CN110478496B - 一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺的制备方法 - Google Patents

一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺的制备方法 Download PDF

Info

Publication number
CN110478496B
CN110478496B CN201910803215.XA CN201910803215A CN110478496B CN 110478496 B CN110478496 B CN 110478496B CN 201910803215 A CN201910803215 A CN 201910803215A CN 110478496 B CN110478496 B CN 110478496B
Authority
CN
China
Prior art keywords
oam
psi
particle size
drug carrier
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910803215.XA
Other languages
English (en)
Other versions
CN110478496A (zh
Inventor
张明翠
连中宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN201910803215.XA priority Critical patent/CN110478496B/zh
Publication of CN110478496A publication Critical patent/CN110478496A/zh
Application granted granted Critical
Publication of CN110478496B publication Critical patent/CN110478496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺的制备方法,将高分子枝接聚合物PSIOAm溶于能与水互溶的四氢呋喃作为油相,氢氧化钠溶液作为水相,将等体积的两相溶液高速注入混合器的密闭腔体中,生成的混合溶液从出口流出,用容器收集乳液,完成制备过程。该方法绿色低能耗,简单快速,所制备的纳米药物载体粒径均匀,尺寸可控,粒径分布在70~150nm。该发明为有望应用于癌症临床治疗的纳米药物载体PSIOAm提供了新的制备方案。

Description

一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚 琥珀酰亚胺的制备方法
技术领域
本发明属于纳米药物载体制备领域,具体涉及一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺(PSIOAm)的制备方法。
背景技术
癌症是目前人类健康的重大杀手之一,根据癌症数据统计2018年全球新增癌症病例达到1810万,而死亡病例超过960万,癌症治疗刻不容缓。而目前癌症治疗主要以手术治疗、化学疗法和放射疗法为主,对正常细胞也会产生严重的副作用,手术切除肿瘤的风险和成本均较大,因此,发展高效又低毒的癌症治疗方法意义非凡。高分子纳米药物载体因其生物相容性及可降解性,在癌症治疗方面展现出广阔的应用前景。
高分子聚合物油胺枝接聚琥珀酰亚胺PSIOAm是一种新型pH响应的纳米药物载体,可有效避免无机材料、金属材料的生物降解性差的特点被广泛关注。PSIOAm由于其外壳具有亲水性,使其具有良好的生物相容性和可降解性;内核具有疏水性,药物通过疏水作用被包裹在该纳米球内定向运输至靶细胞。作为一种未来有望应用于癌症临床治疗的药物载体,其设计通常与粒径大小,形态,电荷和内在结构有关,所以制备尺寸均匀的纳米药物载体是该领域共同关心的话题。而现有方法制备的纳米粒子,在纯度、产率、粒径分布、均匀性及粒子的可控制性等方面的问题依然存在,而纳米材料的形貌以及粒径大小是否均匀对其物理、化学特性有着决定性的影响,尤其对于特定功能的纳米材料而言是致命的,是急需解决的关键问题。文献Huang,S.;Bai,M.;Wang,L.,General and facile surfacefunctionalization of hydrophobic nanocrystals with poly(amino acid)for cellluminescence imaging.Sci Rep 2013,3,2023.和Huang,S.;Peng,S.;Li,Y.;Cui,J.;Chen,H.;Wang,L.,Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery.Nano Research 2015,8(6),1932-1943.报道的关于纳米药物载体PSIOAm的制备方法得到的PSIOAm都不具备制备颗粒的粒径大小均匀,尺寸大小可控制,形状规整的优点。目前尚没有一种方法是提供制备小尺寸粒径均匀可控大小纳米药物载体PSIOAm的。所以本发明提出一种快速制备小尺寸粒径均匀大小可控的纳米药物载体PSIOAm的方法,拟填补这一应用空白。
发明内容
为解决上述关键技术问题,本发明提供了一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺(PSIOAm)的制备方法。通过快速纳米沉淀技术制备了粒径均匀、尺寸可控的纳米药物载体PSIOam,其粒径分布在 70~150nm,该方法简单快速,绿色低能耗。制备的粒径均匀、尺寸可控的纳米粒子具有以下优点:纳米粒子产出迅速、产率较高,制备粒径均匀,尺寸大小可控;所得产物纯度高,不需要过滤和透析除去较大粒径的纳米粒子,大幅度节省了生产时间。
本发明提供的一种粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm的制备方法,包括以下步骤:将高分子接枝聚合物PSIOAm溶解于有机溶剂中作为油相,氢氧化钠水溶液作为水相,将两相流体快速同时注入混合器内在混合器腔体中进行湍流混合,生成的混合溶液即为粒径均匀的高分子纳米药物载体 PSIOAm的纳米溶液,依据调整不同的剂量和注入速度,可以得到可控尺寸的目标大小纳米粒子。
所述有机溶剂为四氢呋喃、N,N-二甲基甲酰胺、二甲亚砜中的任意一种或多种,优选为四氢呋喃。
所述高分子接枝聚合物PSIOAm是通过将分子量为6000的聚琥珀酰亚胺和油胺在N,N-二甲基甲酰胺溶剂中加热后,经甲醇沉淀、离心、干燥制备得到;聚琥珀酰亚胺的分子量越大,油胺链越长,得到高分子接枝聚合物的粒径越大;本发明选用分子量为6000的聚琥珀酰亚胺作为原料,这样得到高分子接枝聚合物PSIOAm经快速沉淀后才能得到粒径分布在70~150nm的高分子纳米药物载体 PSIOAm
所述高分子高分子接枝聚合物PSIOAm在有机溶剂中的浓度为4~10mg/mL,浓度过低,其达不到形成纳米粒子的过饱和度;浓度过高,形成的纳米粒子粒径偏大,且粒径分布不均匀,因此本发明控制PSIOAm浓度为4~10mg/mL。
所述氢氧化钠水溶液的浓度为0.5mmol/L。
所述有机溶剂与氢氧化钠水溶液的体积之比为1:1。
所述湍流混合的时间为2~3s。
所述湍流混合的雷诺数Re为5800,溶剂和反溶剂的充分和快速湍流混合是形成纳米颗粒的先决条件,雷诺数Re对纳米粒子尺寸的影响显著,当Re大于 4000时,流体为湍流状态,本发明将湍流混合的雷诺数Re控制在5800,此条件下能够形成粒径较小的纳米粒子。
所述的混合器为具有混合腔体的CIJ-D密闭混合器,具有至少两个流体注入口和一个流出口。
根据上述制备方法制备得到的粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm,其粒径范围在70~150nm。
本发明提供的粒径均匀的高分子纳米药物载体PSIOAm的制备方法中,选用分子量为6000的聚琥珀酰亚胺和油胺为原料来制备高分子接枝聚合物 PSIOAm,这为快速沉淀法制备粒径为70-150nm的高分子纳米药物载体PSIOAm提供了前提条件;并在湍流混合时控制高分子接枝聚合物PSIOAm在有机溶剂中的浓度、湍流混合的时间及雷诺数,以进一步保证得到粒径为70-150nm且分布均匀的高分子纳米药物载体PSIOAm
与现有技术相比,本发明具有如下优点:
1.通过快速纳米沉淀制备纳米药物载体PSIOAm,相比于常规超声法制备 PSIOAm,所制备的纳米粒子粒径更加均匀,分布在70-150nm,纳米药物载体粒径可调控,具有纳米材料独特的性质和特点。
2.快速纳米沉淀制备纳米药物载体PSIOAm,简单快速,绿色低能耗,未来可应用于量化生产。
3.该发明为有望应用于癌症临床治疗的纳米药物载体PSIOAm提供了新的制备方案。
附图说明
图1为实施例1制备得到的PSIOAm纳米溶液的SEM图
图2为实施例1制备得到的PSIOAm纳米溶液的TEM图(a)和粒径分布图 (b);
图3为实施例2制备得到的PSIOAm纳米溶液的TEM图(a),SEM图(b) 和粒径分布图(c);
图4为实施例3制备得到的PSIOAm纳米溶液的TEM图(a),SEM图(b) 和粒径分布图(c);
图5为实施例4制备得到的PSIOAm纳米溶液的TEM图(a),SEM图(b) 和粒径分布图(c);
图6为比较例1中的传统超声法制备的PSIOAm纳米粒子的TEM图(a) 和粒径分布图(b)。
具体实施方式
下面结合实施例对本发明进行详细说明。
本发明所使用的高分子接枝聚合物PSIOAm(PSIOAm前驱体)的制备方法为:量取32mLN,N-二甲基甲酰胺加热至90℃,加入1.6g聚琥珀酰亚胺(PSI)及 2.17mL油胺(OAm),保持100℃加热搅拌5小时,最后加入360mL甲醇使其沉淀,离心分离,干燥取沉淀即可得到高分子接枝聚合物PSIOAm
本发明所用的混合器的型号为CIJ-D型瞬时涡流混合器,厂家为扬州大学化学化工学院朱正曦教授实验室提供。聚琥珀酰亚胺(PSI)的平均相对分子量为 6000,购买自石家庄德赛化工有限公司,油胺购买自阿拉丁公司。
实施例1
一种粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm的制备方法,包括以下步骤:在常温下,首先称取14mg高分子接枝聚合物PSIOAm与3mL四氢呋喃充分混合,并置于100W超声机超声1min,使用注射器针头将溶液吸入 5mL塑料注射器中并清除所有气泡。将3mL的氢氧化钠水溶液吸入到另一同样尺寸的注射器中,以相同速度注射两液体进入混合器。两相液体在混合器腔体中充分湍流混合,所得乳液从混合器出口流出,混合共耗时2秒。用容器收集乳液,并用TEM、SEM和动态光散射法对乳液形貌和粒径大小进行表征,结果如图1、2所示,平均直径dv=83nm。
实施例2
一种粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm的制备方法,包括以下步骤:
在常温下,称取18mg PSIOAm前驱体与3mL四氢呋喃充分混合,并置于 100W超声机超声1min,使用注射器针头将溶液吸入5mL塑料注射器中并清除所有气泡。将3mL氢氧化钠水溶液吸入到另一同样尺寸的注射器中,同时以相同速度注射两液体进入混合器。所得乳液从混合器出口流出,混合共耗时2秒。用容器收集乳液,分别用去离子水和四氢呋喃冲洗混合器,让滞留量排出容器。并用TEM、SEM和动态光散射法对乳液粒径大小和分布进行表征,结果如图3 所示,平均直径dv=95nm。
实施例3
一种粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm的制备方法,包括以下步骤:
在常温下,称取24mg PSIOAm前驱体与3mL四氢呋喃充分混合,并置于 100W超声机超声1min,使用注射器针头将溶液吸入5mL塑料注射器中并清除所有气泡。将3mL氢氧化钠溶液吸入到另一同样尺寸的注射器中,同时以相同速度注射两液体进入混合器,所得乳液从混合器出口流出,混合共耗时2秒。用容器收集乳液,分别用去离子水和四氢呋喃冲洗混合器。并用TEM、SEM和动态光散射法对乳液粒径大小和分布进行表征,结果如图4所示,平均直径dv =96nm。
实施例4
一种粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm的制备方法,包括以下步骤:在常温下,称取28mg PSIOAm前驱体与3mL四氢呋喃充分混合,并置于100W超声机超声1min,使用注射器针头将溶液吸入5mL塑料注射器中并清除所有气泡。将3mL氢氧化钠溶液吸入到另一同样尺寸的注射器中,同时以相同速度注射两液体进入混合器。两相液体在混合器腔体中充分湍流混合,混合共耗时2秒,用容器收集乳液,分别用去离子水和四氢呋喃冲洗混合器,让滞留量排出容器。并用TEM、SEM和动态光散射法对乳液粒径大小和分布进行表征,结果如图5所示,平均直径dv=105nm。
比较例1
一种PSIOAm纳米粒子的制备方法,具体步骤为:称取60mg高分子接枝聚合物PSIOAm溶于1mL氯仿中,该溶液分散在10mL 0.5mmol/L NaOH中, 200W功率下超声5min,得到的乳状溶液在58℃下去除氯仿,离心取沉淀部分分散在10mL pH=7.4的PBS中,得到PSIOAm纳米粒子,对产物进行TEM和粒径分布表征。
从图6可以看出,此超声法制备PSIOAm纳米粒子耗时长,高能量输出,粒径较大,粒径范围在200-700nm,粒径分布不均匀,限制了纳米粒子的应用与发展。
上述参照实施例对一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺(PSIOAm)的制备方法进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

Claims (4)

1.一种粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm的制备方法,其特征在于,所述制备方法包括以下步骤:将高分子接枝聚合物PSIOAm溶解于有机溶剂中作为油相,氢氧化钠水溶液作为水相,将两相流体快速同时注入混合器内在混合器腔体中进行湍流混合,生成的混合溶液即为粒径均匀的高分子纳米药物载体PSIOAm的纳米溶液;
所述高分子接枝聚合物PSIOAm是通过将分子量为6000的聚琥珀酰亚胺和油胺在N,N-二甲基甲酰胺溶剂中加热后,经甲醇沉淀、离心、干燥制备得到;
所述高分子接枝聚合物PSIOAm在有机溶剂中的浓度为4~10mg/mL;
所述有机溶剂与氢氧化钠水溶液的体积之比为1:1;
所述湍流混合的雷诺数Re为5800;所述湍流混合的时间为2~3s;
所述的混合器为具有混合腔体的CIJ-D型密闭混合器,具有至少两个流体注入口和一个流出口;
所述粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm的粒径范围在70~150nm。
2.根据权利要求1所述的制备方法,其特征在于,所述有机溶剂为四氢呋喃、N,N-二甲基甲酰胺、二甲亚砜中的任意一种或多种。
3.根据权利要求1或2所述的制备方法,其特征在于,所述氢氧化钠水溶液的浓度为0.5mmol/L。
4.根据权利要求1-3任意一项所述的制备方法制备得到的粒径均匀、尺寸可控的高分子纳米药物载体PSIOAm,其特征在于,所述粒径均匀的高分子纳米药物载体PSIOAm的平均粒径在70~150nm。
CN201910803215.XA 2019-08-28 2019-08-28 一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺的制备方法 Active CN110478496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910803215.XA CN110478496B (zh) 2019-08-28 2019-08-28 一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910803215.XA CN110478496B (zh) 2019-08-28 2019-08-28 一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺的制备方法

Publications (2)

Publication Number Publication Date
CN110478496A CN110478496A (zh) 2019-11-22
CN110478496B true CN110478496B (zh) 2023-03-07

Family

ID=68554824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910803215.XA Active CN110478496B (zh) 2019-08-28 2019-08-28 一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺的制备方法

Country Status (1)

Country Link
CN (1) CN110478496B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115068448B (zh) * 2022-06-20 2023-09-12 安徽师范大学 一种形貌可控的单孔中空纳米药物载体及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging;Suying Xu等;《Analytical Chemistry》;20161231;第88卷;第7853-7857页 *
一种快速可控制备纳米粒子的新方法――瞬时纳米沉淀法研究进展;王铭纬等;《石河子大学学报:自然科学版》;20161231;第34卷(第6期);第661-666页 *

Also Published As

Publication number Publication date
CN110478496A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
Ma et al. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications–a review
Tai et al. A green process for preparing silver nanoparticles using spinning disk reactor
Ju et al. Continuous production of lignin nanoparticles using a microchannel reactor and its application in UV-shielding films
Gao et al. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications
CN112495316B (zh) 一种基于亚稳态乳液制备微纳米凝胶微球的方法
EA012450B1 (ru) Способ производства сульфата целлюлозы с улучшенными характеристиками
CN106633107A (zh) 一种改性磁性复合水凝胶的制备方法
Długosz et al. Inorganic nanoparticle synthesis in flow reactors–applications and future directions
CN110478496B (zh) 一种粒径均匀、尺寸可控的高分子纳米药物载体油胺枝接聚琥珀酰亚胺的制备方法
Agi et al. Formulation of bionanomaterials: a review of particle design towards oil recovery applications
Xia et al. Multiple roles of palladium-coated magnetic anisotropic particles as catalysts, catalyst supports, and micro-stirrers
CN114025871A (zh) 用于制造纳米颗粒的系统和方法
CN104958766A (zh) 海藻酸钠-羟基磷灰石杂化纳米粒子及其制备方法
CN109589885A (zh) 一种单分散性含油海藻酸钙微囊的制备方法
CN104072656A (zh) 一种制备四氧化三铁-高分子磁性复合微球的方法
CN107802845B (zh) 一种使用丝素蛋白分子对疏水性纳米粒子相转换的方法
JP2007533433A5 (zh)
CN107982242B (zh) 一种抗肿瘤治疗可降解有机无机复合纳米颗粒及其制备方法
CN106112006A (zh) 一种金纳米粒子水溶液及其制备方法和应用
CN109964931A (zh) 一种射流自激脉冲空化强化制备壳聚糖抑菌纳米微球的方法
CN114591517B (zh) 一种尺寸可调控的aie纳米颗粒的制备方法
CN109078008A (zh) 氧化石墨烯药物载体中空微胶囊的制备及应用
Cao et al. Micro/Nanosized Lignin for Biomedical Application
Su et al. One-step fabrication of silica colloidosomes with in situ drug encapsulation
CN112299467B (zh) 一种单分散油相纳米硫酸钡分散体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant