CN110484237B - 一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法 - Google Patents

一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法 Download PDF

Info

Publication number
CN110484237B
CN110484237B CN201910721854.1A CN201910721854A CN110484237B CN 110484237 B CN110484237 B CN 110484237B CN 201910721854 A CN201910721854 A CN 201910721854A CN 110484237 B CN110484237 B CN 110484237B
Authority
CN
China
Prior art keywords
mmi
cuncs
ionic liquid
bmim
rapidly synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910721854.1A
Other languages
English (en)
Other versions
CN110484237A (zh
Inventor
韩冰雁
闫琴
姜静美
辛泽
贺高红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910721854.1A priority Critical patent/CN110484237B/zh
Publication of CN110484237A publication Critical patent/CN110484237A/zh
Application granted granted Critical
Publication of CN110484237B publication Critical patent/CN110484237B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法,得到的CuNCs@MMI具有合成时间短、荧光强度高、高规整三角形构型的性质,属于荧光纳米材料技术领域。利用IL在水中可自组装的特点,以组装后的IL为模板来合成高规整构型的CuNCs@MMI,所得到的CuNCs@MMI具有一定的优势,与不加IL相比,IL辅助条件下可加快CuNCs@MMI的合成;与水相、乙醇相相比,基于IL的CuNCs@MMI具有强荧光强度与高规整三角形构型的特性,极大地扩展了MNCs的应用。

Description

一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法
技术领域
本发明涉及一种在离子液体(Ionic Liquids,IL)辅助的条件下,可快速合成高荧光强度的甲巯咪唑(2-Mercapto-1-methylimidazole,MMI)保护的铜纳米簇(CopperNanoclusters,CuNCs)的方法,且得到的CuNCs@MMI为高规整的三角形构型,属于荧光纳米材料领域。
背景技术
金属纳米簇(Metal Nanoclusters,MNCs)是由几个或几十个原子构成的分子级聚集体,其具有独特的物理、化学及光学性质。与半导体量子点、有机荧光染料相比,具有尺寸小、毒性低、生物相容性好等优点,使其在化学传感、细胞成像、离子检测等方面广泛受到人们的关注。但随着人们对其深入的研究后,发现其仍存在一些问题,如:荧光强度低、稳定性差、反应时间长、无高规整构型等缺点,这在一定程度上限制了MNCs的应用。
目前,一些课题组引入金属有机框架、表面活性剂以及双保护剂等措施来提高MNCs的荧光强度及稳定性,并取得了显著的效果,均在一定程度上降低了MNCs的非辐射跃迁,增强了MNCs的荧光强度与稳定性。但在合成MNCs的过程中,所需的反应合成时间较长且合成的MNCs无特定的高规整构型等缺点,并未得到有效解决。
因此,为了得到合成时间短、高规整构型的MNCs,IL辅助下合成MNCs被认为是一种有效手段,IL的引入不仅改变MNCs的生存环境(高极化率),而且提供更多与MNCs结合的位点(用作模板),进一步影响MNCs的发光性质和调控MNCs的形貌。
发明内容
针对现有技术存在的问题,本发明提供了一种基于IL的可快速合成CuNCs@MMI的方法,得到的CuNCs@MMI具有合成时间短、荧光强度高、特定高规整构型等优良的特性。即:①与不加IL相比,IL存在的条件下可加快CuNCs@MMI的合成。②与水相、乙醇相相比,基于IL的CuNCs@MMI的荧光强度更高。③基于IL的CuNCs@MMI为特定的高规整的三角形构型。
本发明的技术方案:
一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法,其特征在于,步骤如下:以Cu(NO3)2·3H2O的IL溶液与MMI的水溶液为前驱体,调pH=12,365nm紫外灯下照射立即呈蓝绿色荧光,室温搅拌1~5h后,得呈蓝绿色荧光的CuNCs@MMI IL/水溶液;冷冻干燥后,即得高规整三角形构型的CuNCs@MMI材料。
所述的IL为[Bmim]BF4、[BMMIm]BF4、N(Et)4BF4、[BPy]BF4、[Bmim]Cl、[Bmim]NO3或[Bmim]SO3CF3
所述的MMI与Cu(NO3)2·3H2O的物质的量之比为2:1。
所述的室温搅拌3h。
与单独水相、单独乙醇相相比,具有强荧光强度与高规整三角形构型的性质。
本发明利用IL在水中可自组装的特点,以组装后的IL为模板来合成基于IL的具有高规整构型的CuNCs@MMI。所形成的基于IL的CuNCs@MMI具有一定的优势,与不加IL相比,IL辅助的条件下可加快CuNCs@MMI的合成;与水相、乙醇相相比,基于IL的CuNCs@MMI具有强荧光强度与高规整三角形构型的特性。
本发明的有益成果为:IL参与的条件下,合成的CuNCs@MMI不仅具有合成时间短、高荧光强度的性质,而且具有高规整三角形构型的特性。
附图说明
图1为实施例1所得不同V(IL):V(水)条件下的CuNCs@MMI的荧光光谱图;
图2为实施例2所得不同相中合成CuNCs@MMI的荧光光谱图;
图3为实施例3所得基于IL的CuNCs@MMI的X射线光电子能谱图;
图4(a)为5μm下,实施例3所得基于IL的CuNCs@MMI的扫描电子显微镜图;
图4(b)为10μm下,实施例3所得基于IL的CuNCs@MMI的扫描电子显微镜图;
图5为实施例3所得基于IL的CuNCs@MMI的红外光谱图;
图6(a)为100nm下,实施例3所得基于IL的CuNCs@MMI的透射电子显微镜图;
图6(b)为20nm下,实施例3所得基于IL的CuNCs@MMI的透射电子显微镜图;
图6(c)为实施例3所得基于IL的CuNCs@MMI的粒径分布图。
具体实施方式
下述的非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所使用的试剂等均可从化学或生物试剂公司购买。
以下结合技术方案详细叙述本发明的具体实施方式。
实施例1
以水与IL(以[Bmim]BF4为例)作共同溶剂,配成不同比例的IL/水混合溶剂,其总体积保持4mL,将MMI与Cu(NO3)2·3H2O按物质的量之比为2:1溶于该混合溶剂,保持Cu2+的最终浓度为5mM,搅拌5min后,调pH=12,室温搅拌3h,分别测其荧光强度。
图1为实施例1所得不同V(IL):V(水)条件下的CuNCs@MMI的荧光光谱图,由图可以看出,当V(IL):V(水)=2:2时,CuNCs@MMI的荧光强度最高,当只有IL或只有水作溶剂时,不能合成CuNCs@MMI,因此,可看出IL可加快CuNCs@MMI的合成。
实施例2
分别在水相、乙醇相、IL/水相中合成CuNCs@MMI(IL/水相中的合成路线如发明内容中提出一致,本实验选取[Bmim]BF4为共混溶剂,且其体积比采用V(IL):V(水)=2:2,其余均相同),分别将其纯化后,测其荧光强度。
水相、乙醇相中合成CuNCs@MMI的具体步骤为:
(1)合成CuNCs@MMI(水相):以水作溶剂,将MMI与Cu(NO3)2·3H2O按物质的量之比2:1混合后,向其中加入10μL 64-65%N2H4·H2O,调pH=12,365nm紫外灯下照射无荧光,随着反应的进行,溶液由浅蓝色悬浊液转变为乳白色,室温搅拌3h后,得呈蓝绿色荧光CuNCs@MMI水溶液,以10000r/min的转速将其离心纯化2次,重新溶于水以备用;
(2)合成CuNCs@MMI(乙醇相):以乙醇作溶剂,将MMI与Cu(NO3)2·3H2O按物质的量之比2:1混合后,调pH=12,365nm紫外灯下照射无荧光,随着反应的进行,溶液由深蓝色悬浊液转变为乳白色,室温搅拌3h后,得呈蓝绿色荧光CuNCs@MMI乙醇溶液,静置2h后,将上层清液分离出后重新溶于乙醇,振荡后,再静置,重复上述步骤3次,即得纯化产物。
图2为实施例2所得不同相中合成的CuNCs@MMI的荧光光谱图,从图中可以得到IL/水相中的荧光强度最高,乙醇相次之,水相最弱。
实施例3
将2mL10mM Cu(NO3)2·3H2O的IL(以[Bmim]BF4为例)溶液与2mL 20mMMMI水溶液混合后,室温搅拌5min,调pH=12,溶液由浅蓝色瞬时转变为乳白色,365nm紫外灯照射下呈亮蓝绿色荧光,室温搅拌3h,得CuNCs@MMI IL/水溶液。
图3为实施例3所得基于IL的CuNCs@MMI的X射线光电子能谱图,从图中可看出分别在952eV与932eV处有两峰,表明Cu0的存在,也可能存在Cu+,而942eV处没有峰出现,即无Cu2 +,这些现象均表明CuNCs@MMI已成功合成。图4为实施例3所得基于IL的CuNCs@MMI的扫描电子显微镜图,由图4a可发现基于IL的CuNCs@MMI为高规整的三角形构型,且外层被离子液体所包裹(图4b)。图5为实施例3所得基于IL的CuNCs@MMI的红外光谱图,从图中可看出IL/水相中合成的CuNCs@MMI的外表面确实被IL所覆盖。此外,为了更清晰地观察到单个CuNCs@MMI的形貌,对其进行了透射电子显微镜测试(如图6),图6a与6b可得出特定三角形构型的CuNCs@MMI由许多小颗粒构成,且小颗粒的粒径范围为2.32nm~3.28nm,其平均粒径为2.84nm(图6c),这些均表明基于IL的CuNCs@MMI的成功合成。

Claims (3)

1.一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法,其特征在于,步骤如下:以Cu(NO3)2·3H2O的离子液体溶液与MMI的水溶液为前驱体,调pH=12,365nm紫外灯下照射立即呈蓝绿色荧光,室温搅拌1~5h后,得呈蓝绿色荧光的CuNCs@MMI离子液体/水溶液;冷冻干燥后,即得高规整三角形构型的CuNCs@MMI材料,所述MMI为甲巯咪唑,所述的CuNCs为铜纳米簇;
所述的离子液体为[Bmim]BF4、[BMMIm]BF4、N(Et)4BF4、[BPy]BF4、[Bmim]Cl、[Bmim]NO3或[Bmim]SO3CF3
2.根据权利要求1所述的基于离子液体快速合成形貌可控的CuNCs@MMI的方法,其特征在于,所述的MMI与Cu(NO3)2·3H2O的物质的量之比为2:1。
3.根据权利要求1所述的基于离子液体快速合成形貌可控的CuNCs@MMI的方法,其特征在于,所述的室温搅拌3h。
CN201910721854.1A 2019-08-06 2019-08-06 一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法 Expired - Fee Related CN110484237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910721854.1A CN110484237B (zh) 2019-08-06 2019-08-06 一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910721854.1A CN110484237B (zh) 2019-08-06 2019-08-06 一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法

Publications (2)

Publication Number Publication Date
CN110484237A CN110484237A (zh) 2019-11-22
CN110484237B true CN110484237B (zh) 2021-07-06

Family

ID=68549561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910721854.1A Expired - Fee Related CN110484237B (zh) 2019-08-06 2019-08-06 一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法

Country Status (1)

Country Link
CN (1) CN110484237B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102239108A (zh) * 2008-10-03 2011-11-09 生命科技公司 用于官能化或交联纳米粒子表面上的配体的组合物和方法
CN108841374A (zh) * 2018-05-21 2018-11-20 大连理工大学 一种基于金属有机框架合成超稳定高荧光铜纳米簇的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976726B2 (en) * 2006-04-27 2011-07-12 Siluria Technologies, Inc. Prevention of quantum dot quenching on metal surfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102239108A (zh) * 2008-10-03 2011-11-09 生命科技公司 用于官能化或交联纳米粒子表面上的配体的组合物和方法
CN108841374A (zh) * 2018-05-21 2018-11-20 大连理工大学 一种基于金属有机框架合成超稳定高荧光铜纳米簇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
m-Dinitrobenzene directed aggregation-induced emission enhancement of cysteine modified fluorescent copper nanoclusters;Gaurav Hambarde 等;《Microchemical Journal》;20190731;899-904 *

Also Published As

Publication number Publication date
CN110484237A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN108192602B (zh) 一种具有室温磷光性质的无金属聚合物碳点、制备方法及其应用
Sarkar et al. Green synthesis of silver nanoparticles and its optical properties
Shi et al. Preparation of fluorescent graphene quantum dots from humic acid for bioimaging application
Zhao et al. New luminescent nanoparticles based on carbon dots/SiO2 for the detection of latent fingermarks
Gao et al. Bright hydrophilic and organophilic fluorescence carbon dots: One-pot fabrication and multi-functional applications at visualized Au3+ detection in cell and white light-emitting devices
Li et al. ZnO nanocomposites modified by hydrophobic and hydrophilic silanes with dramatically enhanced tunable fluorescence and aqueous ultrastability toward biological imaging applications
Du et al. Nitrogen-doped carbon dots with heterogeneous multi-layered structures
CN106141200B (zh) 一种碳点/金复合纳米粒子的制备方法及用途
Song et al. Synthesis and characterization of mercaptoacetic acid-modified ZnO nanoparticles
Yang et al. Ag2Te quantum dots with compact surface coatings of multivalent polymers: ambient one-pot aqueous synthesis and the second near-infrared bioimaging
EP3508291A1 (en) Method for preparing solution containing ligand-bonded gold nanoclusters
Wu et al. A versatile platform for the highly efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity–hydrophobicity regulation and organelle imaging
Sun et al. Photoluminescent properties of Y2O3: Eu3+ phosphors prepared via urea precipitation in non-aqueous solution
Gui et al. Multidentate polymers stabilized water-dispersed copper nanoclusters: facile photoreduction synthesis and selective fluorescence turn-on response
Lu et al. Biocompatible fluorescence-enhanced ZrO2–CdTe quantum dot nanocomposite for in vitro cell imaging
Chen et al. PEG-mediated solvothermal synthesis of NaYF4: Yb/Er superstructures with efficient upconversion luminescence
Hu et al. A facile synthesis of NaYF 4: Yb 3+/Er 3+ nanoparticles with tunable multicolor upconversion luminescence properties for cell imaging
CN110237253B (zh) 紫外光介导的纳米颗粒自组装聚集体和应用
CN110484237B (zh) 一种基于离子液体快速合成形貌可控的CuNCs@MMI的方法
CN107552809B (zh) 一种银调节的颜色可控荧光金纳米簇的合成方法
Zhu et al. Fabrication of fluorescent nitrogen-rich graphene quantum dots by tin (IV) catalytic carbonization of ethanolamine
CN108568519A (zh) 一种银纳米复合材料的制备方法和应用
CN110405224B (zh) 一种以氨基苯硫酚为配体一步快速合成铜纳米簇的方法
CN110317606B (zh) 利用溴乙腈和咪唑类化合物制备碳点的方法及产品
CN107551964A (zh) 一种稀土化合物@SiO2核壳型纳米结构的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210706