CN110492083A - 一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法 - Google Patents

一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法 Download PDF

Info

Publication number
CN110492083A
CN110492083A CN201910804206.2A CN201910804206A CN110492083A CN 110492083 A CN110492083 A CN 110492083A CN 201910804206 A CN201910804206 A CN 201910804206A CN 110492083 A CN110492083 A CN 110492083A
Authority
CN
China
Prior art keywords
graphene
molybdenum disulfide
carbon
composite material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910804206.2A
Other languages
English (en)
Other versions
CN110492083B (zh
Inventor
陈照军
杜辉
付慧
段雅静
付金喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201910804206.2A priority Critical patent/CN110492083B/zh
Publication of CN110492083A publication Critical patent/CN110492083A/zh
Application granted granted Critical
Publication of CN110492083B publication Critical patent/CN110492083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种具有多级孔结构的二硫化钼/石墨烯/碳复合材料的制备方法,首先通过静电纺丝法纺制聚丙烯腈/聚乙烯吡咯烷酮/四硫代钼酸铵/石墨烯复合纳米纤维膜;然后聚乙烯吡咯烷酮经高温分解,沿纤维轴向形成大量的介孔结构,同时四硫代钼酸铵高温分解为单片层二硫化钼分散在纤维中;然后使用KOH饱和溶液浸渍,高温活化最终得到二硫化钼/石墨烯/碳多级孔复合材料,具有高比表面积、孔隙结构发达、孔道尺寸和结构可控、应用广泛等优点。

Description

一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法
技术领域
本发明属于碳复合材料制备技术领域,具体涉及一种具有多级孔结构的二硫化钼/石墨烯/碳复合材料的制备方法及其应用。
背景技术
多孔碳材料因具有高比表面积、高孔隙率、良好的导电性和导热性、可调控的孔径和表面性能,在催化剂载体、超级电容器、催化剂、吸附剂和气体储存等领域有广泛应用。多孔碳材料的合成方法主要有硬模板法、软模板法和活化法等,如CN201810345763.8提供了一种用盐模板碳化ZIF-8合成多级孔碳材料的方法,包括将ZIF-8与盐模板混合,在惰性气氛下升温进行碳化制备出多级孔碳材料,应用于超级电容器储能材料上。CN201510081244.1公开了一种碳纳米管/炭多级孔球形复合材料的制备方法,将碳纳米管悬浮液逐滴加入低温液态介质中快速凝固成复合冰球,真空干燥后获得具有多级孔结构的碳纳米管初始复合小球;对其进行炭化和强化,得碳纳米管/炭复合小球;对碳纳米管/炭多级孔复合球进一步活化,获得碳纳米管/炭多级孔球形复合材料。
然而,这些方法往往存在成本高、合成工艺复杂或纯度偏低的问题,阻碍了多孔碳材料的更广泛应用。同时,碳材料与石墨烯、二硫化钼等具有类似石墨的层状结构的物质的复合也是未来的发展趋势。
CN201310480044.4公开了一种多级孔道石墨烯/碳复合材料的制备方法,以石墨烯气凝胶为三维骨架,通过水热路线原位有机-有机自组装制备得到具有含有微孔、有序介孔和大孔的多级孔道石墨烯基碳材料,可以用于双电层电容器和锂电池负极材料。
CN201711384891.5公开了一种具有三级结构的泡沫石墨烯/碳纳米管/二硫化钼复合材料的制备方法与应用,首先通过化学气相沉积法制得三维泡沫石墨烯一级结构,在所述的三维泡沫石墨烯一级结构上进一步热分解制得三维泡沫石墨烯/一维碳纳米管二级结构,在所述的三维泡沫石墨烯/一维碳纳米管二级结构上进一步原子层沉积制得三维泡沫石墨烯/一维碳纳米管/二维二硫化钼三级结构。该发明提供的复合材料制备方法比较复杂,原料昂贵,所需设备价格昂贵,难以大规模生产。
CN201510947452.5公开了一种二硫化钼/石墨烯/碳纳米纤维复合材料的制备方法,首先通过静电纺丝制备得到聚丙烯腈纳米纤维膜,经过溶液浸泡法在聚丙烯腈纳米纤维上包裹氧化石墨烯,再通过高温碳化制备得到石墨烯/碳纳米纤维复合膜,最后通过一步水热法在石墨烯/碳纳米纤维上原位生长二硫化钼纳米片。该发明所制备的二硫化钼/石墨烯/碳纳米纤维复合材料是一种复合碳纤维膜材料,其纤维结构中不存在内部孔道,其比表面积较小,能够暴露出的活性点位较少,影响其应用性能。
可见,现有的多级孔结构材料的制备方法还有待改进,且未见报道制备具有多级孔结构的二硫化钼/石墨烯/碳复合纤维材料。
发明内容
本发明的目的在于克服现有技术存在的不足,提出一种具有多级孔结构的二硫化钼/石墨烯/碳复合材料的制备方法及其应用,原料来源广泛,制备工艺简单易于操作,安全环保,所制备的二硫化钼/石墨烯/碳多级孔复合材料产品纯度高,性能优异,具有高比表面积、孔隙结构发达、孔道尺寸和结构可控、应用广泛等优点。
本发明是采用以下的技术方案实现的:
一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,包括以下步骤:
(1)称取一定量的聚丙烯腈、聚乙烯吡咯烷酮、四硫代钼酸铵和石墨烯,搅拌溶解于DMF中,使用400目不锈钢网过滤后备用;
(2)取适量溶液进行静电纺丝制得复合纤维膜;
(3)将上述复合纤维膜放入管式炉中,在N2/H2(体积比:9/1)混合气氛下,以2~6℃/min的升温速率升温至380~450℃,维持1~6h,然后降温至室温,取出;
(4)配制KOH饱和溶液,按比例将上述处理后的复合纤维膜放入KOH饱和溶液中进行浸渍,超声处理1h,然后静置浸渍48h,真空干燥8h;
(5)将上述浸渍后的复合纤维膜放入管式炉中高温活化,降至室温后,取出使用稀盐酸溶液洗涤,真空干燥10h,得到具有多级孔结构的二硫化钼/石墨烯/碳复合材料。
可选的,步骤(1)中所述聚丙烯腈、聚乙烯吡咯烷酮、四硫代钼酸铵、石墨烯和DMF的用量范围分别为0.6g~1.5g、0.5g~1.2g、0.2g~1.0g、0.05g~0.2g和10g~16g。
可选的,步骤(2)中所述静电纺丝参数如下:纺丝电压为20kV,推进速率为0.015mL/min,纺丝接收距离为18cm,注射器针头为8#,在室温下纺丝2-10h。
可选的,步骤(4)中所述处理后的复合纤维膜/KOH质量比为1:0.4~10。
可选的,步骤(5)中所述高温活化在氩气气氛下,以2~10℃/min的升温速率升温至750~850℃,高温活化1~16h。
进一步,本发明所述制备方法制备得到的二硫化钼/石墨烯/碳多级孔复合材料是由直径为60~500nm的复合纳米纤维构成,以质量百分数计,复合纳米纤维中含二硫化钼3%~35%,含石墨烯0.2%~10%,含碳60%~95%;二硫化钼和石墨烯均以单片层结构均匀分散在以碳纳米纤维为基底的复合纳米纤维中,复合纳米纤维沿轴向分布有多级孔结构,孔径在0.1nm~5μm之间连续分布,平均孔径为1.5nm~25nm,以孔体积计,多级孔结构中微孔结构占25%~60%、介孔结构占40%~75%,微孔结构分布在纳米纤维表面和介孔结构的孔壁上;所述复合材料的比表面积为500~3200m2/g。
本发明的另一方面提供了所述制备方法制备得到的二硫化钼/石墨烯/碳多级孔复合材料。
又一方面,本发明制备的二硫化钼/石墨烯/碳复合材料可广泛应用于锂离子电池负极材料、超级电容器电极材料、水电解制氢催化材料、汞吸附材料等领域。其中,多级孔结构中微孔结构占比大于40%的二硫化钼/石墨烯/碳复合材料,利于锂离子、钾离子、氢离子等小体积离子的传输,适用于锂离子电池负极材料、超级电容器电极材料、水电解制氢催化材料;多级孔结构中微孔结构占比小于40%的二硫化钼/石墨烯/碳复合材料,大量的介孔结构更利于汞离子的扩散,因此更适用于汞吸附材料。
本发明首先通过静电纺丝法纺制聚丙烯腈/聚乙烯吡咯烷酮/四硫代钼酸铵/石墨烯复合纤维膜;然后在380~450℃下高温处理,聚乙烯吡咯烷酮经高温分解,沿纤维轴向形成大量的介孔结构,通过调整聚丙烯腈与聚乙烯吡咯烷酮的比例,即可调控复合纤维中介孔结构的尺寸;同时四硫代钼酸铵高温分解为单片层二硫化钼分散在纤维中;使用KOH饱和溶液对上述高温处理后的复合纤维膜进行超声浸渍和静置浸渍,使KOH浸渍在复合纤维膜的表面及纤维的介孔结构中,然后进行高温活化,在纤维表面和介孔结构的孔壁上进一步生成大量的微孔结构,通过控制KOH的用量和高温活化条件,可以调控复合纤维中微孔结构的尺寸;清洗干燥后最终制备得到具有多级孔结构的二硫化钼/石墨烯/碳复合材料。采用本发明所述的制备方法,可以灵活调节多级孔结构中介孔结构和微孔结构的比例。
与现有技术相比,本发明的技术方案具有以下优点和进步:
本发明提供的具有多级孔结构的二硫化钼/石墨烯/碳复合材料的孔隙结构发达、孔道尺寸和结构可控、制备工艺简单等优点,能够广泛应用于催化、环境、能源等领域。
附图说明
图1为具有多级孔结构的二硫化钼/石墨烯/碳复合纳米纤维结构示意图,其中1为复合纳米纤维,2为介孔结构,3为微孔结构。
图2为具有多级孔结构的二硫化钼/石墨烯/碳复合纳米纤维的切面结构示意图,其中1为复合纳米纤维,2为介孔结构,3为微孔结构。
图3为实施例2所制备多级孔结构的二硫化钼/石墨烯/碳复合材料的扫描电镜照片。
图4为实施例2所制备多级孔结构的二硫化钼/石墨烯/碳复合材料中纤维横截面的扫描电镜照片。
图5为实施例2所制备多级孔结构的二硫化钼/石墨烯/碳复合材料的透射电镜照片。
具体实施方式
下面结合实施例对本发明的实施方案进行详细描述,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器均为可以通过市售购买获得的常规产品。
实施例1
称取0.6g聚丙烯腈、0.5g聚乙烯吡咯烷酮、0.3g四硫代钼酸铵和0.05g石墨烯,搅拌溶解于12gDMF中,使用400目不锈钢网过滤后备用;取适量溶液进行静电纺丝,静电纺丝参数为纺丝电压为20kV、推进速率为0.015mL/min、纺丝接收距离为18cm、注射器针头为8#,在室温下纺丝4h制得复合纤维膜;将上述复合纤维膜放入管式炉中,在N2/H2(体积比:9/1)混合气氛下,以2℃/min的升温速率升温至400℃,维持4h,然后降温至室温,取出;配制KOH饱和溶液,按上述处理后的复合纤维膜/KOH质量比为1:5进行浸渍处理,按比例将上述处理后的复合纤维膜放入KOH饱和溶液中,超声处理1h,然后静置浸渍48h,真空干燥8h;将上述浸渍后的复合纤维膜放入管式炉中,在氩气气氛下,以2℃/min的升温速率升温至750℃,高温活化2h,降至室温后,取出使用稀盐酸溶液洗涤,真空干燥10h,得到具有多级孔结构的二硫化钼/石墨烯/碳复合材料。该产品由直径为80~300nm的复合纳米纤维构成,以质量百分数计,该产品中含二硫化钼6%,含石墨烯0.6%,含碳93.4%;该产品的比表面积为600m2/g,孔径在0.1nm~5μm之间连续分布,平均孔径为1.6nm,其孔道结构中微孔结构占58%、介孔结构占42%。该产品可用于锂离子电池负极材料、超级电容器电极材料、水电解制氢催化材料等。
实施例2
称取1.5g聚丙烯腈、1.0g聚乙烯吡咯烷酮、0.8g四硫代钼酸铵和0.2g石墨烯,搅拌溶解于16gDMF中,使用400目不锈钢网过滤后备用;取适量溶液进行静电纺丝,静电纺丝参数为纺丝电压为20kV、推进速率为0.015mL/min、纺丝接收距离为18cm、注射器针头为8#,在室温下纺丝2h制得复合纤维膜;将上述复合纤维膜放入管式炉中,在N2/H2(体积比:9/1)混合气氛下,以6℃/min的升温速率升温至450℃,维持1h,然后降温至室温,取出;配制KOH饱和溶液,按上述处理后的复合纤维膜/KOH质量比为1:0.5进行浸渍处理,按比例将上述处理后的复合纤维膜放入KOH饱和溶液中,超声处理1h,然后静置浸渍48h,真空干燥8h;将上述浸渍后的复合纤维膜放入管式炉中,在氩气气氛下,以8℃/min的升温速率升温至850℃,高温活化15h,降至室温后,取出使用稀盐酸溶液洗涤,真空干燥10h,得到具有多级孔结构的二硫化钼/石墨烯/碳复合材料。该产品由直径为60~420nm的复合纳米纤维构成,以质量百分数计,该产品中含二硫化钼33%,含石墨烯7%,含碳60%;该产品的比表面积为2522m2/g,孔径在0.1nm~5μm之间连续分布,平均孔径为12.6nm,其孔道结构中微孔结构占37%、介孔结构占63%。该产品可用于汞吸附材料。
图3和图4为本实施例制得的二硫化钼/石墨烯/碳复合材料的扫描电镜照片,可以看出纤维中沿轴向具有不同尺寸的介孔结构,纤维表面和介孔结构孔壁上分布有大量微孔结构。图5为本实施例制得的二硫化钼/石墨烯/碳复合材料的透射电镜照片,可以看出二硫化钼和石墨烯均是以单片层结构高度均匀分散在复合纤维中。
实施例3
称取1.0g聚丙烯腈、1.2g聚乙烯吡咯烷酮、1.0g四硫代钼酸铵和0.1g石墨烯,搅拌溶解于10gDMF中,使用400目不锈钢网过滤后备用;取适量溶液进行静电纺丝,静电纺丝参数为纺丝电压为20kV、推进速率为0.015mL/min、纺丝接收距离为18cm、注射器针头为8#,在室温下纺丝10h制得复合纤维膜;将上述复合纤维膜放入管式炉中,在N2/H2(体积比:9/1)混合气氛下,以4℃/min的升温速率升温至380℃,维持6h,然后降温至室温,取出;配制KOH饱和溶液,按上述处理后的复合纤维膜/KOH质量比为1:10进行浸渍处理,按比例将上述处理后的复合纤维膜放入KOH饱和溶液中,超声处理1h,然后静置浸渍48h,真空干燥8h;将上述浸渍后的复合纤维膜放入管式炉中,在氩气气氛下,以10℃/min的升温速率升温至800℃,高温活化1h,降至室温后,取出使用稀盐酸溶液洗涤,真空干燥10h,得到具有多级孔结构的二硫化钼/石墨烯/碳复合材料。该产品由直径为150~500nm的复合纳米纤维构成,以质量百分数计,该产品中含二硫化钼14%,含石墨烯6.2%,含碳79.8%;该产品的比表面积为3152m2/g,孔径在0.1nm~5μm之间连续分布,平均孔径为23.6nm,其孔道结构中微孔结构占25.8%、介孔结构占74.2%。该产品可用于汞吸附材料。
实施例4
称取1.3g聚丙烯腈、0.6g聚乙烯吡咯烷酮、0.4g四硫代钼酸铵和0.15g石墨烯,搅拌溶解于10gDMF中,使用400目不锈钢网过滤后备用;取适量溶液进行静电纺丝,静电纺丝参数为纺丝电压为20kV、推进速率为0.015mL/min、纺丝接收距离为18cm、注射器针头为8#,在室温下纺丝8h制得复合纤维膜;将上述复合纤维膜放入管式炉中,在N2/H2(体积比:9/1)混合气氛下,以3℃/min的升温速率升温至425℃,维持5h,然后降温至室温,取出;配制KOH饱和溶液,按上述处理后的复合纤维膜/KOH质量比为1:6进行浸渍处理,按比例将上述处理后的复合纤维膜放入KOH饱和溶液中,超声处理1h,然后静置浸渍48h,真空干燥8h;将上述浸渍后的复合纤维膜放入管式炉中,在氩气气氛下,以6℃/min的升温速率升温至820℃,高温活化12h,降至室温后,取出使用稀盐酸溶液洗涤,真空干燥10h,得到具有多级孔结构的二硫化钼/石墨烯/碳复合材料。该产品由直径为60~500nm的复合纳米纤维构成,以质量百分数计,该产品中含二硫化钼9.5%,含石墨烯1.9%,含碳88.6%;该产品的比表面积为1855m2/g,孔径在0.1nm~5μm之间连续分布,平均孔径为4.5nm,其孔道结构中微孔结构占43%、介孔结构占57%。该产品可用于锂离子电池负极材料、超级电容器电极材料、水电解制氢催化材料等。

Claims (10)

1.一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,包括以下步骤:
(1)称取一定量的聚丙烯腈、聚乙烯吡咯烷酮、四硫代钼酸铵和石墨烯,搅拌溶解于DMF中,使用400目不锈钢网过滤后备用;
(2)取适量溶液进行静电纺丝制得复合纤维膜;
(3)将上述复合纤维膜放入管式炉中,在体积比为9/1的N2/H2混合气氛下,以2~6℃/min的升温速率升温至380~450℃,维持1~6h,然后降温至室温,取出;
(4)配制KOH饱和溶液,将上述处理后的复合纤维膜放入KOH饱和溶液中进行浸渍,超声处理1h,然后静置浸渍48h,真空干燥8h;
(5)将上述浸渍后的复合纤维膜放入管式炉中高温活化,降至室温后,取出使用稀盐酸溶液洗涤,真空干燥10h,得到具有多级孔结构的二硫化钼/石墨烯/碳复合材料。
2.根据权利要求1所述的一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,步骤(1)中所述聚丙烯腈、聚乙烯吡咯烷酮、四硫代钼酸铵、石墨烯和DMF的用量范围分别为0.6g~1.5g、0.5g~1.2g、0.2g~1.0g、0.05g~0.2g和10g~16g。
3.根据权利要求1所述的一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,步骤(2)中所述静电纺丝参数如下:纺丝电压为20kV,推进速率为0.015mL/min,纺丝接收距离为18cm,注射器针头为8#,在室温下纺丝2-10h。
4.根据权利要求1所述的一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,步骤(4)中所述处理后的复合纤维膜/KOH质量比为1:0.4~10。
5.根据权利要求1所述的一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,步骤(5)中所述高温活化在氩气气氛下,以2~10℃/min的升温速率升温至750~850℃,高温活化1~16h。
6.根据权利要求1-5任一所述的一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,所述复合纤维材料是由直径为60~500nm的复合纳米纤维构成,以质量百分数计,复合纳米纤维中含二硫化钼3%~35%,含石墨烯0.2%~10%,含碳60%~95%;所述二硫化钼和石墨烯均以单片层结构均匀分散在以碳纳米纤维为基底的复合纳米纤维中。
7.根据权利要求6所述的一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,所述复合纳米纤维沿轴向分布有多级孔结构,孔径在0.1nm~5μm之间连续分布,平均孔径为1.5nm~25nm,以孔体积计,多级孔结构中微孔结构占25%~60%、介孔结构占40%~75%。
8.根据权利要求7所述的一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,所述微孔结构分布在纳米纤维表面和介孔结构的孔壁上。
9.根据权利要求1-5任一所述的一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法,其特征在于,所述复合材料的比表面积为500~3200m2/g。
10.权利要求1-9任一所述方法制备得到的二硫化钼/石墨烯/碳多级孔复合材料在锂离子电池负极材料、超级电容器电极材料、水电解制氢催化材料、汞吸附材料等领域中的应用。
CN201910804206.2A 2019-08-28 2019-08-28 一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法 Active CN110492083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910804206.2A CN110492083B (zh) 2019-08-28 2019-08-28 一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910804206.2A CN110492083B (zh) 2019-08-28 2019-08-28 一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN110492083A true CN110492083A (zh) 2019-11-22
CN110492083B CN110492083B (zh) 2020-06-05

Family

ID=68554983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910804206.2A Active CN110492083B (zh) 2019-08-28 2019-08-28 一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110492083B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111014249A (zh) * 2019-12-24 2020-04-17 青岛大学 一种二维过渡金属硫族化合物-碳复合材料的制备方法
CN112341052A (zh) * 2020-11-10 2021-02-09 常熟理工学院 二硫化钼/还原氧化石墨烯与地质聚合物复合稳定汞污染土的方法
WO2021036219A1 (zh) * 2019-08-28 2021-03-04 青岛大学 一种二硫化钼/石墨烯/碳复合材料及其应用
CN113462356A (zh) * 2021-06-16 2021-10-01 盐城工学院 一种二元复合吸波材料的制备方法
CN115501754A (zh) * 2022-08-19 2022-12-23 西安建筑科技大学 一种外电场调控提升纳米通道膜脱盐性能的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304876A (zh) * 2015-10-25 2016-02-03 复旦大学 硫化钼/石墨烯/碳纳米纤维复合材料及其制备方法
CN105591088A (zh) * 2016-03-22 2016-05-18 北京科技大学 一种锂离子电池负极材料及其制备方法
WO2018024183A1 (zh) * 2016-08-01 2018-02-08 福建新峰二维材料科技有限公司 一种三维石墨烯/MoS2复合材料的制备方法
CN108199018A (zh) * 2017-12-20 2018-06-22 徐州工程学院 一种具有三级结构的泡沫石墨烯/碳纳米管/二硫化钼复合材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304876A (zh) * 2015-10-25 2016-02-03 复旦大学 硫化钼/石墨烯/碳纳米纤维复合材料及其制备方法
CN105591088A (zh) * 2016-03-22 2016-05-18 北京科技大学 一种锂离子电池负极材料及其制备方法
WO2018024183A1 (zh) * 2016-08-01 2018-02-08 福建新峰二维材料科技有限公司 一种三维石墨烯/MoS2复合材料的制备方法
CN108199018A (zh) * 2017-12-20 2018-06-22 徐州工程学院 一种具有三级结构的泡沫石墨烯/碳纳米管/二硫化钼复合材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. XIE等: "Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage", 《JOURNAL OF POWER SOURCES》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021036219A1 (zh) * 2019-08-28 2021-03-04 青岛大学 一种二硫化钼/石墨烯/碳复合材料及其应用
US11987907B2 (en) 2019-08-28 2024-05-21 Qingdao University Molybdenum disulfide/graphene/carbon composite material and use thereof
CN111014249A (zh) * 2019-12-24 2020-04-17 青岛大学 一种二维过渡金属硫族化合物-碳复合材料的制备方法
CN111014249B (zh) * 2019-12-24 2021-09-21 青岛大学 一种二维过渡金属硫族化合物-碳复合材料的制备方法
CN112341052A (zh) * 2020-11-10 2021-02-09 常熟理工学院 二硫化钼/还原氧化石墨烯与地质聚合物复合稳定汞污染土的方法
CN113462356A (zh) * 2021-06-16 2021-10-01 盐城工学院 一种二元复合吸波材料的制备方法
CN113462356B (zh) * 2021-06-16 2023-11-28 盐城工学院 一种二元复合吸波材料的制备方法
CN115501754A (zh) * 2022-08-19 2022-12-23 西安建筑科技大学 一种外电场调控提升纳米通道膜脱盐性能的方法及装置

Also Published As

Publication number Publication date
CN110492083B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN110492083A (zh) 一种二硫化钼/石墨烯/碳多级孔复合材料的制备方法
Yan et al. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts
CN110504431A (zh) 一种二硫化钼/石墨烯/碳复合材料及其应用
Zhang et al. Review of macroporous materials as electrochemical supercapacitor electrodes
He et al. Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials
Ma et al. ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors
Cao et al. Lignin-based multi-channels carbon nanofibers@ SnO2 nanocomposites for high-performance supercapacitors
CN109192985B (zh) 一种zif-9基多孔碳/碳纤维复合材料及其制备方法
CN104045077B (zh) 一种石墨烯三维分级多孔炭材料及制备方法
CN108940285A (zh) 一种柔性电解水催化材料的制备方法及应用
CN102505403B (zh) 一种具有分层次孔结构的活性炭纤维膜的制备方法
JP5876499B2 (ja) メソ細孔が形成された多孔性炭素材料の製造方法及びこれから製造された燃料電池用触媒の担持体
Ma et al. Synthesis of mesoporous ribbon-shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes
Wen et al. Core–shell-structured MnO 2@ carbon spheres and nitrogen-doped activated carbon for asymmetric supercapacitors with enhanced energy density
CN106757539B (zh) 一种铁、氮共掺杂多孔碳的制备方法
El-Khodary et al. Sonochemical assisted fabrication of 3D hierarchical porous carbon for high-performance symmetric supercapacitor
Liu et al. Structural design and mechanism analysis of hierarchical porous carbon fibers for advanced energy and environmental applications
CN110517900B (zh) 一种超级电容器用氮掺杂低温碳纳米纤维电极材料的制备方法
CN110148760A (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
Deng et al. A hierarchically combined reduced graphene oxide/Nickel oxide hybrid supercapacitor device demonstrating compliable flexibility and high energy density
CN104909363A (zh) 一种网络状纳米结构碳材料的制备方法
Jiao et al. Preparation and electrochemical performance of hollow activated carbon fiber-Carbon nanotubes three-dimensional self-supported electrode for supercapacitor
CN108630453A (zh) 一步法制备类石墨烯碳纳米片材料的方法及其用途
Wang et al. Preparation of hierarchical micro-meso porous carbon and carbon nanofiber from polyacrylonitrile/polysulfone polymer via one-step carbonization for supercapacitor electrodes
Wu et al. A novel and facile step-by-step hydrothermal fabrication of peony-like Ni0. 4Co0. 6 (OH) 2 supported on carbon fiber cloth as flexible electrodes for advanced electrochemical energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 266071 School of Physical Sciences, Qiingdao University, 7 East Hongkong Road, Laoshan District, Shandong, Qingdao

Applicant after: Qingdao University

Address before: 266071 No. 7 East Hongkong Road, Laoshan District, Shandong, Qingdao

Applicant before: Qingdao University

CB02 Change of applicant information
CB03 Change of inventor or designer information

Inventor after: Duan Yajing

Inventor after: Du Hui

Inventor after: Fu Hui

Inventor after: Chen Zhaojun

Inventor after: Fu Jinzhe

Inventor before: Chen Zhaojun

Inventor before: Du Hui

Inventor before: Fu Hui

Inventor before: Duan Yajing

Inventor before: Fu Jinzhe

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant