反应腔体内官能基的发射光谱的光谱信号强度波形或者光谱强度比波形进行分析,判断在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰,进而判定反应腔体中是否存在水气,并驱动相关设备采取维护措施去除水气,并进行循环监测,至判定不存在水气为止。本发明其中一关键步骤为,引入标准状态,并以标准状态为基础进行无量纲化和归一化处理,能够更好的进行数据处理,完成判定过程。据此,采用本发明提供的方法能够带来如下技术效果:能够在不增加太多检测设备的情况下(为干法刻蚀中自带设备,或大概率选配设备),对工艺过程中相关数据进行运算判断,并且提供了一种更优的数据处理方法,就能够完成对反应腔体内的残余水气的监测,并在不停机的条件下能够持续监测水气,并能够排除水气至工艺要求,进而提升半导体加工工艺的技术节点。
上述具体实施例和附图说明仅为例示性说明本发明的技术方案及其技术效果,而非用于限制本发明。任何熟于此项技术的本领域技术人员均可在不违背本发明的技术原理及精神的情况下,在权利要求保护的范围内对上述实施例进行修改或变化,均属于本发明的权利保护范围。

Claims (15)

1.一种反应腔体的水气监测方法,其特征在于,包括:
S1:提供一光谱信号侦测器,所述反应腔体中包含一官能基生成器,利用所述光谱信号侦测器采集所述反应腔体内官能基的发射光谱;
S2:提供一发射光谱信号处理设备,接收所述发射光谱,并根据所述发射光谱得到所述发射光谱的光谱信号强度波形,所述光谱信号强度波形的横坐标为发射光谱的波长,纵坐标为发射光谱的强度;
S3:判断所述光谱信号强度波形在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰;
S4:若存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中含有水气,需对半导体制造设备进行维护,并返回步骤S1;
S5:若不存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中不含有水气,结束监测。
2.一种反应腔体的水气监测方法,提供一水气监测系统,其特征在于,该反应腔体包含一标准状态和一待监测状态,所述水气监测系统包括一光谱信号侦测器、一官能基生成器、一发射光谱信号处理设备;
在所述标准状态时,利用所述光谱信号侦测器采集所述标准状态下所述反应腔体内官能基的标准发射光谱;所述发射光谱信号处理设备存储所述标准发射光谱数据值,包括标准发射光谱的波长和标准发射光谱的强度;
所述水气监测方法,包括:
S1:在所述待监测状态,利用所述光谱信号侦测器采集所述反应腔体内官能基的发射光谱;
S2:利用所述发射光谱信号处理设备接收所述发射光谱,并将所述发射光谱与所述标准光谱进行同波长强度比运算,得到一光谱强度比波形,所述光谱强度比波形的横坐标为波长,纵坐标为发射光谱的强度与标准发射光谱的强度的比值;
S3:判断所述光谱强度比波形在波长为656.0±10nm处是否存在一第一波峰,在波长为484.5±10nm处是否存在一第二波峰,在波长为308.5±10nm处是否存在一第三波峰;
S4:若存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中含有水气,需对半导体制造设备进行维护,并返回步骤S1;
S5:若不存在所述第一波峰、第二波峰、第三波峰,则认为反应腔体中不含有水气,结束监测。
3.根据权利要求2所述的反应腔体的水气监测方法,其特征在于,步骤S3还包含一步骤S31:设定第一波峰、第二波峰、第三波峰的峰值阈值为1.5。
4.根据权利要求3所述的反应腔体的水气监测方法,其特征在于,步骤S4还包含一步骤S40:所述第一波峰、或第二波峰、或第三波峰的峰值大于或等于1.5时,则认为存在所述第一波峰、第二波峰、第三波峰。
5.根据权利要求3所述的反应腔体的水气监测方法,其特征在于,步骤S5还包含一步骤S50:所述第一波峰、第二波峰、第三波峰的峰值均小于1.5时,则认为不存在所述第一波峰、第二波峰、第三波峰。
6.根据权利要求2所述的反应腔体的水气监测方法,其特征在于,所述标准状态为所述反应腔体进行湿法工作前,所述待监测状态为所述反应腔体进行湿法工作后。
7.根据权利要求1或2所述的反应腔体的水气监测方法,其特征在于,所述步骤S4中所述对半导体制造设备进行维护包含对所反应腔体进行烘干维护。
8.根据权利要求1或2所述的反应腔体的水气监测方法,其特征在于,所述官能基生成器为半导体制造设备中等离子体生成器。
9.根据权利要求7所述的反应腔体的水气监测方法,其特征在于,所述反应腔体为等离子刻蚀工艺中的反应腔体。
10.根据权利要求7所述的反应腔体的水气监测方法,其特征在于,所述等离子体生成器包含一双频电容耦合等离子体生成器,所述双频电容耦合等离子体生成器包含一高频功率源和一低频功率源。
11.根据权利要求1或2所述的反应腔体的水气监测方法,其特征在于,所述反应腔体包含一测量窗口,所述测量窗口材质为石英,所述光谱信号侦测器安装于所述测量窗口处。
12.根据权利要求1或2所述的反应腔体的水气监测方法,其特征在于,所述水气监测方法用于光阻为遮掩的等离子刻蚀工艺。
13.根据权利要求1或2所述的反应腔体的水气监测方法,其特征在于,所述水气监测方法用于接触孔刻蚀工艺或大马士革刻蚀工艺。
14.根据权利要求1或2所述的反应腔体的水气监测方法,其特征在于,所述S3中包括步骤S3a:判断所述光谱信号强度波形在波长为656.0±5nm处是否存在一第一波峰,在波长为484.5±5nm处是否存在一第二波峰,在波长为308.5±5nm处是否存在一第三波峰。
15.根据权利要求1或2所述的反应腔体的水气监测方法,其特征在于,所述水气监测方法用于22nm以下技术节点的工艺中。
CN201910777150.6A 2019-08-22 2019-08-22 反应腔体的水气监测方法 Active CN110504195B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910777150.6A CN110504195B (zh) 2019-08-22 2019-08-22 反应腔体的水气监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910777150.6A CN110504195B (zh) 2019-08-22 2019-08-22 反应腔体的水气监测方法

Publications (2)

Publication Number Publication Date
CN110504195A true CN110504195A (zh) 2019-11-26
CN110504195B CN110504195B (zh) 2022-03-18

Family

ID=68588735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910777150.6A Active CN110504195B (zh) 2019-08-22 2019-08-22 反应腔体的水气监测方法

Country Status (1)

Country Link
CN (1) CN110504195B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097095A (zh) * 2019-12-23 2021-07-09 长鑫存储技术有限公司 半导体工艺的控制方法及其系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283788A (zh) * 1995-10-10 2001-02-14 液体空气乔治洛德方法利用和研究有限公司 用谐波测定光谱灵敏检测真空中分子种类的方法和装置
KR20070108727A (ko) * 2006-05-08 2007-11-13 한국표준과학연구원 화학 증착 공정시 용기 내의 전구체 잔존량 진단장치 및진단방법
CN102403191A (zh) * 2010-09-14 2012-04-04 中微半导体设备(上海)有限公司 一种反应腔漏气检测方法及真空反应器控制方法
US20130319473A1 (en) * 2008-09-29 2013-12-05 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and method for cleaning same
CN104599996A (zh) * 2015-01-31 2015-05-06 上海华虹宏力半导体制造有限公司 离子注入机台的水汽监控方法
CN105203460A (zh) * 2015-10-27 2015-12-30 中国科学院合肥物质科学研究院 红外激光光谱痕量水汽检测系统及其检测方法
CN105648420A (zh) * 2016-02-05 2016-06-08 安徽三安光电有限公司 一种mocvd反应腔室的清理装置及清理方法
CN206710302U (zh) * 2017-05-17 2017-12-05 北京师范大学 一种利用直射太阳光中的红外光谱测量大气水汽含量的装置
CN107631993A (zh) * 2017-05-25 2018-01-26 中国科学院合肥物质科学研究院 一种基于水汽残差谱分析的红外光谱识别方法
CN109473330A (zh) * 2017-09-07 2019-03-15 长鑫存储技术有限公司 半导体设备清洗方法及其半导体工艺方法
CN110017955A (zh) * 2019-03-29 2019-07-16 上海华力集成电路制造有限公司 真空腔体漏率监测方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283788A (zh) * 1995-10-10 2001-02-14 液体空气乔治洛德方法利用和研究有限公司 用谐波测定光谱灵敏检测真空中分子种类的方法和装置
KR20070108727A (ko) * 2006-05-08 2007-11-13 한국표준과학연구원 화학 증착 공정시 용기 내의 전구체 잔존량 진단장치 및진단방법
US20130319473A1 (en) * 2008-09-29 2013-12-05 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and method for cleaning same
CN102403191A (zh) * 2010-09-14 2012-04-04 中微半导体设备(上海)有限公司 一种反应腔漏气检测方法及真空反应器控制方法
CN104599996A (zh) * 2015-01-31 2015-05-06 上海华虹宏力半导体制造有限公司 离子注入机台的水汽监控方法
CN105203460A (zh) * 2015-10-27 2015-12-30 中国科学院合肥物质科学研究院 红外激光光谱痕量水汽检测系统及其检测方法
CN105648420A (zh) * 2016-02-05 2016-06-08 安徽三安光电有限公司 一种mocvd反应腔室的清理装置及清理方法
CN206710302U (zh) * 2017-05-17 2017-12-05 北京师范大学 一种利用直射太阳光中的红外光谱测量大气水汽含量的装置
CN107631993A (zh) * 2017-05-25 2018-01-26 中国科学院合肥物质科学研究院 一种基于水汽残差谱分析的红外光谱识别方法
CN109473330A (zh) * 2017-09-07 2019-03-15 长鑫存储技术有限公司 半导体设备清洗方法及其半导体工艺方法
CN110017955A (zh) * 2019-03-29 2019-07-16 上海华力集成电路制造有限公司 真空腔体漏率监测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097095A (zh) * 2019-12-23 2021-07-09 长鑫存储技术有限公司 半导体工艺的控制方法及其系统

Also Published As

Publication number Publication date
CN110504195B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
US5910011A (en) Method and apparatus for monitoring processes using multiple parameters of a semiconductor wafer processing system
US7067432B2 (en) Methodology for in-situ and real-time chamber condition monitoring and process recovery during plasma processing
KR100402202B1 (ko) 챔버내의퇴적물의모니터방법,플라스마가공방법,드라이크리닝방법및반도체제조장치
US6521080B2 (en) Method and apparatus for monitoring a process by employing principal component analysis
KR0152355B1 (ko) 플라즈마 처리장치 및 처리방법
KR100610413B1 (ko) Rf 플라즈마 시스템에서 아크를 검출하고 방지하기 위한디바이스 및 방법
US20040195208A1 (en) Method and apparatus for performing hydrogen optical emission endpoint detection for photoresist strip and residue removal
US9735069B2 (en) Method and apparatus for determining process rate
WO1995008186A1 (en) System and method for plasma etching endpoint detection
US5966586A (en) Endpoint detection methods in plasma etch processes and apparatus therefor
CN110504195A (zh) 反应腔体的水气监测方法
KR102205459B1 (ko) 엔드포인트 신호 향상을 위한 차동 측정들
KR100473856B1 (ko) 플라즈마 챔버의 공정 상태 관찰방법
US10636686B2 (en) Method monitoring chamber drift
JPH0936102A (ja) チャンバー内の堆積物のモニター方法,プラズマ加工方法,ドライクリーニング方法及び半導体製造装置
US7312865B2 (en) Method for in situ monitoring of chamber peeling
EP1394835A1 (en) A method and apparatus for detecting a leak of external air into a plasma reactor
CN100355040C (zh) 等离子体处理方法和老化结束检测方法以及等离子体处理装置
US6537460B1 (en) Method for detecting an end point of etching in a plasma-enhanced etching process
KR20130064472A (ko) 멀티 광 파장 모니터링을 이용한 공정 진단 방법
Hussein et al. Particle control in dielectric etch chamber
US20220196558A1 (en) Apparatus and method for sensing rf signals from rf plasma processing equipment
Park et al. Sensor fault detection in etch based on broadband rf signal observation
KR101226202B1 (ko) 광량측정법을 이용한 플라즈마 식각 공정의 모니터링 방법
Wang et al. The endpoint detection technique for deep submicrometer plasma etching

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant