CN110496594A - 一种高分离系数一氧化碳吸附剂的制备方法及吸附剂 - Google Patents

一种高分离系数一氧化碳吸附剂的制备方法及吸附剂 Download PDF

Info

Publication number
CN110496594A
CN110496594A CN201910905270.XA CN201910905270A CN110496594A CN 110496594 A CN110496594 A CN 110496594A CN 201910905270 A CN201910905270 A CN 201910905270A CN 110496594 A CN110496594 A CN 110496594A
Authority
CN
China
Prior art keywords
absorbent
preparation
carbon monooxide
high separation
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910905270.XA
Other languages
English (en)
Other versions
CN110496594B (zh
Inventor
王业勤
严莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Yalian Hydrogen Energy Technology Co ltd
Original Assignee
SICHUAN ALLY HI-TECH Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICHUAN ALLY HI-TECH Co Ltd filed Critical SICHUAN ALLY HI-TECH Co Ltd
Priority to CN201910905270.XA priority Critical patent/CN110496594B/zh
Publication of CN110496594A publication Critical patent/CN110496594A/zh
Application granted granted Critical
Publication of CN110496594B publication Critical patent/CN110496594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明提供一种高分离系数一氧化碳吸附剂的制备方法,属于一氧化碳吸附剂技术领域,氢气(氢能)净化领域。包括:1)将经过焙烧的水铝石与硝酸铝混合,充分研磨成超细粉;2)将上述步骤得到的细粉与沸石分子筛、柠檬酸、氯化亚铜、铁盐、田菁粉混合,充分研磨成超细粉;3)向上述混合料中加脱盐水搅拌,依次经成型、烘干脱水、还原活化后得到高分离系数一氧化碳吸附剂。本发明还提供利用所述方法制备得到的吸附剂。本发明制备得到的一氧化碳吸附剂可以显著提高CO与其它气体的分离系数,在吸附温度30℃,吸附压力1bar(a)时,CO/CO2的分离系数可达4.9~10,CH4、N2吸附量非常小,CH4<0.8ml/g、N2<0.2ml/g,几乎不吸附。

Description

一种高分离系数一氧化碳吸附剂的制备方法及吸附剂
技术领域
本发明属于一氧化碳吸附剂技术领域,同时也可用于氢气(氢能)净化领域,具体为一种高分离系数一氧化碳吸附剂的制备方法及吸附剂,也可以用于氢气中少量CO气体的脱除。
背景技术
CO是当今合成化工产品的重要原料,这些产品包括甲醇、甲醛、醋酸、醋酐、异氰酸酯、乙二醇、DMF、羰基合成、F-T合成、碳酸二甲酯、草酸二乙酯、乙二醇、DMF、羰基合成、FT合成、二甲基酰胺和农药除草剂等。随着C1化学应用技术的发展,CO在有机合成、低压羟基合成工艺中的重要作用将更加明显。
CO来源广泛,它可以来自天然气及石油的蒸汽转化或部分氧化制得的合成气,也可以来自炼铁高炉气、炼钢转炉气、电石炉气、合成氨装置的铜洗驰放气、水煤气和半水煤气等各种各样的富含CO的混合气。进行CO的化工利用,是变废为宝,变害为利的化工与环保相得益彰的重要途径。在众多的获得CO的途径中,变压吸附(PSA)以其工艺流程简单、投资省、成本低、CO产品纯度高等优点成为首选。但实现获得高纯度的CO的PSA工艺的关键是开发研制新型的高效CO吸附剂。
吸附剂的选择吸附性能好是分离过程可以顺利实现的基本条件。选择吸附剂的关键是组份之间的分离系数要尽可能大。分离系数是指在达到吸附平衡时,各组分之间的吸附量之比,分离系数越大,分离越容易。
目前燃料电池用的氢气对CO含量要求极高,根据《GB/T 37244质子交换膜燃料电池汽车用燃料氢气》国家标准要求,CO小于等于200ppb(v/v),本发明可以用于氢气中脱除微量的CO,使其满足燃料电池用氢的要求。
发明内容
本发明的目的在于提供一种高分离系数一氧化碳吸附剂的制备方法及吸附剂,利用本发明制备方法制备得到的CO吸附剂可以从各种富含CO的工业尾气或工业废气中回收高纯度的CO;或者从含有少量CO的混合气体中脱除CO,以达到净化气体的目的。它具有吸附量大、效率高、与CO2分离系数高、与CH4、N2几乎不吸附、磨损低等优点。
本发明目的通过以下技术方案来实现:
一种高分离系数一氧化碳吸附剂的制备方法,包括以下步骤:
1)将经过焙烧的水铝石与硝酸铝混合,充分研磨成超细粉;
2)将上述步骤得到的细粉与沸石分子筛、柠檬酸、氯化亚铜、铁盐、田菁粉混合,充分研磨成超细粉;
3)向上述混合料中加脱盐水搅拌,依次经成型、烘干脱水、还原活化后得到高分离系数一氧化碳吸附剂。
进一步,步骤1)中,超细粉的粒径<20μm;采用焙烧后的水铝石大多数以γ-Al2O3,活性高、比表面积大、分散性好;同时增加硝酸铝可以提高薄水铝石在成型过程中的粘结性。
进一步,步骤2)中,超细粉的粒径为<30μm,进一步优选为<10μm。
进一步,制备方法中,原料的加入量按质量百分比计为:沸石分子筛40%-55%,水铝石10%-15%,硝酸铝0.5%-2%,柠檬酸6-8%,氯化亚铜20%-30%,铁盐:0.5%-7%,田菁粉1%-2.5%。
进一步,所述铁盐为硝酸铁、硝酸亚铁,硫酸铁、硫酸亚铁,卤化铁,卤化亚铁中的一种或几种。
进一步,所述水铝石为薄水铝石或拟薄水铝石。
进一步,所述焙烧的水铝石为将水铝石在450-550℃马弗炉中焙烧4-6h。
进一步,所述还原活化所用还原气是CO或CO与H2的混合气体,还原温度为300-500℃,还原时间为4-8h。活化后,吸附剂性能达到最优。
一种高分离系数一氧化碳吸附剂,所述吸附剂采用上述制备方法制备得到。
与现有技术相比,本发明具有以下有益效果:
本发明提供一种高分离系数CO吸附剂,该吸附剂是基于π配位键吸附理论的一种Cu+的π络合吸附剂,具体说是利用热单层分散的方法对多孔介质上的单层或接近单层盐进行分散。
本发明吸附剂通过调整氯化亚铜或铁盐的质量百分比含量,可以调整CO/CO2的分离系数,使CO/CO2的分离系数达到3~10。
本发明制备得到的一氧化碳吸附剂可以显著提高CO与其它气体的分离系数,在吸附温度30℃,吸附压力1bar(a)时,CO/CO2的分离系数可达4.9~10,CH4、N2吸附量非常小,CH4<0.8ml/g、N2<0.2ml/g,几乎不吸附。
附图说明
图1为在30℃的吸附温度下,实施例1中CO吸附剂对气体的吸附等温线。
图2为在70℃的吸附温度下,实施例2中CO吸附剂对气体的吸附等温线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
本实施例各原料及加入量如下:
HY分子筛42%、薄水铝石13.8%、九水硝酸铝0.5%、柠檬酸6%、氯化亚铜30%、硝酸亚铁6.2%、田菁粉1.5%。
具体制备方法如下:
1)将薄水铝石在500℃马弗炉中焙烧4h后,与九水硝酸铝混合,充分研磨成粒径<20μm的超细粉;
2)将上述步骤得到的细粉与HY分子筛、柠檬酸、氯化亚铜、硝酸亚铁、田菁粉混合,放入球磨机中充分研磨成粒径<20μm的超细粉;
3)向上述混合料中加入脱盐水搅拌,依次经成型、在80℃下烘干脱水、还原活化后得到高分离系数一氧化碳吸附剂。其中,还原活化的还原气为CO,还原温度为350℃,还原时间8h。
在30℃的吸附温度下,本实施例CO吸附剂对气体的吸附等温线如图1所示,在吸附压力1bar(a)时,气体的吸附量:CO 21.5ml/g,CO2 2.22ml/g,CH4 0.58ml/g,N2 0.11ml/g,CO与其他气体的分离系数比为:CO/CO2=9.68;CO/N2=195.5;CO/CH4=37.07。
实施例2
本实施例各原料及加入量如下:
NaY分子筛45%、拟薄水铝石15%、九水硝酸铝0.6%、柠檬酸8%、氯化亚铜25%、氯化铁5.4%、田菁粉1%。
具体制备方法如下:
1)将拟薄水铝石在450℃马弗炉中焙烧6h后,与九水硝酸铝混合,充分研磨成粒径<10μm的超细粉;
2)将上述步骤得到的细粉与NaY分子筛、柠檬酸、氯化亚铜、氯化铁、田菁粉混合,放入球磨机中充分研磨成粒径<10μm的超细粉;
3)向上述混合料中加入脱盐水搅拌,依次经成型、在80℃温度下烘干脱水、还原活化后得到高分离系数一氧化碳吸附剂。其中,还原活化的还原气为CO和H2的混合气体(H2体积为5%),还原温度为300℃,还原时间4h。
在70℃的吸附温度下,本实施例CO吸附剂对气体的吸附等温线如图2所示,当压力为1bar(a)时,气体的吸附量:CO 15.36ml/g,CO2 2.53ml/g,CH4 0.331ml/g,N2 0.041ml/g,CO与其他气体的分离系数比为:CO/CO2=6.07;CO/N2=347.6;CO/CH4=46.4。
实施例3
本实施例各原料及加入量如下:
NaY分子筛51%、薄水铝石12.3%、九水硝酸铝1.65%、柠檬酸6.4%、氯化亚铜26%、硝酸铁1.65%、田菁粉1%。
具体制备方法如下:
1)将薄水铝石在550℃马弗炉中焙烧2h后,与九水硝酸铝混合,充分研磨成粒径<10μm的超细粉;
2)将上述步骤得到的细粉与NaY分子筛、柠檬酸、氯化亚铜、硝酸铁、田菁粉混合,放入球磨机中充分研磨成粒径<10μm的超细粉;
3)向上述混合料中加入脱盐水搅拌,依次经成型、在100℃下烘干脱水、还原活化后得到高分离系数一氧化碳吸附剂。其中,还原活化的还原气为CO,还原温度为400℃,还原时间4h。
在30℃的吸附温度下,在吸附压力1bar(a)时各气体的吸附量:CO 29.01ml/g,CO25.02ml/g,CH4 0.8ml/g,N2 0.2ml/g,与其他气体的分离系数比为:CO/CO2=5.78;CO/N2=145.1;CO/CH4=36.3。
实施例4
本实施例各原料及加入量如下:
HY分子筛49%、拟薄水铝石12%、九水硝酸铝1.0%、柠檬酸6%、氯化亚铜24%、氯化铁7.0%、田菁粉1%。
具体制备方法如下:
1)将拟薄水铝石在450℃马弗炉中焙烧6h后,与九水硝酸铝混合,充分研磨成粒径<10μm的超细粉;
2)将上述步骤得到的细粉与HY分子筛、柠檬酸、氯化亚铜、氯化铁、田菁粉混合,放入球磨机中充分研磨成粒径<10μm的超细粉;
3)向上述混合料中加入脱盐水搅拌,依次经成型、在80℃温度下烘干脱水、还原活化后得到高分离系数一氧化碳吸附剂。其中,还原活化的还原气为CO和H2的混合气体(H2体积为5%),还原温度为300℃,还原时间4h。
在70℃的吸附温度下,在吸附压力1bar(a)时各气体的吸附量:CO 20.50ml/g,CO23.02ml/g,CH4 0.43ml/g,N2 0.19ml/g,与其他气体的分离系数比为:CO/CO2=6.79;CO/N2=107.89;CO/CH4=47.67。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种高分离系数一氧化碳吸附剂的制备方法,其特征在于,包括以下步骤:
1)将经过焙烧的水铝石与硝酸铝混合,充分研磨成超细粉;
2)将上述步骤得到的细粉与沸石分子筛、柠檬酸、氯化亚铜、铁盐、田菁粉混合,充分研磨成超细粉;
3)向上述混合料中加脱盐水搅拌,依次经成型、烘干脱水、还原活化后得到高分离系数一氧化碳吸附剂。
2.如权利要求1所述一种高分离系数一氧化碳吸附剂的制备方法,其特征在于,制备方法中,原料的加入量按质量百分比计为:沸石分子筛40%-55%,水铝石10%-15%,硝酸铝0.5%-2%,柠檬酸6%-8%,氯化亚铜20%-30%,铁盐:0.5%-7%,田菁粉1%-2.5%。
3.如权利要求1所述一种高分离系数一氧化碳吸附剂的制备方法,其特征在于,所述铁盐为硝酸铁、硝酸亚铁,硫酸铁、硫酸亚铁,卤化铁,卤化亚铁中的一种或几种。
4.如权利要求1所述一种高分离系数一氧化碳吸附剂的制备方法,其特征在于,所述水铝石为薄水铝石或拟薄水铝石。
5.如权利要求1所述一种高分离系数一氧化碳吸附剂的制备方法,其特征在于,所述焙烧的水铝石为将水铝石在450-550℃马弗炉中焙烧4-6h。
6.如权利要求1所述一种高分离系数一氧化碳吸附剂的制备方法,其特征在于,所述还原活化所用还原气是CO或CO与H2的混合气体,还原温度为300-500℃,还原时间为4-8h。
7.一种高分离系数一氧化碳吸附剂,其特征在于,所述吸附剂采用权利要求1至6任一项所述的制备方法制备得到。
CN201910905270.XA 2019-09-24 2019-09-24 一种高分离系数一氧化碳吸附剂的制备方法及吸附剂 Active CN110496594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910905270.XA CN110496594B (zh) 2019-09-24 2019-09-24 一种高分离系数一氧化碳吸附剂的制备方法及吸附剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910905270.XA CN110496594B (zh) 2019-09-24 2019-09-24 一种高分离系数一氧化碳吸附剂的制备方法及吸附剂

Publications (2)

Publication Number Publication Date
CN110496594A true CN110496594A (zh) 2019-11-26
CN110496594B CN110496594B (zh) 2022-12-02

Family

ID=68592632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910905270.XA Active CN110496594B (zh) 2019-09-24 2019-09-24 一种高分离系数一氧化碳吸附剂的制备方法及吸附剂

Country Status (1)

Country Link
CN (1) CN110496594B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112755956A (zh) * 2020-12-29 2021-05-07 洛阳建龙微纳新材料股份有限公司 一种高选择性一氧化碳吸附剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947430A (zh) * 2010-10-11 2011-01-19 孙玉坤 用于变压吸附工艺的气体分离吸附剂及其制备方法和应用
CN103553070A (zh) * 2013-10-30 2014-02-05 西南化工研究设计院有限公司 一种用于co吸附的13x型分子筛及其制备方法和应用
CN103566869A (zh) * 2013-11-20 2014-02-12 西南化工研究设计院有限公司 一种含铜分子筛吸附剂及其制备方法
CN104492375A (zh) * 2014-12-15 2015-04-08 西南化工研究设计院有限公司 一种从工业尾气中回收co的吸附剂及其制备方法和应用
CN105749858A (zh) * 2016-01-11 2016-07-13 昆明理工大学 一氧化碳吸附剂的制备方法
CN109772270A (zh) * 2018-11-29 2019-05-21 郴州万墨环保科技有限公司 一种一氧化碳吸附剂及其制备方法
KR20190104767A (ko) * 2018-03-02 2019-09-11 주식회사 포스코건설 산성광산배수를 이용한 흡착제 제조 시스템, 방법, 및 제조된 흡착제를 포함하는 악취 제거 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947430A (zh) * 2010-10-11 2011-01-19 孙玉坤 用于变压吸附工艺的气体分离吸附剂及其制备方法和应用
CN103553070A (zh) * 2013-10-30 2014-02-05 西南化工研究设计院有限公司 一种用于co吸附的13x型分子筛及其制备方法和应用
CN103566869A (zh) * 2013-11-20 2014-02-12 西南化工研究设计院有限公司 一种含铜分子筛吸附剂及其制备方法
CN104492375A (zh) * 2014-12-15 2015-04-08 西南化工研究设计院有限公司 一种从工业尾气中回收co的吸附剂及其制备方法和应用
CN105749858A (zh) * 2016-01-11 2016-07-13 昆明理工大学 一氧化碳吸附剂的制备方法
KR20190104767A (ko) * 2018-03-02 2019-09-11 주식회사 포스코건설 산성광산배수를 이용한 흡착제 제조 시스템, 방법, 및 제조된 흡착제를 포함하는 악취 제거 시스템
CN109772270A (zh) * 2018-11-29 2019-05-21 郴州万墨环保科技有限公司 一种一氧化碳吸附剂及其制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
KANGHEE CHOA ET AL: "《High CO adsorption capacity, and CO selectivity to CO2, N2, H2, and CH4 of CuCl/bayerite adsorbent》", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
YOUCHANG XIE ET AL: "《Zeolites Modified by CuCI for Separating CO from Gas Mixtures Containing C02》", 《ADSORPTION》 *
厉衡隆 等: "《铝冶炼生产技术手册(上)》", 31 July 2011, 冶金工业出版社 *
宁平 等著: "《合成氨驰放气变压吸附提浓技术》", 31 August 2009, 冶金工业出版社 *
朱洪法 主编: "《催化剂手册》", 31 August 2008, 金盾出版社 *
李淑娜: "《CO 吸附剂制备及其吸附脱除微量CO 的性能》", 《化学工业与工程》 *
艾珍 等: "《一种用于CO吸附的分子筛吸附剂的制备及研究》", 《能源化工》 *
谢有畅 等: "《一氧化碳高效吸附剂CuCl/分子筛》", 《高等学校化学学报》 *
黄志渊 等译: "《炼油工业加氢催化剂》", 31 August 1993, 中国石化出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112755956A (zh) * 2020-12-29 2021-05-07 洛阳建龙微纳新材料股份有限公司 一种高选择性一氧化碳吸附剂及其制备方法和应用
CN112755956B (zh) * 2020-12-29 2023-12-01 洛阳建龙微纳新材料股份有限公司 一种高选择性一氧化碳吸附剂及其制备方法和应用

Also Published As

Publication number Publication date
CN110496594B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
Fang et al. Selective oxidation of hydrogen sulfide to sulfur over activated carbon-supported metal oxides
Wang et al. Highly porous copper oxide sorbent for H2S capture at ambient temperature
Liu et al. CeO2–MnOx/ZSM-5 sorbents for H2S removal at high temperature
Ma et al. A regenerable Fe/AC desulfurizer for SO2 adsorption at low temperatures
Zhang et al. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal
Heidari et al. The novel Carbon Nanotube-assisted development of highly porous CaZrO3-CaO xerogel with boosted sorption activity towards high-temperature cyclic CO2 capture
Liu et al. Rare earth oxide doping and synthesis of spinel ZnMn2O4/KIT-1 with double gyroidal mesopores for desulfurization nature of hot coal gas
Huang et al. Performance of Zn–Fe–Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process
Fuzhen et al. Effect of the loading content of CuO on the activity and structure of CuO/Ce-Mn-O catalysts for CO oxidation
Liu et al. CeO 2-La 2 O 3/ZSM-5 sorbents for high-temperature H 2 S removal
Liu et al. La2CuO4/ZSM-5 sorbents for high-temperature desulphurization
Ma et al. Development of Mn/Mg-copromoted carbide slag for efficient CO2 capture under realistic calcium looping conditions
EP2839878A3 (en) Nickel-catalyst for syngas generation by mixed reforming using CO2 and steam
Liu et al. Perovskite LaMnO 3/ZSM-5 composites for H 2 S reactive adsorption at high temperature
Adelodun et al. Stabilization of potassium-doped activated carbon by amination for improved CO2 selective capture
Jing et al. Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere
Wang et al. Study on molding semi-coke used for flue-gas desulphurization
Wang et al. Adsorption of gaseous elemental mercury with activated carbon impregnated with ferric chloride
Jo et al. A fundamental study of CO2 capture and CH4 production in a rapid cyclic system using nickel-lithium-silicate as a catal-sorbent
Shi et al. Catalytic performance of Zr-doped CuOCeO2 oxides for CO selective oxidation in H2-rich stream
Zuo et al. Modification of Co/Al2O3 with Pd and Ce and their effects on benzene oxidation
Huang et al. Controllable construction of Ce‐Mn‐Ox with tunable oxygen vacancies and active species for toluene catalytic combustion
Ma et al. Effect of Fe doping on the catalytic performance of CuO–CeO 2 for low temperature CO oxidation
CN106588526B (zh) 一种以煤和炼厂干气为原料制烯烃的系统以及制烯烃的方法
Lim et al. Synthesis of magnetite–mesoporous silica composites as adsorbents for desulfurization from natural gas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 5, gaon Boulevard, high tech Zone, Chengdu, Sichuan Province

Patentee after: Sichuan Yalian Hydrogen Energy Technology Co.,Ltd.

Address before: No. 201, Section 1, Changcheng Road, Shuangliu West Airport, Chengdu, Sichuan 610041

Patentee before: ALLY HI-TECH Co.,Ltd.

CP03 Change of name, title or address