CN110488553B - 一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法 - Google Patents

一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法 Download PDF

Info

Publication number
CN110488553B
CN110488553B CN201910786826.8A CN201910786826A CN110488553B CN 110488553 B CN110488553 B CN 110488553B CN 201910786826 A CN201910786826 A CN 201910786826A CN 110488553 B CN110488553 B CN 110488553B
Authority
CN
China
Prior art keywords
metal grating
layer
tunable
refractive index
grating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910786826.8A
Other languages
English (en)
Other versions
CN110488553A (zh
Inventor
金柯
刘永强
王颖辉
韩俊
杨崇民
杨海成
王慧娜
刘青龙
张建付
李明伟
赵兴梅
米高园
王松林
董莹
黎明
杨建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian institute of Applied Optics
Original Assignee
Xian institute of Applied Optics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian institute of Applied Optics filed Critical Xian institute of Applied Optics
Priority to CN201910786826.8A priority Critical patent/CN110488553B/zh
Publication of CN110488553A publication Critical patent/CN110488553A/zh
Application granted granted Critical
Publication of CN110488553B publication Critical patent/CN110488553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本发明提出一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法,滤光器依次由基底、HL交替组成的多层反射膜系、下层金属光栅层、可调谐间隔层、上层金属光栅层、HL交替组成的多层反射膜系组成;可调谐间隔层材料为随外加电场材料折射率可变的材料,上下层金属光栅分别作为可调谐间隔层的上下电极层。基于干涉膜系理论并结合亚波长金属光栅类Fabry‑Preot腔共振理论,本发明采用多层膜结合双层金属光栅的结构设计出中心波长可调谐的双通道窄带偏振滤光片。与现有技术相比,本发明光谱性能优良,环境适应性好,结构简单,能够实现中心波长可调谐。

Description

一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法
技术领域
本发明涉及偏振滤光技术领域,具体为一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法。
背景技术
由于光学系统越来越复杂,为了简化光学系统整体结构,提升光学系统的集成度和可靠性,双通道窄带滤光片的应用日益增多。
传统的双通道窄带滤光片主要是根据光的干涉效应,采用多层光学薄膜来设计的。这种制备方法往往中心波长不可调谐,膜层数多,总膜层厚度较厚,尤其是红外波段厚度达几十微米以上,造成环境适应性差且膜层容易脱落,给制备带来极大困难,而且这种方法不能实现偏振滤光,需要在光学系统中增加偏振片,这样就增加了光路的复杂性。
光栅滤光技术具有更窄的光谱线宽,能实现传统滤光片无法实现的亚纳米级光谱滤光宽度。但是单纯的金属光栅滤光中心波长不可调谐,光能损耗大,截止带窄,截止带透过率高。
发明内容
为了克服上述现有技术不足,本发明基于干涉膜系理论并结合亚波长金属光栅类Fabry-Preot腔共振理论,提出采用多层膜结合双层金属光栅的结构设计出中心波长可调谐的双通道窄带偏振滤光片。
本发明的技术方案为:
所述一种基于金属光栅的可调谐双通道窄带偏振滤光器,其特征在于:所述滤光器依次由:基底、HL交替组成的多层反射膜系、下层金属光栅层、可调谐间隔层、上层金属光栅层、HL交替组成的多层反射膜系组成;其中H代表高折射率材料,L代表低折射率材料,HL交替组成的多层反射膜系结构为(HL)nH,n≥1;所述可调谐间隔层材料为随外加电场材料折射率可变的材料,上下层金属光栅分别作为可调谐间隔层的上下电极层。
对上述基于金属光栅的可调谐双通道窄带偏振滤光器进行调谐的方法,其特征在于:
对于其中一个透射峰的波长λ1,根据以下公式调谐:
Figure BDA0002178307180000021
其中φ1和φ2为上下两个多层反射膜系的反射位相,L为两层金属光栅层的总厚度,d为两层金属光栅层之间的可调谐间隔层厚度,m为正整数;nTM为金属光栅层中TM光的等效折射率,根据公式
Figure BDA0002178307180000022
确定,其中f为金属光栅层的占空比,nm为金属光栅层中的金属折射率,nd为金属光栅层中金属之间介质的折射率;
对于另一个透射峰的波长λ2,根据以下公式调谐:
2neffL+2ndd=kλ2
其中k为共振模式数,neff为金属光栅层中相邻金属之间狭缝的有效折射率,根据neff=β/k0确定,其中k0=2π/λ2,β为复传播常数,根据公式
Figure BDA0002178307180000023
确定,w为金属光栅层中相邻金属之间狭缝宽度。
有益效果
与现有技术相比,本发明光谱性能优良,环境适应性好,结构简单,能够实现中心波长可调谐。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1可调谐双通道窄带滤光器结构;
图2几种不同的光栅电极结构。
具体实施方式
下面详细描述本发明的实施例,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
可调谐双通道窄带偏振滤光器横截面结构如图1所示,从下往上依次为:基底、HL交替组成的多层反射膜系、下层金属光栅层、可调谐间隔层、上层金属光栅层、HL交替组成的多层反射膜系组成;其中H代表高折射率材料,L代表低折射率材料,HL交替组成的多层反射膜系结构为(HL)nH,n≥1,反射膜系中心波长为传统窄带滤光片中心波长。
金属光栅电极结构如图2所示,双层金属光栅由下层金属光栅层、可调谐间隔层、上层金属光栅层组成。所述可调谐间隔层材料为随外加电场材料折射率可变的材料,上下层金属光栅分别作为可调谐间隔层的上下电极层,通过上下金属光栅给间隔层施加电场时,间隔层的折射率随电场变化,导致间隔层光学厚度随电场变化,从而使滤光器中心波长改变。
本发明中提出的可调谐双通道窄带偏振滤光器,其双通道透射峰产生机理为:
光入射到亚波长金属光栅表面时,TE偏振光被反射,TM偏振光可以透过,所以对于TM偏振光亚波长金属光栅等效为一介质层。由于亚波长金属光栅偏振透射选择性质,所以采用双层金属光栅代替多层介质窄带滤光片中的间隔层,从而得到透射TM光的双通道窄带偏振滤光片。
对于其中一个透射峰的波长λ1,根据以下公式确定:
Figure BDA0002178307180000031
其中φ1和φ2为上下两个多层反射膜系的反射位相,L为两层金属光栅层的总厚度,d为两层金属光栅层之间的可调谐间隔层厚度,m为正整数;nTM为金属光栅层中TM光的等效折射率,根据等效介质理论,通过公式
Figure BDA0002178307180000032
确定,其中f为金属光栅层的占空比,nm为金属光栅层中的金属折射率,nd为金属光栅层中金属之间介质的折射率。
另一个窄带透射峰机理为:光通过双层金属光栅时,相当于通过一个类Fabry-Preot腔的结构,当入射光波长与双层金属光栅的厚度之间满足谐振公式时,对应的波长形成透射增强峰。所以对于另一个透射峰的波长λ2,根据以下公式确定:
2neffL+2ndd=kλ2
其中k为共振模式数,neff为金属光栅层中相邻金属之间狭缝的有效折射率,根据neff=β/k0确定,其中k0=2π/λ2,β为入射光在亚波长金属狭缝中的复传播常数,根据公式
Figure BDA0002178307180000041
确定,w为金属光栅层中相邻金属之间狭缝宽度。
通过以上分析,我们可以通过合理设计各层厚度以及选择金属光栅层中介质来调节窄带干涉滤光片中心波长λ1;通过设计金属光栅狭缝宽度、各层厚度及狭缝中介质来调节类Fabry-Preot腔透射峰波长λ2,从而实现中心波长可调谐。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (1)

1.一种基于金属光栅的可调谐双通道窄带偏振滤光器进行调谐的方法,其特征在于:
所述滤光器依次由:基底、HL交替组成的多层反射膜系、下层金属光栅层、可调谐间隔层、上层金属光栅层、HL交替组成的多层反射膜系组成;其中H代表高折射率材料,L代表低折射率材料,HL交替组成的多层反射膜系结构为(HL)nH,n≥1;所述可调谐间隔层材料为随外加电场材料折射率可变的材料,上下层金属光栅分别作为可调谐间隔层的上下电极层;
对于滤光器双通道透射峰而言:
其中一个透射峰的波长λ1,根据以下公式调谐:
Figure FDA0004075876360000011
其中φ1和φ2为上下两个多层反射膜系的反射位相,L为两层金属光栅层的总厚度,d为两层金属光栅层之间的可调谐间隔层厚度,m为正整数;nTM为金属光栅层中TM光的等效折射率,根据公式
Figure FDA0004075876360000012
确定,其中f为金属光栅层的占空比,nm为金属光栅层中的金属折射率,nd为金属光栅层中金属之间介质的折射率;
对于另一个透射峰的波长λ2,根据以下公式调谐:
2neffL+2ndd=kλ2
其中k为共振模式数,neff为金属光栅层中相邻金属之间狭缝的有效折射率,根据neff=β/k0确定,其中k0=2π/λ2,β为复传播常数,根据公式
Figure FDA0004075876360000013
确定,w为金属光栅层中相邻金属之间狭缝宽度。
CN201910786826.8A 2019-08-24 2019-08-24 一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法 Active CN110488553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910786826.8A CN110488553B (zh) 2019-08-24 2019-08-24 一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910786826.8A CN110488553B (zh) 2019-08-24 2019-08-24 一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法

Publications (2)

Publication Number Publication Date
CN110488553A CN110488553A (zh) 2019-11-22
CN110488553B true CN110488553B (zh) 2023-04-11

Family

ID=68553821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910786826.8A Active CN110488553B (zh) 2019-08-24 2019-08-24 一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法

Country Status (1)

Country Link
CN (1) CN110488553B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927869B (zh) * 2019-12-12 2021-06-04 深圳先进技术研究院 一种宽带反射器及电磁波反射方法
CN111221065A (zh) * 2020-01-16 2020-06-02 集美大学 一种基于双层不对称金属微纳光栅的双波长滤波器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158907A (ja) * 2011-02-03 2011-08-18 Pgt Photonics Spa チューナブル共鳴格子フィルタ
CN108680981A (zh) * 2018-05-16 2018-10-19 德州尧鼎光电科技有限公司 一种深紫外窄带滤光片制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726805A (en) * 1996-06-25 1998-03-10 Sandia Corporation Optical filter including a sub-wavelength periodic structure and method of making
JP5625614B2 (ja) * 2010-08-20 2014-11-19 セイコーエプソン株式会社 光フィルター、光フィルターモジュール、分光測定器および光機器
CN102929000B (zh) * 2012-11-30 2014-11-26 上海理工大学 一种可调谐高消光比金属光栅偏振器
JP6320057B2 (ja) * 2014-01-29 2018-05-09 キヤノン株式会社 光学フィルタおよび光学装置
CN104793277B (zh) * 2015-04-29 2017-10-31 东南大学 基于表面等离子体激元的透射式滤波器
US10642056B2 (en) * 2016-10-19 2020-05-05 CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Développement Multispectral or hyperspectral imaging and imaging system based on birefringent subwavelength resonating structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158907A (ja) * 2011-02-03 2011-08-18 Pgt Photonics Spa チューナブル共鳴格子フィルタ
CN108680981A (zh) * 2018-05-16 2018-10-19 德州尧鼎光电科技有限公司 一种深紫外窄带滤光片制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
庄新港等.角度调谐短波红外光谱组件光谱分辨率特性研究.红外与毫米波学报.2018,第37卷(第37期),全文. *

Also Published As

Publication number Publication date
CN110488553A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
US6788461B2 (en) Wire grid polarizer
JP4152645B2 (ja) ワイヤグリッド偏光子
JP4800437B2 (ja) 可視スペクトル用の広帯域ワイヤグリッド偏光子
US7046442B2 (en) Wire grid polarizer
KR100744863B1 (ko) 가시 광선 대역에 대한 삽입형 와이어 격자 편광자
JP2004280050A5 (zh)
CN110488553B (zh) 一种基于金属光栅的可调谐双通道窄带偏振滤光器及调谐方法
US8937277B2 (en) Mono- or multifrequency optical filter, and detector comprising such a filter
WO2012105555A1 (ja) 波長選択フィルタ素子、その製造方法及び画像表示装置
US10222675B2 (en) Thin film plasmonic optical modulator
CN111090176B (zh) 一种反射不对称的金属光栅偏振分束器
WO2021115069A1 (zh) 一种宽带反射器及电磁波反射方法
JP2008276074A (ja) 光通信用フィルタ及びこれを用いた光通信用モジュール
CN113138441A (zh) 一种基于浅刻圆盘结构的高品质因子介质纳米天线及其应用
KR100762204B1 (ko) 광학 다층 박막 제조방법
JP2006251763A (ja) 分光レンズのフィルム層構造
Turki Optimization design of band pass filter in the infrared region
CN111221065A (zh) 一种基于双层不对称金属微纳光栅的双波长滤波器
CN100373185C (zh) 相对位置可独立调整的通道通带滤光片
KR20140063335A (ko) 선격자 편광자 및 그 제조방법
CN116626794A (zh) 一种基于导模共振原理的超窄带高透射滤光片
RU2256942C1 (ru) Отражающее покрытие
CN115291312A (zh) 一种反射型红外梳状滤波薄膜及其参数设计方法
Zhang et al. Design and Analysis of Multilayered Waveguide Structure with Metal-Dielectric Gratings for Sensing with Reflection Narrowband Notch Filter
Wang et al. Binary-phase metal-based sandwiched grating with high efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant