CN110481533B - 一种机电复合传动系统的实时优化控制方法 - Google Patents

一种机电复合传动系统的实时优化控制方法 Download PDF

Info

Publication number
CN110481533B
CN110481533B CN201910831498.9A CN201910831498A CN110481533B CN 110481533 B CN110481533 B CN 110481533B CN 201910831498 A CN201910831498 A CN 201910831498A CN 110481533 B CN110481533 B CN 110481533B
Authority
CN
China
Prior art keywords
transmission system
compound transmission
engine
electromechanical compound
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910831498.9A
Other languages
English (en)
Other versions
CN110481533A (zh
Inventor
王伟达
项昌乐
韩立金
刘辉
张东好
杨超
吕少平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Sansi Technology Development Co ltd
Beijing Institute of Technology BIT
Original Assignee
Baotou Sansi Technology Development Co ltd
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Sansi Technology Development Co ltd, Beijing Institute of Technology BIT filed Critical Baotou Sansi Technology Development Co ltd
Priority to CN201910831498.9A priority Critical patent/CN110481533B/zh
Publication of CN110481533A publication Critical patent/CN110481533A/zh
Priority to US16/896,461 priority patent/US10940849B1/en
Application granted granted Critical
Publication of CN110481533B publication Critical patent/CN110481533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2756/00Output or target parameters relating to data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本发明公开了一种机电复合传动系统的实时优化控制方法,涉及机电复合传动技术领域,所述方法包括以下步骤:(S0)开始;(S1)状态观测;利用状态观测得到机电复合传动系统中各元件当前的工作状态;(S2)动态预测;利用动态预测得到机电复合传动系统中各元件可行的工作范围;(S3)最优决策;制定并执行最优决策中各元件的最优控制命令;(S4)反馈校正;最后利用状态偏差对机电复合传动系统中的发动机和电机的控制量进行反馈校正;(S5)判断反馈校正是否满足要求,如果反馈校正满足要求,则本步骤结束,如果反馈校正不满足要求,则返回步骤(S1)重新进行。本发明能够根据各元件的状态偏差对相应的控制量进行修正,从而使机电复合传动系统获得良好的工作效率和状态稳定性。

Description

一种机电复合传动系统的实时优化控制方法
技术领域
本发明涉及机电复合传动技术领域,且更具体地涉及一种机电复合传动系统的实时优化控制方法。
背景技术
运行中的机电传动系统可能处于两种状态:稳定的状态(稳态)或变动的状态(动态)。系统处于稳态时动态转矩为零,即系统中拖动转矩(电动机的转矩)与负载转矩相平衡,系统以恒速运转,当系统中拖动转矩或负载转矩发生变化时,存在动态转矩而处于动态,速度处于变化之中。系统就要由一个稳定运转状态变化到另一个稳定运转状态,这个变化过程称为过渡过程。在过渡过程中,电动机的转速、转矩和电流都要按一定的规律变化,它们都是时间的函数。系统的启动、制动、速度改变和负载变化等都会引起过渡过程。对机电复合传动系统而言,发动机的功率远大于动力电池组的功率,通过改变发动机的工作点就可以改变整车的驱动功率,从而实现车速的调节。因此,可以把加速踏板开度信号解释成发动机的目标功率,踏板开度越大表示发动机的目标功率越大。
由于用电设备的工作情况直接决定了整车的安全性能,因此必须优先满足用电设备的功率需求。在此基础上,如果加速踏板开度较小,即动力性能的期望不高,则允许动力电池组工作在最佳状态;如果加速踏板开度较大,则允许电池组大功率充放电,以保证车辆的动力性能。此外,为了保证机电复合传动系统的动态响应特性,当驾驶员的踏板开度剧烈变化时,即发动机的目标转速与实际转速的差值较大时,也允许动力电池组在其能力范围内进行充放电。并得到了发动机和两个电机的最佳状态。然而,在机电复合传动系统进行最优之前,必须获知各元件当前的工作状态及其可行的工作范围。此外,模型的误差和外界的干扰都可能导致各元件的实际状态偏离其目标状态,为了保证控制效果,还需要根据各元件的状态偏差对相应的控制量进行修正,因此,如何控制机电复合传动系统是目前急需解决的技术问题。
发明内容
针对上述技术问题,本发明提供一种机电复合传动系统的实时优化控制方法,能够有效地保证机电复合传动系统的控制效果,能够根据各元件的状态偏差对相应的控制量进行修正,从而使机电复合传动系统获得良好的工作效率和状态稳定性。
为实现上述目的,本发明提供如下技术方案:一种机电复合传动系统的实时优化控制方法,其特征在于:包括以下步骤:
(S0)开始;
(S1)状态观测;利用状态观测得到机电复合传动系统中各元件当前的工作状态;
(S2)动态预测;利用动态预测得到机电复合传动系统中各元件可行的工作范围;
(S3)最优决策;制定并执行最优决策中各元件的最优控制命令;
(S4)反馈校正;最后利用状态偏差对机电复合传动系统中的发动机和电机的控制量进行反馈校正;
(S5)判断反馈校正是否满足要求,如果反馈校正满足要求,则本步骤结束,如果反馈校正不满足要求,则返回步骤(S1)重新进行。
作为本发明进一步的技术方案,所述步骤(S1)状态观测方法为:
采用转矩估计法计算、观测机电复合传动系统的输出转矩,由于所述机电复合传动系统中电机的动态响应时间远小于发动机的动态响应时间,则认为电机的实际转矩等于其目标转矩,用公式表示为:
Figure BDA0002189523240000021
其中Teact表示实际转矩,Je为等效到发动机输出端的转动惯量,单位为kg·m2e为发动机的角速度,单位为rad/s,ηq为后传动效率,iq为发动机到功率耦合机构输入端的传动比,TA、TB为耦合机构的输入转矩和输出转矩,e1和e2表示两种模式下的转矩系数矩阵。
作为本发明进一步的技术方案,所述发动机的加速度通过对所述发动机的转速进行卡尔曼滤波而得到。
作为本发明进一步的技术方案,所述机电复合传动系统利用传感器采集得到母线电压,然后利用所述机电复合传动系统中的电池组模型计算出电流和SOC,其中电池组的电流和SOC的计算公式以下:
Figure BDA0002189523240000022
Figure BDA0002189523240000023
在上述公式中:I(t)表示为电流,放电为正,单位A;Voc表示为开路电压,单位V;Rb表示为内阻,单位Ω;Cb表示为容量,单位Ah;SOC0表示为电池组的初始荷电状态。
作为本发明进一步的技术方案,所述步骤(S2)动态预测的方法为:
所述机电复合传动系统中两个不同的电机不超过所述电机的最高转速,所述机电复合传动系统中发动机在特定的转速范围内工作,满足公式为:
Figure BDA0002189523240000024
Figure BDA0002189523240000025
在EVT1模式下,a1>0,b1=0,故发动机的转速随着电机A的转速单调递增,而与电机B的转速无关,根据电机A的最高转速和最低转速,可以得到发动机的转速范围如下:
Figure BDA0002189523240000026
在EVT2模式下,a1<0,b1>0,故发动机的转速随着电机A的转速单调递减,而随着电机B的转速单调递增,根据电机两个电机的最高转速和最低转速,可以得到发动机的转速范围如下:
Figure BDA0002189523240000027
Figure BDA0002189523240000031
发动机的转矩范围不仅取决于当前的转速,还与其动态响应特性有关,这里把发动机近似为一阶系统,其转矩范围如下:
Figure BDA0002189523240000032
Figure BDA0002189523240000033
式中:fe表示发动机的外特性插值函数;δt表示动态预测的时间步长;T表示发动机的时间常数。
作为本发明进一步的技术方案,所述EVT1模式为所述机电复合传动系统的制动器结合并且离合器分离的状态;所述EVT2模式为所述机电复合传动系统的制动器分离并且离合器结合的状态。
作为本发明进一步的技术方案,所述步骤(S3)最优决策的方法为:
根据所述机电复合传动系统的加速踏板开度,利用所述机电复合传动系统的发动机的最优工作曲线确定所述机电复合传动系统的最优转速和目标转矩;然后,根据所述机电复合传动系统的发动机的调速时间要求确定所述机电复合传动系统负载转矩,为所述机电复合传动系统的多目标优化提供转矩约束;最后,根据所述机电复合传动系统的能量管理策略的优先级,把系统的性能指标化分成多个层次,在每个层次内利用解析的方法得到两个电机的最优转矩,其中所述机电复合传动系统的模式切换前需要对所述机电复合传动系统的发动机进行调速,从而保证所述机电复合传动系统的离合器或者制动器的速差小于门限值,此时,所述机电复合传动系统发动机的目标转速不再由加速踏板开度决定,而取决于所述机电复合传动系统的当前车速,所述发动机目标转速的数学表达式为:
Figure BDA0002189523240000034
式中:necom表示所述机电复合传动系统模式切换前发动机的目标转速。
作为本发明进一步的技术方案,所述步骤(S4)反馈校正中:
如果所述机电复合传动系统的发动机的目标转速与实际转速的速差超过门限,则对所述机电复合传动系统的转矩值进行修正,当所述机电复合传动系统的发动机的速差在±50rpm范围内时,则不需要对转矩进行修正,当速差大于零时,则增大驱动转矩并减小负载转矩,当速差小于零时,则减小驱动转矩并增大负载转矩。
作为本发明进一步的技术方案,对所述机电复合传动系统进行反馈校正的发动机驱动转矩和负载转矩时,采用以下公式:
T′ecom=kTTecom
T′ef=kTfTef
式中:kT表示所述机电复合传动系统的发动机驱动转矩的修正系数;kTf表示所述机电复合传动系统的发动机负载转矩的修正系数。
实时优化控制积极有益效果:
本发明提供一种机电复合传动系统的实时优化控制方法包括四部分:状态观测、动态预测、最优决策和反馈校正。首先利用状态观测得到各元件当前的工作状态,然后利用动态预测得到各元件可行的工作范围,进而利用最优决策得到各元件的最优控制命令,最后利用状态偏差对发动机和两个电机的控制量进行反馈校正,能够有效地保证机电复合传动系统的控制效果,能够根据各元件的状态偏差对相应的控制量进行修正,从而使机电复合传动系统获得良好的工作效率和状态稳定性。
附图说明
图1为本发明一种机电传动系统的实时优化控制方法的流程示意图;
图2为本发明一种机电传动系统的实时优化控制方法的流程又一示意图;
图3为本发明一种机电传动系统的实时优化控制方法中转矩修正系数的示意图;
图4为本发明一种机电传动系统的实时优化控制方法进行仿真的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种机电复合传动系统的实时优化控制方法,其特征在于:包括以下步骤:
(S0)开始;
(S1)状态观测;利用状态观测得到机电复合传动系统中各元件当前的工作状态;
在本步骤中,采用转矩估计法计算、观测机电复合传动系统的输出转矩,由于所述机电复合传动系统中电机的动态响应时间远小于发动机的动态响应时间,则认为电机的实际转矩等于其目标转矩,用公式表示为:
Figure BDA0002189523240000041
其中Teact表示实际转矩,Je为等效到发动机输出端的转动惯量,单位为kg·m2e为发动机的角速度,单位为rad/s,ηq为后传动效率,iq为发动机到功率耦合机构输入端的传动比,TA、TB为耦合机构的输入转矩和输出转矩,e1和e2表示两种模式下的转矩系数矩阵。
在具体实施例中,所述发动机的加速度通过对所述发动机的转速进行卡尔曼滤波而得到。
在具体实施例中,所述机电复合传动系统利用传感器采集得到母线电压,然后利用所述机电复合传动系统中的电池组模型计算出电流和SOC,其中电池组的电流和SOC的计算公式以下:
Figure BDA0002189523240000042
Figure BDA0002189523240000043
在上述公式中:I(t)表示为电流,放电为正,单位A;Voc表示为开路电压,单位V;Rb表示为内阻,单位Ω;Cb表示为容量,单位Ah;SOC0表示为电池组的初始荷电状态。
(S2)动态预测;利用动态预测得到机电复合传动系统中各元件可行的工作范围;
在本步骤中,动态预测的方法为:
所述机电复合传动系统中两个不同的电机不超过所述电机的最高转速,所述机电复合传动系统中发动机在特定的转速范围内工作,满足公式为:
Figure BDA0002189523240000051
Figure BDA0002189523240000052
在EVT1模式下,a1>0,b1=0,故发动机的转速随着电机A的转速单调递增,而与电机B的转速无关,根据电机A的最高转速和最低转速,可以得到发动机的转速范围如下:
Figure BDA0002189523240000053
在EVT2模式下,a1<0,b1>0,故发动机的转速随着电机A的转速单调递减,而随着电机B的转速单调递增,根据电机两个电机的最高转速和最低转速,可以得到发动机的转速范围如下:
Figure BDA0002189523240000054
Figure BDA0002189523240000055
发动机的转矩范围不仅取决于当前的转速,还与其动态响应特性有关,这里把发动机近似为一阶系统,其转矩范围如下:
Figure BDA0002189523240000056
Figure BDA0002189523240000057
式中:fe表示发动机的外特性插值函数;δt表示动态预测的时间步长;T表示发动机的时间常数。
在本发明中,所述EVT1模式为所述机电复合传动系统的制动器结合并且离合器分离的状态;所述EVT2模式为所述机电复合传动系统的制动器分离并且离合器结合的状态。EVT1和EVT2表示功率耦合机构具有两个工作模式。
根据功率耦合机构的结构形式,可以得到各元件的速度关系如下:
Figure BDA0002189523240000058
式中:ωA、ωB、ωe、ωo分别表示电机A、电机B、发动机和输出轴的速度,单位rad/s;a1、a2、b1、b2为速度系数。
(S3)最优决策;制定并执行最优决策中各元件的最优控制命令;
(S4)反馈校正;最后利用状态偏差对机电复合传动系统中的发动机和电机的控制量进行反馈校正;
(S5)判断反馈校正是否满足要求,如果反馈校正满足要求,则本步骤结束,如果反馈校正不满足要求,则返回步骤(2)重新进行。
在本发明中,所述步骤(S3)最优决策的方法为:
根据所述机电复合传动系统的加速踏板开度,利用所述机电复合传动系统的发动机的最优工作曲线确定所述机电复合传动系统的最优转速和目标转矩;然后,根据所述机电复合传动系统的发动机的调速时间要求确定所述机电复合传动系统负载转矩,为所述机电复合传动系统的多目标优化提供转矩约束;最后,根据所述机电复合传动系统的能量管理策略的优先级,把系统的性能指标化分成多个层次,在每个层次内利用解析的方法得到两个电机的最优转矩,其中所述机电复合传动系统的模式切换前需要对所述机电复合传动系统的发动机进行调速,从而保证所述机电复合传动系统的离合器或者制动器的速差小于门限值,此时,所述机电复合传动系统发动机的目标转速不再由加速踏板开度决定,而取决于所述机电复合传动系统的当前车速,所述发动机目标转速的数学表达式为:
Figure BDA0002189523240000061
式中:necom表示所述机电复合传动系统模式切换前发动机的目标转速。
在本发明中,所述步骤(S4)反馈校正中:
如果所述机电复合传动系统的发动机的目标转速与实际转速的速差超过门限,则对所述机电复合传动系统的转矩值进行修正,当所述机电复合传动系统的发动机的速差在±50rpm范围内时,则不需要对转矩进行修正,当速差大于零时,则增大驱动转矩并减小负载转矩,当速差小于零时,则减小驱动转矩并增大负载转矩。
在本发明中,对所述机电复合传动系统进行反馈校正的发动机驱动转矩和负载转矩时,采用以下公式:
T′ecom=kTTecom
T′ef=kTfTef
式中:kT表示所述机电复合传动系统的发动机驱动转矩的修正系数;kTf表示所述机电复合传动系统的发动机负载转矩的修正系数。
在本发明中,所述实时优化控制可以基于MATLAB2011b仿真平台而实施。如图4所示,在基于MATLAB2011b仿真平台搭建机电复合传动系统的仿真模型,然后利用上述方法控制机电复合传动系统,实现对机电复合传动系统的控制。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (5)

1.一种机电复合传动系统的实时优化控制方法,其特征在于:包括以下步骤:
(S0)开始;
(S1)状态观测;利用状态观测得到机电复合传动系统中各元件当前的工作状态;
(S2)动态预测;利用动态预测得到机电复合传动系统中各元件可行的工作范围;
(S3)最优决策;制定并执行最优决策中各元件的最优控制命令;
(S4)反馈校正;最后利用状态偏差对机电复合传动系统中的发动机和电机的控制量进行反馈校正;
(S5)判断反馈校正是否满足要求,如果反馈校正满足要求,则本步骤结束,如果反馈校正不满足要求,则返回步骤(S1)重新进行;
其中:所述步骤(S1)状态观测方法为:
采用转矩估计法计算、观测机电复合传动系统的输出转矩,由于所述机电复合传动系统中电机的动态响应时间远小于发动机的动态响应时间,则认为电机的实际转矩等于其目标转矩,用公式表示为:
Figure FDA0002712064450000011
其中Teact表示实际转矩,Je为等效到发动机输出端的转动惯量,单位为kg·m2e为发动机的角速度,单位为rad/s,ηq为后传动效率,iq为发动机到功率耦合机构输入端的传动比,TA、TB为耦合机构的输入转矩和输出转矩,e1和e2表示两种模式下的转矩系数矩阵;
发动机的加速度通过对所述发动机的转速进行卡尔曼滤波而得到;
所述机电复合传动系统利用传感器采集得到母线电压,然后利用所述机电复合传动系统中的电池组模型计算出电流和SOC,其中电池组的电流和SOC的计算公式以下:
Figure FDA0002712064450000012
Figure FDA0002712064450000013
在上述公式中:I(t)表示为电流,放电为正,单位A;Voc表示为开路电压,单位V;Rb表示为内阻,单位为Ω;Cb表示为容量,单位为Ah;SOC0表示为电池组的初始荷电状态,Pb(t)为电池组功率;
所述步骤(S2)动态预测的方法为:
所述机电复合传动系统中两个不同的电机不超过所述电机的最高转速,所述机电复合传动系统中发动机在特定的转速范围内工作,满足公式为:
Figure FDA0002712064450000014
Figure FDA0002712064450000015
在EVT1模式下,a1>0,b1=0,故发动机的转速随着电机A的转速单调递增,而与电机B的转速无关,根据电机A的最高转速和最低转速,可以得到发动机的转速范围如下:
Figure FDA0002712064450000021
在EVT2模式下,a1<0,b1>0,故发动机的转速随着电机A的转速单调递减,而随着电机B的转速单调递增,根据电机两个电机的最高转速和最低转速,可以得到发动机的转速范围如下:
Figure FDA0002712064450000022
Figure FDA0002712064450000023
发动机的转矩范围不仅取决于当前的转速,还与其动态响应特性有关,这里把发动机近似为一阶系统,其转矩范围如下:
Figure FDA0002712064450000024
Figure FDA0002712064450000025
式中:n0为机电复合传动系统输出转速;fe表示发动机的外特性插值函数;δt表示动态预测的时间步长;T表示发动机的时间常数。
2.根据权利要求1所述的一种机电复合传动系统的实时优化控制方法,其特征在于:所述EVT1模式为所述机电复合传动系统的制动器结合并且离合器分离的状态;所述EVT2模式为所述机电复合传动系统的制动器分离并且离合器结合的状态。
3.根据权利要求1所述的一种机电复合传动系统的实时优化控制方法,其特征在于:所述步骤(S3)最优决策的方法为:
根据所述机电复合传动系统的加速踏板开度,利用所述机电复合传动系统的发动机的最优工作曲线确定所述机电复合传动系统的最优转速和目标转矩;然后,根据所述机电复合传动系统的发动机的调速时间要求确定所述机电复合传动系统负载转矩,为所述机电复合传动系统的多目标优化提供转矩约束;最后,根据所述机电复合传动系统的能量管理策略的优先级,把系统的性能指标化分成多个层次,在每个层次内利用解析的方法得到两个电机的最优转矩,其中所述机电复合传动系统的模式切换前需要对所述机电复合传动系统的发动机进行调速,从而保证所述机电复合传动系统的离合器或者制动器的速差小于门限值,此时,所述机电复合传动系统发动机的目标转速不再由加速踏板开度决定,而取决于所述机电复合传动系统的当前车速,所述发动机目标转速的数学表达式为:
Figure FDA0002712064450000026
式中:necom表示所述机电复合传动系统模式切换前发动机的目标转速;ih为后传动比;v为当前车速;rz为驱动轮半径。
4.根据权利要求1所述的一种机电复合传动系统的实时优化控制方法,其特征在于:所述步骤(S4)反馈校正中:
如果所述机电复合传动系统的发动机的目标转速与实际转速的速差超过门限,则对所述机电复合传动系统的转矩值进行修正,当所述机电复合传动系统的发动机的速差在±50rpm范围内时,则不需要对转矩进行修正,当速差大于零时,则增大驱动转矩并减小负载转矩,当速差小于零时,则减小驱动转矩并增大负载转矩。
5.根据权利要求4所述的一种机电复合传动系统的实时优化控制方法,其特征在于:对所述机电复合传动系统进行反馈校正的发动机驱动转矩和负载转矩时,采用以下公式:
T′ecom=kTTecom
T′ef=kTfTef
式中:kT表示所述机电复合传动系统的发动机驱动转矩的修正系数;kTf表示所述机电复合传动系统的发动机负载转矩的修正系数。
CN201910831498.9A 2019-09-03 2019-09-03 一种机电复合传动系统的实时优化控制方法 Active CN110481533B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910831498.9A CN110481533B (zh) 2019-09-03 2019-09-03 一种机电复合传动系统的实时优化控制方法
US16/896,461 US10940849B1 (en) 2019-09-03 2020-06-09 Real-time optimization control method for electro-mechanical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910831498.9A CN110481533B (zh) 2019-09-03 2019-09-03 一种机电复合传动系统的实时优化控制方法

Publications (2)

Publication Number Publication Date
CN110481533A CN110481533A (zh) 2019-11-22
CN110481533B true CN110481533B (zh) 2021-02-19

Family

ID=68556315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910831498.9A Active CN110481533B (zh) 2019-09-03 2019-09-03 一种机电复合传动系统的实时优化控制方法

Country Status (2)

Country Link
US (1) US10940849B1 (zh)
CN (1) CN110481533B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383248B (zh) * 2020-10-29 2021-10-22 浙江大学 一种双电机转矩同步系统模型预测电流控制方法
CN113002528A (zh) * 2021-03-29 2021-06-22 北京理工大学 四轮轮毂电机驱动电动汽车稳定性协调控制方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922175A1 (fr) * 2007-10-10 2009-04-17 Renault Sas Procede et systeme de demarrage d'un groupe motopropulseur equipe d'une transmission infiniment variable
CN104786867A (zh) * 2015-04-12 2015-07-22 北京理工大学 一种机电复合传动功率分配分级优化控制方法
CN104802630A (zh) * 2015-04-12 2015-07-29 北京理工大学 混联式混合动力车辆多动力源协调控制方法
CN107351837A (zh) * 2017-06-12 2017-11-17 同济大学 一种功率分流混合动力系统模式切换方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380046B (zh) * 2011-02-17 2016-10-05 铃木株式会社 混合动力车辆的驱动控制装置
US9809213B2 (en) * 2014-01-14 2017-11-07 Ford Global Technologies, Llc Power split hybrid electric vehicle motor torque control using state estimation
US9689250B2 (en) * 2014-11-17 2017-06-27 Tesco Corporation System and method for mitigating stick-slip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922175A1 (fr) * 2007-10-10 2009-04-17 Renault Sas Procede et systeme de demarrage d'un groupe motopropulseur equipe d'une transmission infiniment variable
CN104786867A (zh) * 2015-04-12 2015-07-22 北京理工大学 一种机电复合传动功率分配分级优化控制方法
CN104802630A (zh) * 2015-04-12 2015-07-29 北京理工大学 混联式混合动力车辆多动力源协调控制方法
CN107351837A (zh) * 2017-06-12 2017-11-17 同济大学 一种功率分流混合动力系统模式切换方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
功率分流混合动力车辆多目标优化分层控制方法;张东好,项昌乐,韩立金,郑海亮;《吉林大学学报(工学版)》;20160331;第5页、第7页 *
机电复合传动最优功率分配策略研究;张东好,韩立金,项昌乐,王伟达;《汽车工程》;20141130;第2页 *

Also Published As

Publication number Publication date
US20210061249A1 (en) 2021-03-04
US10940849B1 (en) 2021-03-09
CN110481533A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
JP5477030B2 (ja) 電動車両の制御装置
CN101665110B (zh) 增强反向驱动性能的混合动力电动车辆动力系的方法
US9604630B2 (en) Hybrid automobile and power system torque control method thereof
US7322331B2 (en) Internal combustion engine starting control system for vehicles
CN104890666A (zh) 车辆
JP5338471B2 (ja) 電動車両の変速制御装置
EP2699439B1 (en) Hybrid electric vehicle controller, hybrid electric vehicle and method of controlling a hybrid electric vehicle
US9988052B2 (en) Vehicle provided with continuously variable transmission device
CN110481533B (zh) 一种机电复合传动系统的实时优化控制方法
EP1142749B1 (en) Vehicle controller
JP6561642B2 (ja) ハイブリッド車両制御装置
CN106989169B (zh) 用于控制变速器换挡的系统和方法
EP3272603B1 (en) Control device and control method for hybrid vehicle
JP3800218B2 (ja) ハイブリッド車両の変速制御装置
JP6041047B2 (ja) ハイブリッド車両の制御装置
JP2020078103A (ja) 変速制御装置
JP5953783B2 (ja) 電動車両のモータトルク制御方法
JP5625743B2 (ja) ハイブリッド車両の制御装置
JP3838362B2 (ja) ハイブリッド車両の制御装置
JP2015101120A (ja) 車両
CN118254766B (zh) 车辆挡位切换控制方法、装置、电子设备和存储介质
CN116639109A (zh) 混动车辆的发动机怠速控制方法、存储介质和车辆
JP5953782B2 (ja) 電動車両のモータトルク制御方法
CN114929507A (zh) 车用控制装置
CN118438998A (zh) 一种混合动力车辆的能量管理方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant