CN110444731B - 全固态锂电池负极界面修饰方法 - Google Patents

全固态锂电池负极界面修饰方法 Download PDF

Info

Publication number
CN110444731B
CN110444731B CN201910803248.4A CN201910803248A CN110444731B CN 110444731 B CN110444731 B CN 110444731B CN 201910803248 A CN201910803248 A CN 201910803248A CN 110444731 B CN110444731 B CN 110444731B
Authority
CN
China
Prior art keywords
lithium
solid
modification layer
lithium salt
modifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910803248.4A
Other languages
English (en)
Other versions
CN110444731A (zh
Inventor
刘芳洋
赖延清
徐向群
汪齐
蒋良兴
贾明
李劼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Enjie Frontier New Material Technology Co ltd
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910803248.4A priority Critical patent/CN110444731B/zh
Publication of CN110444731A publication Critical patent/CN110444731A/zh
Application granted granted Critical
Publication of CN110444731B publication Critical patent/CN110444731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种全固态锂电池负极界面修饰方法,界面修饰层由1‑丁基‑2,3‑二甲基咪唑四氟硼酸盐、锂盐和添加剂按比例组成,厚度为10nm‑50μm,修饰层的制备步骤包括:按(69.9‑90):(5‑30):(0.1‑5)质量比例称取1‑丁基‑2,3‑二甲基咪唑四氟硼酸盐、锂盐和添加剂,将三者加热搅拌均匀;将搅拌得到的溶液涂在固态电解质层和/或负极上,静置凝固后得到修饰层。在本发明中,1‑丁基‑2,3‑二甲基咪唑四氟硼酸盐具有较高的离子电导率和宽的电化学窗口,通过加热熔化添加锂盐和添加剂能改善其电化学性能,用这种产物做界面层能避免锂负极和固态电解质的直接接触,改善固态电池的电化学性能。

Description

全固态锂电池负极界面修饰方法
技术领域
本发明涉及全固态锂电池领域,具体涉及一种全固态锂电池负极界面修饰方法。
背景技术
锂离子电池以其高能量密度和高功率密度等优点在储能领域中广泛的应用,现在锂离子电池已经成为了电动汽车有力的候选者之一。但是消费市场对锂离子电池的能量密度和安全性有进一步要求,特别是最近特斯拉汽车发生自燃事件,加大了对电池安全的的关注。使用固态电解质取代电解液能有效避免电解液所产生的泄露易燃等事故。由于固态电解质比电解液有更宽的电化学窗口,固态电池能使用高压插层正极,极大提升固态电池的能量密度,还可以避免液态电解液的封装工艺。
但是固态电池在循环过程中,固态电解质可能与锂负极发生氧化还原反应,会生成高阻抗的界面相积累在负极和固态电解质之间,影响锂离子传输;固态电解质和锂负极之间固固接触引发的不完整接触,会导致在循环过程局部电流密度过大;这些问题会严重影响固态电池的倍率性能。
发明内容
本发明主要在于提供一种全固态锂电池负极界面修饰方法,主要是解决现有固态电池中,锂负极和固态电解质之间生成界面相和润湿性差等问题。
为了实现上述目的,本发明提供的全固态锂电池负极界面修饰方法,所述全固态锂电池包括正极、固态电解质层、修饰层和负极;所述固态电解质层介于所述正极和所述修饰层之间;所述修饰层介于固态电解质层与负极之间,所述修饰层由1-丁基-2,3-二甲基咪唑四氟硼酸盐、锂盐和添加剂按比例组成,且厚度为10nm-50μm,所述修饰层的制备步骤包括:
步骤1:按(69.9-90):(5-30):(0.1-5)质量比例称取1-丁基-2,3-二甲基咪唑四氟硼酸盐、锂盐和添加剂,将三者加热搅拌均匀;
步骤2:将步骤1得到的溶液滴涂、喷涂或者旋涂在固态电解质层和/或负极上,静置凝固后得到修饰层。
优选地,步骤1中的加热温度为40-80℃,加热时间为1-36h。
优选地,所述锂盐包括无机锂盐、有机锂盐中的一种或两种,无机锂盐包括高氯酸锂、四氟硼酸锂、六氟磷酸锂、三氟甲磺酸锂中的一种,有机锂盐包括二(三氟甲基磺酰)亚胺锂、二草酸硼酸锂、二氟草酸硼酸锂、双腈胺锂中的一种。
优选地,所述添加剂为FEC、硝酸锂、亚硝酸锂和氟化铜的一种或几种。
本发明的技术构思如下:
离子液体具有很高的耐氧化能力,较高的稳定性和较高的锂盐溶解能力。但是大部分离子液体本身在常温下液态成膜性较差,通常采用离子液体与聚合物复合的方式来改善离子液体的成膜性的问题,而1-丁基-2,3-二甲基咪唑四氟硼酸盐本身的熔点是37℃,在常温下具备界面修饰层的作用。
在本发明的技术方案中,1-丁基-2,3-二甲基咪唑四氟硼酸盐这种离子液体具有较高的离子电导率和宽的电化学窗口,通过加热熔化添加锂盐和添加剂能极大地改善这种离子液体的电化学性能,用这种产物做界面层,能避免锂负极和固态电解质的直接接触,能显著改善固态电池的电化学性能。
和现有技术相比,本发明可以减少全固态电池的成本,适合产业化生产。本发明所采用的这种离子液体在充放电过程中可以缓冲电极体积变化所带来的应力变化。
附图说明
图1是实施例1得到的全固态电池的恒流放电性能曲线。
具体实施方式
下面通过实施例对本发明作进一步的说明,但不限于此。
实施例1
采用LiFeO4作为正极材料涂布成极片,Li1.3Al0.3Ti1.7(PO4)3作为电解质片,金属锂做负极。按89.9:10:0.1称取1-丁基-2,3-二甲基咪唑四氟硼酸盐、锂盐和硝酸锂在50℃下加热搅拌12小时,将产物滴涂在电解质片上,静置凝固后得到厚度为2μm的修饰层。按照正极-电解质-修饰层-负极的顺序组装成扣式电池进行测试。请参照图1,在25℃下测试,0.5C下恒流放电100圈后还能保持115mAh/g,表现出良好的循环稳定性。
实施例2
采用LiCo0.8 Ni0.1Al0.1O2作为正极材料涂布成极片,NASICON型的Li1.4Al0.4Ti1.6(PO4)3作为电解质片,金属锂做负极。按79.9:20:3称取1-丁基-2,3-二甲基咪唑四氟硼酸盐、锂盐和硝酸锂在60℃下加热搅拌24小时,将产物滴涂在电解质片上,静置凝固后得到厚度为20μm的修饰层。按照正极-电解质-修饰层-负极的顺序组装成扣式电池进行测试。在25℃下测试,0.5C下恒流放电100圈后还能保持123mAh/g,表现出良好的循环稳定性。

Claims (3)

1.一种全固态锂电池负极界面修饰方法,其特征在于,所述全固态锂电池包括正极、固态电解质层、修饰层和负极;所述固态电解质层介于所述正极和所述修饰层之间;所述修饰层介于固态电解质层与负极之间,所述修饰层由1-丁基-2,3-二甲基咪唑四氟硼酸盐、锂盐和添加剂按比例组成,且厚度为10 nm-50 µm,所述修饰层的制备步骤包括:
步骤1:按 (69.9-90):(5-30):(0.1-5)质量比例称取1-丁基-2,3-二甲基咪唑四氟硼酸盐、锂盐和添加剂,将三者加热搅拌均匀,其中,所述添加剂为FEC、硝酸锂、亚硝酸锂和氟化铜的一种或几种,加热温度为40-80 ℃;
步骤2:将步骤1得到的溶液滴涂、喷涂或者旋涂在固态电解质层和/或负极上,静置凝固后得到修饰层。
2.根据权利要求1所述的全固态锂电池负极界面修饰方法,其特征在于,步骤1中的加热时间为1-36 h。
3.根据权利要求1所述的全固态锂电池负极界面修饰方法,其特征在于,所述锂盐包括无机锂盐、有机锂盐中的一种或两种,无机锂盐包括高氯酸锂、四氟硼酸锂、六氟磷酸锂中的一种,有机锂盐包括二(三氟甲基磺酰)亚胺锂、二草酸硼酸锂、二氟草酸硼酸锂、双腈胺锂、三氟甲磺酸锂中的一种。
CN201910803248.4A 2019-08-28 2019-08-28 全固态锂电池负极界面修饰方法 Active CN110444731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910803248.4A CN110444731B (zh) 2019-08-28 2019-08-28 全固态锂电池负极界面修饰方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910803248.4A CN110444731B (zh) 2019-08-28 2019-08-28 全固态锂电池负极界面修饰方法

Publications (2)

Publication Number Publication Date
CN110444731A CN110444731A (zh) 2019-11-12
CN110444731B true CN110444731B (zh) 2021-06-22

Family

ID=68438182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910803248.4A Active CN110444731B (zh) 2019-08-28 2019-08-28 全固态锂电池负极界面修饰方法

Country Status (1)

Country Link
CN (1) CN110444731B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509195A (zh) * 2020-05-07 2020-08-07 武汉理工大学 一种全固态锂电池中金属锂负极的表面改性方法
CN113659197B (zh) * 2021-07-26 2023-08-18 中国地质大学(武汉) 一种具有界面改性层的固态电解质及其制备方法和应用
CN114243117A (zh) * 2021-12-16 2022-03-25 惠州亿纬锂能股份有限公司 一种准固态电池及其制备方法与应用
CN114242958A (zh) * 2021-12-21 2022-03-25 浙江大学 一种硫化物固态电池中锂金属界面修饰的方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100521247C (zh) * 2006-06-23 2009-07-29 清华大学 一种复合碘基凝胶电解质及其制备方法
US20160141727A1 (en) * 2014-11-13 2016-05-19 Basf Corporation Electrolytes and Metal Hydride Batteries
CN108376763A (zh) * 2018-02-05 2018-08-07 电子科技大学 一种复合负极结构、全固态锂电池电芯、全固态锂电池及其制备方法
CN109659500B (zh) * 2018-12-18 2021-09-24 西北工业大学 降低固态电解质/锂负极界面阻抗的锂片、制备方法及应用
CN110137470A (zh) * 2019-05-15 2019-08-16 华南理工大学 一种氟基离子液体表面修饰锂离子电池三元正极材料的方法

Also Published As

Publication number Publication date
CN110444731A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN110444731B (zh) 全固态锂电池负极界面修饰方法
CN108493486B (zh) 一种原位聚合固态电池的制备方法
Yang et al. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries
CN109638350B (zh) 一种对锂稳定的丁二腈基固态电解质、制备方法及其应用
AU2020377021B2 (en) Solid-liquid battery
CN112133961A (zh) 一种凝胶电解质前驱体及其应用
CN105580167A (zh) 锂离子二次电池用电极和锂离子二次电池
EP4156363A1 (en) Safe lithium-ion battery and manufacturing method therefor
CN102376972A (zh) 锂离子电池及提高离子电池高温存储性能的方法
CN112670574A (zh) 一种用于金属电池的电解液及金属电池
CN102769148A (zh) 一种高功率锂离子电池电解液
CN115966767A (zh) 一种耐超低温锂电池电解液及其制备方法
US20240178454A1 (en) Electrolytic solution, secondary battery and electrical device containing same
WO2013018212A1 (ja) リチウムイオン二次電池用電解液、及びそれを用いたリチウムイオン二次電池
CN113381074A (zh) 一种低温电解液及其应用
CN112599861A (zh) 一种钴酸锂动力电池的制备方法
CN111600073B (zh) 一种锂离子电池电解液
Su et al. From lab to market: a review of commercialization and advances for binders in lithium-, zinc-, sodium-ion batteries
CN114006033B (zh) 固态电解质表面盐包聚合物界面保护层及其制备方法
CN114188605A (zh) 一种用于硅碳负极的锂离子电池电解液及包含该电解液的锂离子电池
Zhang et al. Application of biphenyl additive in electrolyte for liquid state Al-plastic film lithium-ion batteries
CN111864266A (zh) 一种高电压锂离子电池电解液添加剂及其电解液
CN105406080A (zh) 一种改性锂离子电池及其改性方法
CN116565324B (zh) 一种锂离子电池电解液及包含其的锂离子电池
CN109301327B (zh) 一种电解液与一种锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220526

Address after: 410000 block a, building 13, country garden wisdom Park, Xuehua village, bachelor street, Yuelu District, Changsha City, Hunan Province

Patentee after: Hunan Enjie frontier New Material Technology Co.,Ltd.

Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932

Patentee before: CENTRAL SOUTH University