CN110491537A - 一种放射性废物的水泥固化处理方法 - Google Patents

一种放射性废物的水泥固化处理方法 Download PDF

Info

Publication number
CN110491537A
CN110491537A CN201910536986.7A CN201910536986A CN110491537A CN 110491537 A CN110491537 A CN 110491537A CN 201910536986 A CN201910536986 A CN 201910536986A CN 110491537 A CN110491537 A CN 110491537A
Authority
CN
China
Prior art keywords
cement
radioactive waste
method described
concentrate
cement solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910536986.7A
Other languages
English (en)
Other versions
CN110491537B (zh
Inventor
闫晓俊
郭喜良
安鸿翔
郭霄斌
高超
柳兆峰
刘建琴
冯文东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute for Radiation Protection
Original Assignee
China Institute for Radiation Protection
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute for Radiation Protection filed Critical China Institute for Radiation Protection
Priority to CN201910536986.7A priority Critical patent/CN110491537B/zh
Publication of CN110491537A publication Critical patent/CN110491537A/zh
Application granted granted Critical
Publication of CN110491537B publication Critical patent/CN110491537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • G21F9/165Cement or cement-like matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明属于放射性废物处理技术领域,涉及一种放射性废物的水泥固化处理方法。所述的放射性废物为放射性含硼浓缩液,所述的方法依次包括如下步骤:(1)在废物桶中先加入放射性废物,再加入石灰和添加剂,搅拌10‑15min后加入水泥继续搅拌10‑15min;(2)将完成搅拌的废物桶加盖后转移至养护间进行养护。利用本发明的放射性废物的水泥固化处理方法,能够针对美国西屋固化技术实际应用中存在的问题,在保持原固化设备及工艺操作基本不变的前提下,提高放射性含硼浓缩液的包容量,确保废物水泥固化产品各项性能满足标准要求。

Description

一种放射性废物的水泥固化处理方法
技术领域
本发明属于放射性废物处理技术领域,涉及一种放射性废物的水泥固化处理方法。
背景技术
水泥固化是一种传统的放射性废物稳定化处理技术,其具有工艺简单、技术成熟、成本低、废物固化体稳定性好等技术优势。水泥固化的基本原理是:以水泥作为无机凝胶固化基材,将水泥、放射性废物及其它物料按照一定比例进行均匀混合,在合适养护条件下形成固化体,从而实现废物的稳定化处理。
自岭澳二期以来,国内多个新建核电机组配套引进了美国西屋的放射性废物水泥固化系统。与国内原有水泥固化处理技术相比,该引进技术提高废物包容量的同时改善了废物水泥固化体的性能。然而,随着核电厂西屋固化系统和技术的实际投用,其存在的问题也逐渐显现,具体表现为两点:一是固化系统需要准确的废树脂和浓缩液化学组成作为固化配方和工艺的操作输入参数,这对核电厂实际废物组成的浮动缺乏兼容性;二是固化基材采用了指定厂家的特定水泥,增加了不同核电厂物料采购和贮存的难度和成本。以北方核电厂为例,固化基材需从广州指定厂家采购,且需几个核电厂联合一次性大批量采购,一次性采购量通常高于核电厂三个月(水泥的保质期)的设计需求量。这样的现状导致采购和贮存的成本不低,存在材料浪费的问题。为了解决上述问题,需对引进固化系统配套的水泥固化配方进行改进,最迫切的需求和最有效的措施是采用核电厂所属当地生产的水泥代替原西屋配套工艺所要求的广东水泥。
为了解决上述问题,需对西屋处理系统配套水泥固化方法进行改进,研发并形成核电厂属地化水泥固化方法。而从放射性废物的长期处置安全角度出发,水泥固化属地化改进方法的研究需考虑的主要因素有:
(1)针对放射性含硼浓缩液的物理、化学和放射性特性,进行固化方法的改进;
(2)从实际工程应用角度出发,改进固化方法应符合固化工艺和固化设备的相关技术要求;
(3)从废物最小化角度出发,应尽量增加废物的体积包容量;
(4)水泥固化体的性能应满足《低、中水平放射性废物固化体性能要求水泥固化体》(GB14569.1-2011)的各项要求,包括抗压强度、抗冲击性、抗浸出性、抗浸泡性、抗冻融性和耐辐照性。
发明内容
本发明的目的是提供一种放射性废物的水泥固化处理方法,以能够针对美国西屋固化技术实际应用中存在的问题,在保持原固化设备及工艺操作基本不变的前提下,提高放射性含硼浓缩液的包容量,确保废物水泥固化产品各项性能满足标准要求。
为实现此目的,在基础的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,所述的放射性废物为放射性含硼浓缩液,所述的方法依次包括如下步骤:
(1)在废物桶中先加入放射性废物,再加入石灰和添加剂,搅拌10-15min后加入水泥继续搅拌10-15min;
(2)将完成搅拌的废物桶加盖后转移至养护间进行养护。
在一种优选的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,其中步骤(1)中,水泥、放射性含硼浓缩液、石灰、添加剂的质量比为150:30-35:100-120:1-3。
在一种优选的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,其中步骤(1)中,步骤(1)中,所述的添加剂为Glenium C333(德国巴斯夫公司)。
在一种优选的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,其中步骤(1)中,所述的水泥为普通硅酸盐水泥。
在一种优选的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,其中步骤(1)中,所述的水泥分2-5次加入,每次加入时间间隔为10-15min。
在一种优选的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,其中步骤(2)中,所述的养护时间为28天-90天。
在一种优选的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,其中步骤(2)中,所述的养护温度为20-30℃。
在一种优选的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,其中步骤(2)中,所述的养护相对湿度≥90%。
在一种优选的实施方案中,本发明提供一种放射性废物的水泥固化处理方法,其中步骤(2)中,还在养护期间定期取样检测固化体性能。
本发明的有益效果在于,利用本发明的放射性废物的水泥固化处理方法,能够针对美国西屋固化技术实际应用中存在的问题,在保持原固化设备及工艺操作基本不变的前提下,提高放射性含硼浓缩液的包容量,确保废物水泥固化产品各项性能满足标准要求。
本发明解决了已建核电厂西屋固化技术应用中存在的实际问题,提高了放射性废物的包容量,简化了各废物产生单位的物料采购流程,降低了物料采购成本和物料贮存管理要求,在有效降低放射性废物处理成本的同时,提升了国内在放射性废物处理领域的技术储备。
本发明可直接应用于国内现有核电西屋固化工艺的水泥属地化和国产化,可推广应用于其他各类核设施运行和退役过程中,及其他核相关活动中产生的放射性含硼浓缩液的水泥稳定化处理。
本发明的有益效果具体体现在:
(1)固化所需水泥的属地化和普通化。自岭澳二期以来,国内多个新建核电机组陆续配套引进了美国西屋的放射性废物水泥固化系统。该系统实现了废物水泥固化的精细化处理,但对固化所需的水泥、添加剂等均有严格的要求,包括厂家和牌号。如该系统要求采用广州粤秀PII 42.5R水泥,该水泥属于特殊水泥,需要按照用户的需求单独生产,这给各新建核电厂,特别是北方核电厂水泥的采购和贮存造成了较大难度。本发明针对上述问题,通过实验室规模、200L和400L规模的放大验证三个阶段,研究了采用各核电厂所属当地的普通P.O42.5水泥代替原固化系统要求的指定厂家及牌号的特殊水泥的可行性,实现了核电厂固化所需水泥的属地化和普通化,很大程度上节约了采购和贮存的成本。
(2)提高了废物的包容量。本发明使用核电厂所属当地厂家生产的普通硅酸盐水泥,经改进后的固化配方为:水泥:含硼浓缩液:石灰:添加剂=150:30-35:100-120:1-3(质量比)。按照上述改进后方法,含硼浓缩液体积包容量从47%提升到了58%。因此,本发明明显提高了废物的包容量,减少了废物桶产生量,降低了废物处置成本。经估算,固化1000kg含硼浓缩液所需材料费从5800元降低至1800元,每吨废物处理成本降低约69.29%。
(3)固化体满足GB14569.1-2011的各项要求。固化方法改进的前提和基本要求是水泥固化体性能必须满足国家标准要求。本发明以西屋处理系统原有工艺为设计输入,在符合处理设备相关操作技术要求的前提下,兼顾了废物包容量的提高。经实验室、200L和400L三个阶段性能测试和验证,按照本发明制备的含硼浓缩液的水泥固化体性能均满足GB14569.1-2011的各项要求。
具体实施方式
以下结合实施例对本发明的具体实施方式作出进一步的说明。
实施例1:放射性含硼浓缩液的水泥固化处理(一)
放射性含硼浓缩液的组成、特性为:硼浓度为40000ppm,含盐量250.0g/kg,钠硼比为0.23,pH值为6.7,137Cs活度浓度为9.59E+04Bq/L,90Sr活度浓度为4.53E+01Bq/L,60Co活度浓度为8.14E+03Bq/L。
该放射性含硼浓缩液采用如下方法步骤进行水泥固化处理。
(1)在废物桶中先加入放射性含硼浓缩液,再加入石灰和添加剂Glenium C333,搅拌15min后分2次加入水泥(为普通硅酸盐水泥),每次加入时间间隔为15min,继续搅拌15min。水泥、放射性含硼浓缩液、石灰、添加剂Glenium C333的质量比为150:30:100:1。
(2)将完成搅拌的200L废物桶加盖后转移至养护间,20℃、90%相对湿度进行养护28天,养护期间定期取样检测固化体性能。
实施例2:放射性含硼浓缩液的水泥固化处理(二)
放射性含硼浓缩液的组成、特性为:硼浓度为40000ppm,含盐量250g/kg,钠硼比为0.23,pH值为6.7,137Cs活度浓度为9.59E+04Bq/L,90Sr活度浓度为4.53E+01Bq/L,60Co活度浓度为8.14E+03Bq/L。
该放射性含硼浓缩液采用如下方法步骤进行水泥固化处理。
(1)在废物桶中先加入放射性含硼浓缩液,再加入石灰和Glenium C333,搅拌10min后分5次加入水泥(为普通硅酸盐水泥),每次加入时间间隔为10min,继续搅拌10min。水泥、放射性含硼浓缩液、石灰、Glenium C333的质量比为150:35:120:3。
(2)将完成搅拌的400L废物桶加盖后转移至养护间,30℃、95%相对湿度进行养护60天,养护期间定期取样检测固化体性能。
实施例3:放射性含硼浓缩液的水泥固化处理(三)
放射性含硼浓缩液的组成、特性为:硼浓度为40000ppm,含盐量250g/kg,钠硼比为0.23,pH值为6.7,137Cs活度浓度为9.59E+04Bq/L,90Sr活度浓度为4.53E+01Bq/L,60Co活度浓度为8.14E+03Bq/L。
该放射性含硼浓缩液采用如下方法步骤进行水泥固化处理。
(1)在废物桶中先加入放射性含硼浓缩液,再加入石灰和Glenium C333,搅拌13min后分3次加入水泥(为普通硅酸盐水泥),每次加入时间间隔为13min,继续搅拌13min。水泥、放射性含硼浓缩液、石灰、Glenium C333的质量比为150:32:110:2。
(2)将完成搅拌的200L废物桶加盖后转移至养护间,25℃、93%相对湿度进行养护90天,养护期间定期取样检测固化体性能。
实施例4:实施例1-3完成养护的固化体样品检测
分别将实施例1-3完成养护的固化体样品进行性能检测,检测项目、检测方法及结果如下。
(1)抗压强度检测按照GB14569.1-2011的规定,实施例1-3的样品测量值相对偏差均未超出平均值的±20%,计算其平均抗压强度为27.4MPa。
(2)抗浸泡性检测按照GB14569.1-2011的规定,实施例1-3的样品经抗浸泡试验后的抗压强度都大于7MPa,测量值相对偏差均未超出平均值的±20%,3个样品的平均抗压强度值为36.7Mpa,与抗浸泡试验前的抗压强度相比,水泥固化体抗浸泡性试验后的平均抗压强度增加了33.9%,无抗压损失。
(3)耐γ辐照性检测按照GB14569.1-2011的规定,实施例1-3的样品经辐照试验后的抗压强度都大于7MPa,3个测量值相对偏差均未超出平均值的±20%,3个样品的平均抗压强度值为34.0MPa,与辐照试验前的抗压强度相比,水泥固化体耐γ辐照性试验后的平均抗压强度增加了24.1%,无抗压损失。
(4)抗冻融性检测按照GB 14569.1-2011的规定,实施例1-3的样品经抗冻融试验循环后的抗压强度都大于7MPa,3个测量值相对偏差均未超出平均值的±20%,3个样品的平均抗压强度值为31.0MPa,与抗冻融性试验前的抗压强度相比,抗冻融性试验后的平均抗压强度增加了13.2%,无抗压损失。
(5)抗冲击性能检测按照GB 14569.1-2011的规定,实施例1-3的样品经抗冲击试验后,1个样品有棱角小碎块,1个样品有棱角大碎块,1个样品破碎为两块。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。

Claims (9)

1.一种放射性废物的水泥固化处理方法,其特征在于,所述的放射性废物为放射性含硼浓缩液,所述的方法依次包括如下步骤:
(1)在废物桶中先加入放射性废物,再加入石灰和添加剂,搅拌10-15min后加入水泥继续搅拌10-15min;
(2)将完成搅拌的废物桶加盖后转移至养护间进行养护。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中,水泥、放射性含硼浓缩液、石灰、添加剂的质量比为150:30-35:100-120:1-3。
3.根据权利要求1所述的方法,其特征在于:步骤(1)中,所述的添加剂为GleniumC333。
4.根据权利要求1所述的方法,其特征在于:步骤(1)中,所述的水泥为普通硅酸盐水泥。
5.根据权利要求1所述的方法,其特征在于:步骤(1)中,所述的水泥分2-5次加入,每次加入时间间隔为10-15min。
6.根据权利要求1所述的方法,其特征在于:步骤(2)中,所述的养护时间为28天-90天。
7.根据权利要求1所述的方法,其特征在于:步骤(2)中,所述的养护温度为20-30℃。
8.根据权利要求1所述的方法,其特征在于:步骤(2)中,所述的养护相对湿度≥90%。
9.根据权利要求1所述的方法,其特征在于:步骤(2)中,还在养护期间定期取样检测固化体性能。
CN201910536986.7A 2019-06-20 2019-06-20 一种放射性废物的水泥固化处理方法 Active CN110491537B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910536986.7A CN110491537B (zh) 2019-06-20 2019-06-20 一种放射性废物的水泥固化处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910536986.7A CN110491537B (zh) 2019-06-20 2019-06-20 一种放射性废物的水泥固化处理方法

Publications (2)

Publication Number Publication Date
CN110491537A true CN110491537A (zh) 2019-11-22
CN110491537B CN110491537B (zh) 2023-06-23

Family

ID=68545893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910536986.7A Active CN110491537B (zh) 2019-06-20 2019-06-20 一种放射性废物的水泥固化处理方法

Country Status (1)

Country Link
CN (1) CN110491537B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122028A (en) * 1976-01-28 1978-10-24 Nukem Nuklear-Chemie Und Metallurgie Gmbh Process for solidifying and eliminating radioactive borate containing liquids
EP0005902A1 (en) * 1978-05-18 1979-12-12 Imperial Chemical Industries Plc Self-setting or water-settable isocyanate compositions and methods for their formation
JPS6435400A (en) * 1987-07-31 1989-02-06 Yoshino Gypsum Co Solidifying material for radioactive waste
US4906408A (en) * 1987-12-02 1990-03-06 Commissariat A L'energie Atomique Means for the conditioning of radioactive or toxic waste in cement and its production process
US5100586A (en) * 1990-07-20 1992-03-31 E. Khashoggi Industries Cementitious hazardous waste containers and their method of manufacture
JPH0716599A (ja) * 1993-06-18 1995-01-20 Ousui Sangyo Kk 有害重金属等含有廃棄物の無害化安定化処理方法
JP2000338295A (ja) * 1999-05-26 2000-12-08 Oosui Kosan Kk 原子炉等の廃液固化用セメント材料
CN102208224A (zh) * 2011-05-19 2011-10-05 清华大学 一种硫铝酸盐水泥固化放射性含硼蒸残液的方法
CN102467984A (zh) * 2010-11-19 2012-05-23 中国辐射防护研究院 一种高活度废放射源整备方法及其专用装置
CN102800377A (zh) * 2012-07-16 2012-11-28 中广核工程有限公司 核电废弃物的水泥固化方法
CN103366851A (zh) * 2013-07-15 2013-10-23 中广核工程有限公司 放射性湿废物水泥固化方法
CN103886926A (zh) * 2012-12-21 2014-06-25 中核核电运行管理有限公司 一种放射性浓缩液固化配方
JP2017207297A (ja) * 2016-05-16 2017-11-24 株式会社東芝 放射性廃液の処理方法
CN107405654A (zh) * 2015-02-27 2017-11-28 三菱日立电力系统株式会社 废弃物的水泥固化处理装置及其方法、无排水化废气处理系统及其方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122028A (en) * 1976-01-28 1978-10-24 Nukem Nuklear-Chemie Und Metallurgie Gmbh Process for solidifying and eliminating radioactive borate containing liquids
EP0005902A1 (en) * 1978-05-18 1979-12-12 Imperial Chemical Industries Plc Self-setting or water-settable isocyanate compositions and methods for their formation
JPS6435400A (en) * 1987-07-31 1989-02-06 Yoshino Gypsum Co Solidifying material for radioactive waste
US4906408A (en) * 1987-12-02 1990-03-06 Commissariat A L'energie Atomique Means for the conditioning of radioactive or toxic waste in cement and its production process
US5100586A (en) * 1990-07-20 1992-03-31 E. Khashoggi Industries Cementitious hazardous waste containers and their method of manufacture
JPH0716599A (ja) * 1993-06-18 1995-01-20 Ousui Sangyo Kk 有害重金属等含有廃棄物の無害化安定化処理方法
JP2000338295A (ja) * 1999-05-26 2000-12-08 Oosui Kosan Kk 原子炉等の廃液固化用セメント材料
CN102467984A (zh) * 2010-11-19 2012-05-23 中国辐射防护研究院 一种高活度废放射源整备方法及其专用装置
CN102208224A (zh) * 2011-05-19 2011-10-05 清华大学 一种硫铝酸盐水泥固化放射性含硼蒸残液的方法
CN102800377A (zh) * 2012-07-16 2012-11-28 中广核工程有限公司 核电废弃物的水泥固化方法
CN103886926A (zh) * 2012-12-21 2014-06-25 中核核电运行管理有限公司 一种放射性浓缩液固化配方
CN103366851A (zh) * 2013-07-15 2013-10-23 中广核工程有限公司 放射性湿废物水泥固化方法
CN107405654A (zh) * 2015-02-27 2017-11-28 三菱日立电力系统株式会社 废弃物的水泥固化处理装置及其方法、无排水化废气处理系统及其方法
JP2017207297A (ja) * 2016-05-16 2017-11-24 株式会社東芝 放射性廃液の処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
安鸿翔;范智文;程理;: "含硼废液水泥固化技术综述", 辐射防护 *
李洪辉;范智文;: "核电站放射性废物水泥固化处理", 辐射防护通讯 *

Also Published As

Publication number Publication date
CN110491537B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN105741899B (zh) 一种放射性含硼废液的固化处理添加剂、固化配方及工艺
CN104658627B (zh) 一种用于低中放废物玻璃固化处理的固化体及方法
KR101720397B1 (ko) 원자력 발전소의 붕소 함량이 높은 방사성 폐수지에 사용하는 시멘트 고화 레시피 및 고화 방법
CN105294039A (zh) 一种钢渣植生混凝土
CN107032699A (zh) 盐渍土轻质固化剂及其处理盐渍土的方法
CN102800377B (zh) 核电废弃物的水泥固化方法
CN102557727B (zh) 建筑用水泥基渗透硬化材料及其制备方法
CN110078403A (zh) 一种超早强无碱液体速凝剂及其制备方法
CN107879569A (zh) 一种新型有机无机复合淤泥固化剂及其使用方法和应用
CN110491537A (zh) 一种放射性废物的水泥固化处理方法
CN103288375B (zh) 一种混凝土外加剂及其制备方法
CN110232981A (zh) 放射性废物的水泥固化处理方法
CN109453493A (zh) 用于处理含铍废渣的稳定化药剂及其制备方法和应用
CN113336460B (zh) 一种防辐射混凝土用功能集料及其制备方法
CN108585678A (zh) 一种高强度抗辐射混凝土
CN103708804B (zh) 一种泥浆固化方法
JP2001208896A (ja) 沸騰水型原子力発電所から生じた低レベル放射性湿潤廃棄物の共固化方法
RU2483375C2 (ru) Композиционный материал для иммобилизации жидких радиоактивных отходов и способ его применения
CN105801066A (zh) 用于沿海地区氯盐渍土路基处理的固化剂及其固化方法
Lu et al. Application of response surface methodology in organic matter soil stabilization
Gharieb et al. Influence of some industrial wastes as a heavy aggregate on durability of concrete upon utilization in the special constructions
CN115159917B (zh) 一种水泥固化处理放射性废树脂的配方及方法
CN110343528A (zh) 利用充填原理修复铬污染土壤的药剂和利用充填原理修复铬污染土壤的方法
TWI769019B (zh) 利用重金屬污染土壤再製之多孔輕質粒料、及其製作方法
CN117902869A (zh) 一种以磷石膏为主要原料的流态固化土及专用固化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant