CN110492789A - 一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法 - Google Patents

一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法 Download PDF

Info

Publication number
CN110492789A
CN110492789A CN201910694195.7A CN201910694195A CN110492789A CN 110492789 A CN110492789 A CN 110492789A CN 201910694195 A CN201910694195 A CN 201910694195A CN 110492789 A CN110492789 A CN 110492789A
Authority
CN
China
Prior art keywords
aluminum oxide
nano coating
oxide nano
electrode
water evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910694195.7A
Other languages
English (en)
Other versions
CN110492789B (zh
Inventor
邵长香
纪冰雪
曲良体
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Beijing Institute of Technology BIT
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910694195.7A priority Critical patent/CN110492789B/zh
Publication of CN110492789A publication Critical patent/CN110492789A/zh
Application granted granted Critical
Publication of CN110492789B publication Critical patent/CN110492789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明具体涉及一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法,属于流体发电技术领域。所述器件包括基底、上电极、下电极和三氧化二铝纳米涂层,上电极和下电极位于基底同一面的上、下两端,三氧化二铝纳米涂层涂覆在基底上,上电极、下电极位于基底和三氧化二铝纳米涂层之间;所述器件的下电极浸没在液体中,上电极与液体不接触,随着三氧化二铝纳米涂层的毛细作用和液体的蒸发,所述器件产生持续的电压和电流。能够依靠自身材料的毛细作用和水蒸发自发产生电能,不需要额外的人为能量输入。该方法所用材料廉价易得,制备方法简单,可大规模生产。该器件具备高的能量输出,并且能够长时间维持,具有良好的应用前景。

Description

一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备 方法
技术领域
本发明具体涉及一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法,属于流体发电技术领域。
背景技术
由于能源危机的到来和环境恶化的日益严重,将环境中易于忽略的能量通过绿色环保的方式收集起来并转化成易用利用的电能成为研究热点。近年来已经发展了太阳能电池、压电发电机、摩擦纳米发电机、热电发电机、水蒸气刺激发电机和水流发电等新型能源器件。水蒸发诱导发电现象由于其发电高度自发且持续的优势受到人们的广泛关注。该现象首次由周军团队报道(Xue G,Xu Y,Ding T,et al.Nature nanotechnology,2017,12,317.),利用燃烧甲苯等有机溶剂制得的纳米碳材料,材料经改性处理后表面所含有的可电离含氧官能团在水中会发生电离使表面带电,在水蒸发的过程中引发电的持续产生。在该研究中,材料的制备复杂且所用溶剂对环境和人体有害。并且,目前大多数的水蒸发产电器件都是利用笨重且坚硬的陶土片或石英片做基底,这不仅严重限制了器件在柔性便携器件方面的应用,而且限制了其大规模生产。尽管也有一些其他材料被开发,如双金属氢氧化物(Sun J,Li P,Qu J,et al.Nano Energy,2019,57:269-278.),其带电的机理主要是由于结构中存在晶格取代的现象,由于同晶置换而带正电荷,所带电荷只与材料结构本身有关。由于其表面有限的电荷量,使基于双金属氢氧化物的水蒸发产电器件的性能也不够突出。整体而言,目前的产电器件可用材料非常有限,产生的电压相对较低,如果想要提高电压,需要对材料进行额外的化学修饰,使制备过程更加复杂(Li J,Liu K,Ding T,et al..NanoEnergy,2019,58:797-802.)。因此,迫切需要开发新的材料体系用于构建高性能的产电器件。
发明内容
有鉴于此,本发明的目的在于提供一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法。利用固体氧化物中的三氧化二铝作为产电涂层来提高产电性能,所述水蒸发产电器件能够产生2.5V-4.5V的电压,极大的提高了电压的输出。
本发明的目的是通过以下技术方案实现的。
一种基于三氧化二铝纳米涂层的水蒸发产电器件,所述器件包括基底、上电极、下电极和三氧化二铝纳米涂层,上电极和下电极位于基底同一面的上、下两端,三氧化二铝纳米涂层涂覆在基底上,上电极、下电极位于基底和三氧化二铝纳米涂层之间;所述器件的下电极完全浸没在液体中,上电极与液体不接触,随着三氧化二铝纳米涂层的毛细作用和液体的蒸发,所述器件产生持续的电压和电流;
其中,所述三氧化二铝的平均粒径为100-400nm;所述三氧化二铝纳米涂层的厚度为5-35μm;所述液体为去离子水或离子浓度小于10-5mol/L的中性水溶液。所述基底可为柔性基底,也可为硬质基底。
优选的,所述三氧化二铝的平均粒径为200-300nm。
优选的,所述三氧化二铝纳米涂层的厚度为20-25μm。
优选的,所述基底为柔性基底。如基底可为涤纶树脂膜、聚酰亚胺膜、聚氯乙烯膜、聚丙烯膜、聚四氟乙烯膜或铁氟龙胶带。
优选的,所述上电极与下电极的电极间隔为1.5-2.5cm。
优选的,所述上电极和下电极的电极材料为无机导电材料或金属导电材料。
优选的,所述液体为去离子水。
优选的,所述器件中下电极的倾角为60-120°。
一种基于三氧化二铝纳米涂层的水蒸发产电器件的制备方法,所述方法步骤如下:
(1)将三氧化二铝纳米颗粒粉末分散在溶剂中,搅拌均匀,得到三氧化二铝浆料;其中,溶剂为甲醇、乙醇或去离子水,三氧化二铝和溶剂的质量比为3:7-7:3;
(2)在基底上设有上电极和下电极的一面均匀涂覆三氧化二铝浆料,干燥后得到一种基于三氧化二铝纳米涂层的水蒸发产电器件。
优选的,所述溶剂为乙醇。
有益效果:
本发明利用三氧化二铝纳米涂层在毛细作用和水蒸发的驱动下能产生高的电压输出。这是因为三氧化二铝纳米颗粒在去离子水或中性水溶液中表面会形成羟基,即以Al-OH的形式存在,Al-OH进而发生水解: 使表面带有丰富的正电荷。通过利用溶剂挥发诱导的自组装过程,三氧化二铝纳米颗粒紧密堆叠形成涂层,当有水从孔隙通道中流过时,孔道表面将会带有丰富的正电荷,因此在表面将会形成双电层,在流动液体的带动下,阴离子将会在水流方向富集,形成离子浓度差,进而产生流动电压和流动电流。本发明所制器件能够依靠自身材料的毛细作用和水蒸发自发产生电能,不需要额外的人为能量输入。所述方法所用材料廉价易得,操作简单,可大规模生产。所述器件发电方式高度自发,受环境限制少,具备高的能量输出,并且能够长时间维持,适用于多种应用场景。所述器件产生的电能驱动简单的商业电子器件,为自供能器件的发展提供了一个选择的平台。
附图说明
图1为本发明所述水蒸发产电器件的结构示意图。
图2为实施例1中制备的样品在去离子水中产生的电压。
图3为实施例1中制备的样品在去离子水中产生的电流。
图4为实施例1中所述三氧化二铝纳米涂层的扫描电子显微镜图。
图5为实施例1中所述三氧化二铝纳米颗粒室温条件下在去离子水中的Zeta电势。
图6为实施例6中制备的样品在去离子水中产生的电压。
图7为实施例7中制备的样品在去离子水中产生的电压。
其中,1-基底,2-上电极,3-三氧化二铝纳米涂层,4-下电极。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
以下实施例中:
三氧化二铝纳米颗粒:α相,Adamas,中国;
乙醇:北京伊诺凯科技有限公司;
碳电极所用碳浆:CH-8,Jelcon Corp.,日本;
使用扫描电子显微镜(Zeiss SUPRA TM 55 SAPPHIRE,德国卡尔蔡司公司)对纳米三氧化二铝纳米涂层进行微观形态表征;室温下三氧化二铝纳米颗粒在去离子水中的Zeta电势通过电位仪进行测试(Zetasizer Nano ZS90,马尔文,英国);使用数字源表(Keithley2612B)测量所制备的水蒸发产电器件随着液体的蒸发所产生的开路电压和短路电流。无特殊说明,测试环境为:温度约25℃,空气流速约为0.015m·s-1,相对湿度为10%。
如图1所示,以下实施例中,所述基于三氧化二铝纳米涂层的水蒸发产电器件包括基底1和涂覆在基底上的三氧化二铝纳米涂层3,基底1的一面设有上电极2和下电极4,三氧化二铝纳米涂层3涂覆在上电极2和下电极4所在面上。所述器件的下电极浸没在液体中,上电极与液体不接触,随着三氧化二铝纳米涂层的毛细作用和液体的蒸发,所述器件产生持续的电压和电流。
实施例1:
将三氧化二铝纳米颗粒(粒径200-300nm)分散在乙醇溶剂中,三氧化二铝和乙醇的质量比为7:3,搅拌均匀,得到三氧化二铝浆料;在基底1涤纶树脂(PET)膜上涂覆上两个碳电极,电极宽度为1cm,电极长度为18cm,上电极2和下电极4的间隔为2cm;待电极干燥后,在基底1中电极所在面上刷涂上三氧化二铝浆料;待乙醇溶剂挥发完全,得到一种基于三氧化二铝纳米涂层的水蒸发产电器件;其中,三氧化二铝纳米涂层3的厚度为25μm。
将所述器件的下电极以一定倾斜角度(与液面的夹角90°)置于去离子水中,其中,下电极4全部浸没在液体中,上电极2与液体不接触。随着三氧化二铝纳米涂层3的毛细作用和去离子水的蒸发,器件产生持续的电压和电流。如图2所示,开路电压逐渐稳定在为2.5V。如图3所示,短路电流最终稳定在720nA。
通过对涂在PET膜上的三氧化二铝纳米涂层进行扫描电镜表征,结果如图4所示,三氧化二铝纳米颗粒(粒径200-300nm)无序的堆积在一起,形成很多纳米孔洞。
对三氧化二铝在去离子水中的表面带电情况进行测试分析,结果如图5所示,其Zeta电势为+40.3mV,说明其表面带正电。并且,通过对产电膜上下两极进行测试,下电极电势始终高于上电极电势。这是因为三氧化二铝纳米颗粒在去离子水或中性水溶液中表面会形成羟基,即以Al-OH的形式存在,Al-OH进而发生水解:使表面带有丰富的正电荷。通过利用溶剂挥发诱导的自组装过程,三氧化二铝纳米颗粒紧密堆叠形成涂层,当有水从孔隙通道中流过时,孔道表面将会带有丰富的正电荷,因此在表面将会形成双电层,在流动液体的带动下,阴离子将会在水流方向富集,形成离子浓度差,进而产生流动电压和流动电流。
实施例2:
将三氧化二铝纳米颗粒(粒径200-300nm)分散在乙醇溶剂中,三氧化二铝和乙醇的质量比为1:2,搅拌均匀,得到三氧化二铝浆料;在基底1聚四氟乙烯膜上利用离子溅射的方式制备出两个金电极,电极宽度为1cm,电极长度为4cm,上电极2和下电极4的间隔为2cm;在基底1中电极所在面上刷涂上三氧化二铝浆料;待乙醇溶剂挥发完全,得到一种基于三氧化二铝纳米涂层的水蒸发产电器件;其中,三氧化二铝纳米涂层3的厚度为25μm。
将所述器件的下电极以一定倾斜角度(与液面的夹角120°)置于去离子水中,其中,下电极4浸没在液体中,上电极2与液体不接触。随着三氧化二铝纳米涂层3的毛细作用和水的蒸发,器件将会产生一定的电压和电流。开路电压约为2.5V,短路电流约为200nA。
实施例3:
将三氧化二铝纳米颗粒(粒径200-300nm)放入球磨机进行球磨6小时后取出,此时三氧化二铝纳米颗粒粒径变小为100-150nm,将其分散在乙醇溶剂中,二者质量比为1:2,搅拌均匀,得到三氧化二铝浆料;在基底1聚酰亚胺膜上涂覆上两个碳电极,电极宽度为1cm,电极长度为4cm,上电极2和下电极4的间隔为2cm;待电极干燥后,在基底1中电极所在面上刷涂上三氧化二铝浆料;待乙醇溶剂挥发完全,得到一种基于三氧化二铝纳米涂层的水蒸发产电器件;其中,三氧化二铝纳米涂层3的厚度为25μm。
将所述器件的下电极以一定倾斜角度(与液面的夹角90°)置于去离子水中,其中,下电极4浸没在液体中,上电极2与液体不接触。随着三氧化二铝纳米涂层3的毛细作用和水的蒸发,器件将会产生一定的电压和电流。最终开路电压稳定在2.5V左右,短路电流稳定在200nA左右。
实施例4:
将三氧化二铝纳米颗粒(粒径200-300nm)分散在乙醇溶剂中,三氧化二铝和乙醇的质量比为1:2,搅拌均匀,得到三氧化二铝浆料;在基底1PET膜上涂覆上两个碳电极,电极宽度为1cm,电极长度为4cm,上电极2和下电极4的间隔为2.5cm;待电极干燥后,在基底1中电极所在面上刷涂上三氧化二铝浆料;待乙醇溶剂挥发完全,得到一种基于三氧化二铝纳米涂层的水蒸发产电器件;其中,三氧化二铝纳米涂层3的厚度为25μm。
将所述器件以一定倾斜角度(与液面的夹角90°)置于去离子水中,其中,下电极4浸没在液体中,上电极2与液体不接触。随着三氧化二铝纳米涂层3的毛细作用和水的蒸发,器件产生2.7V左右的开路电压。
实施例5:
将三氧化二铝纳米颗粒(粒径200-300nm)分散在乙醇溶剂中,三氧化二铝和乙醇的质量比为1:2,搅拌均匀,得到三氧化二铝浆料;在PET膜上涂覆上碳电极,电极宽度为1cm,两电极的间隔为2cm,电极长度为4cm;待电极干燥后,将PET膜铺在自动涂膜机上,利用机器自动将浆料涂覆在基底1中电极所在面上;待乙醇溶剂挥发完全,得到一种基于三氧化二铝纳米涂层的水蒸发产电器件;其中,三氧化二铝纳米涂层3的厚度为20μm。
将所述器件的下电极以一定倾斜角度(与液面的夹角90°)置于去离子水中,其中,下电极4浸没在液体中,上电极2与液体不接触。随着三氧化二铝纳米涂层3的毛细作用和水的蒸发,器件将会产生一定的电压和电流。开路电压为2.5V,短路电流为200nA。
实施例6:
将三氧化二铝纳米颗粒(粒径200-300nm)分散在乙醇溶剂中,三氧化二铝和乙醇的质量比为1:2,搅拌均匀,得到三氧化二铝浆料;在基底1PET膜上涂覆上两个碳电极,电极宽度为1cm,电极长度为4cm,上电极2和下电极4的间隔为2cm;待电极干燥后,将PET膜铺在自动涂膜机上,利用机器自动将浆料涂覆在基底1中电极所在面上;待乙醇溶剂挥发完全,得到一种基于三氧化二铝纳米涂层的水蒸发产电器件;其中,三氧化二铝纳米涂层3的厚度为25μm。
将所述器件的下电极以一定倾斜角度(与液面的夹角90°)置于去离子水中,其中,下电极4浸没在液体中,上电极2与液体不接触。随着三氧化二铝纳米涂层3的毛细作用和水的蒸发,器件将会产生一定的电压和电流。根据动电现象机理,当压差增大时,会使液体流速增大,电压和电流也会增大。在该体系中,通过改变外界环境可以改变水的蒸发速率,进而改变水在三氧化二铝层的流速,因此也会改变电压和电流。在温度为25℃,空气风速为0.015m·s-1,相对湿度为10%时,电压约为2.5V。当不改变环境温度和空气风速时,升高温度到35℃,能够促进水蒸发,此时电压约为4.08V,如图6所示。这是因为温度升高会促进蒸发,进而使流经三氧化二铝层的水流速增快。
实施例7:
将三氧化二铝纳米颗粒(粒径200-300nm)分散在乙醇溶剂中,三氧化二铝和乙醇的质量比为1:2,搅拌均匀,得到三氧化二铝浆料;在PET膜上涂覆上碳电极,电极宽度为1cm,电极长度为4cm,上电极2和下电极4的间隔为2cm;待电极干燥后,将PET膜铺在自动涂膜机上,利用机器自动将浆料涂覆在基底1中电极所在面上;待乙醇溶剂挥发完全,得到一种基于三氧化二铝纳米涂层的水蒸发产电器件;其中,三氧化二铝纳米涂层3的厚度为25μm。
将所述器件的下电极以一定倾斜角度(与液面的夹角90°)置于去离子水中,其中,下电极4浸没在液体中,上电极2与液体不接触。随着三氧化二铝纳米涂层3的毛细作用和水的蒸发,器件将会产生一定的电压和电流。根据动电现象机理,当压差增大时,会使液体流速增大,电压和电流也会增大。在该体系中,通过改变外界环境可以改变水的蒸发速率,进而改变水在三氧化二铝层的流速,因此也会改变电压和电流。在温度为25℃,空气风速为0.015m·s-1,相对湿度为10%时,电压约为2.5V。当不改变环境温度和相对湿度,增加空气流动速度到0.15m·s-1时,蒸发加快,此时电压约为4.59V,如图7所示。这是因为空气流动加快会促进蒸发,进而使流经三氧化二铝层的水流速增快。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡是在本发明的精神和原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。

Claims (10)

1.一种基于三氧化二铝纳米涂层的水蒸发产电器件,其特征在于:所述器件包括基底(1)、上电极(2)、下电极(4)和三氧化二铝纳米涂层(3),上电极(2)和下电极(4)位于基底(1)同一面的上、下两端,三氧化二铝纳米涂层(3)涂覆在基底(1)上,上电极(2)、下电极(4)位于基底(1)和三氧化二铝纳米涂层(3)之间;所述器件的下电极(4)浸没在液体中,上电极(2)与液体不接触,随着三氧化二铝纳米涂层(3)的毛细作用和液体的蒸发,所述器件产生持续的电压和电流;
其中,所述三氧化二铝的平均粒径为100-400nm;所述三氧化二铝纳米涂层(3)的厚度为5-35μm;所述液体为去离子水或离子浓度小于10-5mol/L的中性水溶液。
2.如权利要求1所述的一种基于三氧化二铝纳米涂层的水蒸发产电器件,其特征在于:所述三氧化二铝的平均粒径为200-300nm。
3.如权利要求1所述的一种基于三氧化二铝纳米涂层的水蒸发产电器件,其特征在于:所述三氧化二铝纳米涂层(3)的厚度为20-25μm。
4.如权利要求1所述的一种基于三氧化二铝纳米涂层的水蒸发产电器件,其特征在于:所述基底(1)为柔性基底。
5.如权利要求1所述的一种基于三氧化二铝纳米涂层的水蒸发产电器件,其特征在于:所述上电极(2)与下电极(4)的电极间隔为1.5-2.5cm。
6.如权利要求1所述的一种基于三氧化二铝纳米涂层的水蒸发产电器件,其特征在于:所述上电极(2)和下电极(4)的电极材料为无机导电材料或金属导电材料。
7.如权利要求1所述的一种基于三氧化二铝纳米涂层的水蒸发产电器件,其特征在于:所述液体为去离子水。
8.如权利要求1所述的一种基于三氧化二铝纳米涂层的水蒸发产电器件,其特征在于:所述器件中下电极与液面的夹角为60-120°。
9.一种如权利要求1~8任意一项所述的基于三氧化二铝纳米涂层的水蒸发产电器件的制备方法,其特征在于:所述方法步骤如下:
(1)将三氧化二铝纳米颗粒粉末分散在溶剂中,搅拌均匀,得到三氧化二铝浆料;其中,溶剂为甲醇、乙醇或去离子水,三氧化二铝和溶剂的质量比为3:7-7:3;
(2)在基底(1)上设有上电极(2)和下电极(4)的一面均匀涂覆三氧化二铝浆料,干燥后得到一种基于三氧化二铝纳米涂层的水蒸发产电器件。
10.如权利要求9所述的一种基于三氧化二铝纳米涂层的水蒸发产电器件的制备方法,其特征在于:所述溶剂为乙醇。
CN201910694195.7A 2019-07-30 2019-07-30 一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法 Active CN110492789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910694195.7A CN110492789B (zh) 2019-07-30 2019-07-30 一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910694195.7A CN110492789B (zh) 2019-07-30 2019-07-30 一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法

Publications (2)

Publication Number Publication Date
CN110492789A true CN110492789A (zh) 2019-11-22
CN110492789B CN110492789B (zh) 2020-07-07

Family

ID=68548706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910694195.7A Active CN110492789B (zh) 2019-07-30 2019-07-30 一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法

Country Status (1)

Country Link
CN (1) CN110492789B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600507A (zh) * 2020-01-09 2020-08-28 盐城师范学院 一种基于二氧化钛/二氧化硅的湿气发电器件制备方法
CN111600510A (zh) * 2020-01-09 2020-08-28 盐城师范学院 一种基于氧化铝纤维的水伏与湿气发电器件制备方法
CN111600509A (zh) * 2020-01-09 2020-08-28 盐城师范学院 一种基于梯度二氧化硅颗粒的水伏器件制备方法
CN113890415A (zh) * 2021-09-28 2022-01-04 电子科技大学 一种收集流动液体能量的水凝胶发电器件及制备方法
CN115473456A (zh) * 2022-09-16 2022-12-13 湖南大学 一种基于金属氧化物的流动水能发电收集方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291622A (ja) * 1994-02-28 1995-11-07 Sumitomo Chem Co Ltd 硫酸アルミニウムからの遷移アルミナの製造方法
CN106982008A (zh) * 2016-01-18 2017-07-25 华中科技大学 一种蒸发诱导流质发电装置
CN108285177B (zh) * 2017-12-20 2019-03-05 东莞理工学院 基于LDHs的水蒸发发电器件及制备方法
CN109831122A (zh) * 2019-01-31 2019-05-31 北京理工大学 一种纳米碳/二氧化钛复合材料的蒸发产电器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291622A (ja) * 1994-02-28 1995-11-07 Sumitomo Chem Co Ltd 硫酸アルミニウムからの遷移アルミナの製造方法
CN106982008A (zh) * 2016-01-18 2017-07-25 华中科技大学 一种蒸发诱导流质发电装置
CN108285177B (zh) * 2017-12-20 2019-03-05 东莞理工学院 基于LDHs的水蒸发发电器件及制备方法
CN109831122A (zh) * 2019-01-31 2019-05-31 北京理工大学 一种纳米碳/二氧化钛复合材料的蒸发产电器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UPENDRA MITTAL ET AL.: "A Novel Sol–Gel γ -Al2O3 Thin-Film-Based Rapid SAW Humidity Sensor", 《IEEE TRANSAXTIONS ON ELECTRON DEVICES》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600507A (zh) * 2020-01-09 2020-08-28 盐城师范学院 一种基于二氧化钛/二氧化硅的湿气发电器件制备方法
CN111600510A (zh) * 2020-01-09 2020-08-28 盐城师范学院 一种基于氧化铝纤维的水伏与湿气发电器件制备方法
CN111600509A (zh) * 2020-01-09 2020-08-28 盐城师范学院 一种基于梯度二氧化硅颗粒的水伏器件制备方法
CN111600509B (zh) * 2020-01-09 2023-12-22 盐城师范学院 一种基于梯度二氧化硅颗粒的水伏器件制备方法
CN111600510B (zh) * 2020-01-09 2023-12-22 盐城师范学院 一种基于氧化铝纤维的水伏与湿气发电器件制备方法
CN111600507B (zh) * 2020-01-09 2024-01-12 盐城师范学院 一种基于二氧化钛/二氧化硅的湿气发电器件制备方法
CN113890415A (zh) * 2021-09-28 2022-01-04 电子科技大学 一种收集流动液体能量的水凝胶发电器件及制备方法
CN115473456A (zh) * 2022-09-16 2022-12-13 湖南大学 一种基于金属氧化物的流动水能发电收集方法及装置

Also Published As

Publication number Publication date
CN110492789B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN110492789A (zh) 一种基于三氧化二铝纳米涂层的水蒸发产电器件及其制备方法
CN104993773B (zh) 一种复合能源电池装置及其制备方法
Tang et al. Self-powered water splitting using flowing kinetic energy
CN103780129A (zh) 旋转式静电发电机
CN111600511B (zh) 基于一维羧基化碳材料的水伏与湿气发电器件制备方法
CN110323074A (zh) 一种不对称型全固态纤维状柔性超级电容器及其制备方法
CN103035917A (zh) 一种锂离子电池二氧化硅/碳复合负极材料的制备方法
CN105206814B (zh) 一种高性能锂离子电池负极材料多孔碳包覆暴露(001)活性晶面二氧化钛纳米立方体的制备方法
CN108063266A (zh) 一种高性能普鲁士蓝类似物修饰电极的制备方法
CN107681158A (zh) 锂电池硅基负极材料自愈合粘结剂、锂电池硅基负极材料及其制备方法、电池负极和锂电池
CN109638357A (zh) 一种锂离子电池极片/隔膜一体化的制备方法
CN108807006B (zh) 一种碳基柔性电极的制备方法
CN105655146B (zh) 钠插层二氧化锰/石墨烯双壳空心微球材料及其制备方法和应用
CN104868112A (zh) 碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法
CN110136986A (zh) MnO2/MXene/CC柔性复合电极材料及其制备方法
CN108550789A (zh) 一种钠离子电池负极及其制备方法与钠离子电池
CN108975288A (zh) 一种NbSe2电极材料的制备方法及其产品和应用
CN104362885B (zh) 一种能提高能量转换效率的电容式发电机及其制备方法
CN108346806A (zh) 液流电池电极及其制备方法和液流电池
Dong et al. Titanium-manganese electrolyte for redox flow battery
Wang et al. Droplet energy harvesting system based on MXene/SiO2 modified triboelectric nanogenerators
CN103215748A (zh) 过渡金属氧化物纳米材料覆盖的机能性纤维毡及其制备方法
CN106548878A (zh) 一种使用离子液体电解液的超级电容器
CN106601980A (zh) 一种锌银电池用薄型锌电极的制备方法
CN106226368B (zh) 一种氮化碳光电极及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant