CN110444607A - 带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法 - Google Patents

带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法 Download PDF

Info

Publication number
CN110444607A
CN110444607A CN201910618698.6A CN201910618698A CN110444607A CN 110444607 A CN110444607 A CN 110444607A CN 201910618698 A CN201910618698 A CN 201910618698A CN 110444607 A CN110444607 A CN 110444607A
Authority
CN
China
Prior art keywords
indium
layer
stress
extensive
indium gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910618698.6A
Other languages
English (en)
Other versions
CN110444607B (zh
Inventor
程吉凤
李雪
邵秀梅
邓双燕
陈郁
杨波
马英杰
龚海梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201910618698.6A priority Critical patent/CN110444607B/zh
Publication of CN110444607A publication Critical patent/CN110444607A/zh
Application granted granted Critical
Publication of CN110444607B publication Critical patent/CN110444607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法,所述的大规模铟镓砷焦平面探测器在半绝缘InP衬底的背面有应力平衡层。探测器制备的具体步骤如下:1)淀积氮化硅刻蚀掩膜,2)台面刻蚀,3)开N槽,4)生长P电极,5)快速热退火,6)淀积氮化硅钝化膜,7)开P、N电极孔,8)生长加厚电极,9)生长应力平衡层,10)金属化并生长铟柱,11)铟柱剥离并划片。本发明的优点在于:大面阵焦平面探测器平面度好,铟柱形貌更均一,器件耦合连通率高,制备工艺更简单,器件成品率高。

Description

带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法
技术领域
本发明是关于焦平面探测器的制备技术,具体是指一种带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法,它适用于制备高密度、高可靠性的台面型铟镓砷焦平面探测器。所述的大规模是指2000×2000元以上,所述的高密度是指中心距10μm及以下。
背景技术
短波红外铟镓砷探测器具有高探测率、高量子效率、室温工作等优异性能,在军事、民用以及航空航天领域有广泛应用价值。随着短波红外成像技术向高分辨率发展的技术需求,需要开发高性能的大规模、高密度的铟镓砷焦平面探测器的制备工艺方法。
铟镓砷探测器芯片的剖面结构如附图所示,它由半绝缘InP衬底(1)、N+型InP层(2)、组分渐变的N+型InxAl1-xAs缓冲层(3)、InxGa1-xAs吸收层(4)、P+型InxAl1-xAs帽层(5)、氮化硅SiNx钝化膜(6)、P电极(7)、加厚电极(8)、UBM Au电极(9)、铟柱(10)以及绝缘InP衬底(1)的背面的SiNx应力平衡层(11)组成;
目前,延伸波长铟镓砷探测器的工艺主要包括以下主要步骤:
步骤1.在外延片上沉积刻蚀掩膜;
步骤2.通过干法刻蚀和湿法腐蚀结合的方法形成台面;
步骤3.通过湿法腐蚀在外延片上开N槽;
步骤4.在P孔表面电子束蒸发生长T i/Pt/Au作为P电极;
步骤5.在器件表面淀积氮化硅钝化膜;
步骤6.通过干法刻蚀在外延片上开P、N电极孔;
步骤7.在P电极上和N区表面,溅镀Cr/Au金属膜作为加厚电极;
步骤8.在加厚电极上光刻出金属化孔,溅射Au金属膜;
步骤9.在金属化膜上光刻出铟孔,生长In柱。
步骤10.划片
随着延伸波长铟镓砷焦平面向大规模、高密度、高灵敏度方向发展,在现有的延伸波长铟镓砷焦平面探测器芯片制备工艺过程中,对于2000×2000元及更大规模的面阵器件,光敏元尺寸≤10μm,其材料尺寸较大,台面密度较高,存在以下问题:
由于延伸波长材料晶格失配,材料外延层对基地表现为压应力,材料外延层呈中心向外凸起的拱形形变;对于单元器件,器件平面度对性能不造成明显影响,对于需要与电路耦合的面阵器件,器件平面度是关系要连通率的至关重要因素,尤其对于规模较大、尺寸较大的器件,材料应力带来的器件平面度问题是阻碍连通率达标的难题;
在高密度小像素的光敏芯片阵列研制中,由于ICPCVD钝化膜致密性较高,应力较大,该步骤工艺引入的应力会造成器件整体应力形变,加剧面阵器件的平面度问题;
在高密度大面阵器件的多道光刻工艺中,随着光刻偏差的积累,后端光刻对准难度逐渐增大,尤其是末端的金属化、生长铟柱的光刻对准偏差很大,铟孔与金属的接触面积降低,直接影响着铟柱的形貌、均匀性问题;
随着器件面阵规模增大,铟柱的干法剥离中胶带的面粘附力大于InP基地材料可承受的剪切应力,干法剥离裂片率较高,器件成品率降低。
因此,需要在现有工艺条件下对器件结构或者器件工艺上进行创新,克服现有技术的不足,提高大面阵器件平面度、降低光刻工艺偏差、改善铟柱形貌及提升干法剥离成品率,以解决大面阵器件连通率造成的焦平面探测器盲元率问题,使焦平面探测器的成品率和性能得到提升。
发明内容
基于上述铟镓砷焦平面探测器芯片制备工艺中存在的问题,本发明创新性地提出了一种带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法,解决材料内应力带来的器件平面度问题;并优化集成后道光刻工艺,降低光刻偏差、优化铟柱形貌;改进干法剥离工艺,提高铟柱剥离成品率。适用于大规模高密度延伸波长铟镓砷焦平面探测器的制备,从而解决焦平面探测器连通率差和成品率较低的问题。
一种带有应力平衡层的大规模铟镓砷焦平面探测器,其结构为:在半绝缘InP衬底1上,依次为N+型InP层2、组分渐变的N+型InxAl1-xAs缓冲层3、InxGa1-xAs吸收层4、P+型InxAl1-xAs帽层5、氮化硅SiNx钝化膜6、P电极7、加厚电极8、UBM Au电极9、铟柱10;在绝缘InP衬底1的背面,为应力平衡层11;其中,
所述的应力平衡层(11)为双层SiNx复合膜,第一层为厚度d1的低应力膜;第二层为厚度d2的高应力膜;对于特定规模的铟镓砷光敏芯片,d1、d2由长膜前芯片平面度PV值决定,当0≤PV≤10μm时,d1为d2为当10≤PV≤20μm时,d1为d2为当20≤PV≤30μm时,d1为d2为当30≤PV≤40μm时,d1为d2为当40≤PV≤50μm时,d1为d2为
所述的UBM Au电极9、铟柱10采用一体化光刻,采用4620厚胶光刻;
所述的铟柱10的铟柱剥离采用石蜡固定的干法剥离法,即铟柱生长完成后,先采用石蜡将外延片背面贴在玻璃基板上,用胶带去除多余的铟,再进行浮胶。
本发明是在原有器件结构和工艺技术基础之上进行改进,以基底背面SiNx薄膜的应力抵抗正面外延层应力,以一种新的结构设计解决材料应力问题,同时优化了大面阵器件的光刻、铟柱剥离工艺。具体工艺步骤如下:
1)淀积氮化硅膜作刻蚀掩膜,采用等离子体增强化学气相淀积(PECVD)技术淀积厚度为230nm±20nm的氮化硅,RF功率为40W±10W、衬底温度330℃±10℃、气体流量SiH4:N2为1:18;
2)台面刻蚀,先刻蚀掩膜:采用感应耦合等离子体(ICP)刻蚀技术刻蚀氮化硅,刻蚀条件为:ICP功率为2000W±50W、RF功率为40W±5W、SF6气体流量45sccm±5sccm、腔体压强9.4mTorr±0.1mTorr、温度为5℃±1℃,然后用氢氟酸缓冲液在室温下腐蚀5s±1s,腐蚀液体积比为HF:NH4F:H2O为3:6:10;然后刻蚀台面:采用感应耦合等离子体(ICP)刻蚀技术刻蚀外延层,刻蚀条件为:ICP功率为2000W±50W、RF功率为40W±5W、SF6气体流量45sccm±5sccm、腔体压强9.4mTorr±0.1mTorr、温度为5℃±1℃,然后用氢氟酸缓冲液在室温下腐蚀5s±1s,腐蚀液体积比为HF:NH4F:H2O为3:6:10;
3)开N槽,用酒石酸溶液选择腐蚀150s±20s,腐蚀液体积比为HF:NH4F:H2O为3:6:10,腐蚀液配比为酒石酸溶液:H2O2=5:1,腐蚀温度保持在35℃±2℃;
4)生长P电极,用作P电极7,采用电子束蒸发工艺淀积厚度为20±5nm/30±5nm/20±5nm的Ti/Pt/Au;
5)快速热退火,退火条件为:氮气保护气氛,退火温度为430℃±10℃,温度保持时
间为20s±2s;
6)淀积低温氮化硅钝化膜,采用感应耦合等离子体化学气相淀积(ICPCVD)技术生长300nm±30nm的氮化硅作为钝化膜6,生长条件为:ICP功率为750W±10W、衬底温度75℃±5℃、气体流量SiH4:N2为6:5;
7)开P、N电极孔,采用工艺条件与步骤2)中的掩膜刻蚀工艺相同;
8)生长加厚电极,用作加厚电极8,采用离子束溅射工艺依次淀积厚度分别为20nm±2nm、400nm±40nm、30nm±3nm的Cr、Au、Cr,淀积条件与步骤4)相同;
9)生长背面SiNx,用作平衡层11,第一层为厚度d1的低应力膜;第二层为厚度d2的高应力膜;d1和d2由长膜前芯片平面度PV值决定,当0≤PV≤10μm时,d1为d2为当10≤PV≤20μm时,d1为d2为当20≤PV≤30μm时,d1为d2为当30≤PV≤40μm时,d1为d2为当40≤PV≤50μm时,d1为d2为
10)一体化光刻,金属化、生长铟柱,用作UBM Au电极9及铟柱10。
11)铟柱剥离并划片,将长铟后的外延片背面用石蜡固定在玻璃基板上,实现外延片底面与基板的固定,采用高粘附性胶带去除多余的铟,浮胶、划片。本发明的优点在于:
1、优化大面阵器件结构,有效改善大面阵焦平面探测器平面度,提高器件耦合连通率;
2、优化集成金属化和铟柱生长技术,降低高密度小光敏元的末端工艺光刻偏差,制备工艺更简单、铟柱形貌更均一;
3、铟柱生长采用石蜡贴片固定的干法剥离方法,降低铟柱剥离工艺的裂片率,提高器件成品率。
附图说明
图1为本发明的铟镓砷探测器芯片的剖面结构示意图;
图2为本发明的平面型铟镓砷探测器芯片制备工艺步骤流程图;
图中:
(1)--半绝缘衬底InP衬底;
(2)--N+型InP层;
(3)-组分渐变的N+型InxAl1-xAs缓冲层
(4)--InxGa1-xAs吸收层;
(5)--P+型InxAl1-xAs帽层;
(6)--氮化硅SiNx钝化膜;
(7)--P电极;
(8)--加厚电极;
(9)--UBM Au电极;
(10)--铟柱;
(11)--SiNx应力平衡层;
具体实施方式
下面结合附图对本发明的具体实施方法进行详细的说明。
如附图1所示,本实施例所用的外延片为采用分子束外延技术,在厚度为350±20μm的N型衬底1上,依次生长N+型InP层2,组分渐变的铟铝砷缓冲层3,铟镓砷吸收层4,P+型InP帽层5。本实施例的大规模延伸波长铟镓砷探测器制备工艺是在原有台面型延伸波长铟镓砷探测器制备工艺基础之上,增加了背面应力平衡层结构,采用了一体化光刻金属化及铟柱生长,并优化了铟柱剥离工艺。
本实施例探测器光敏芯片制备的具体工艺流程为:
1)淀积氮化硅刻蚀掩膜,用作刻蚀掩膜,采用等离子体增强化学气相淀积(PECVD)技术淀积厚度为400±20nm的氮化硅,RF功率为40±5W、衬底温度330±5℃、气体流量SiH4:N2为1:18;
2)刻蚀台面,分为刻蚀氮化硅和刻蚀InGaAs外延材料形成台面两部分。采用感应耦合等离子体(ICP)刻蚀技术刻蚀氮化硅,刻蚀条件为:ICP功率为2000±5W、RF功率为40±5W、采用SF6作为刻蚀气体;采用感应耦合等离子体(ICP)刻蚀技术刻蚀台面,刻蚀条件为:ICP功率为350±5W、RF功率为130±5W、采用Cl2和N2作为刻蚀气体;去除氮化硅掩膜,采用氢氟酸缓冲液在室温下腐蚀120±5s,腐蚀液体积比为HF:NH4F:H2O为3:6:10;
3)开N槽,用酒石酸溶液腐蚀铟镓砷层,腐蚀液体积比为重量比酒石酸溶液:H2O为1:1,腐蚀速率为0.5±0.05μm/min;
4)生长P电极,用作P电极7,采用电子束蒸发工艺淀积厚度为20±5nm/30±5nm/20±5nm的Ti/Pt/Au;
5)快速热退火,退火条件为氮气保护气氛,退火温度为420±5℃,温度保持时间为40±5s;
6)淀积低温氮化硅钝化膜,采用感应耦合等离子体化学气相淀积(ICPCVD)技术生长600nm的氮化硅作为钝化膜6,生长条件为:ICP功率为750W±10W、衬底温度75℃±5℃、气体流量SiH4:N2为6:5;
7)开P、N电极孔,采用工艺条件与步骤2)中的刻蚀氮化硅的相同;
8)生长加厚电极,采用离子束溅射工艺依次淀积厚度分别为20±5nm/400±20nm的Cr/Au;
9)生长背面SiNx,用作平衡层11;器件面阵规模2000×2000,15μm pitch,测试器件长膜前平面度PV值48μm;由于40μm≤PV≤50μm,所需要的膜厚为低应力膜厚度为高应力膜厚度为采用感应耦合等离子体化学气相(ICPCVD)淀积,低应力膜条件为:ICP功率为750W、衬底温度75℃,采用SiH4、N2为作为工艺气体,SiH4:N2为15sccm:13sccm,压强12mTorr;高应力膜条件为:ICP功率为1000W、RF功率为200W;衬底温度75℃,采用SiH4、N2为作为工艺气体,SiH4:N2为18sccm:20sccm,压强8mTorr,长膜后测试器件平面度PV值约3μm,满足耦合需求。
10)一体化光刻,采用4620厚胶光刻;金属化,用作UBM Au电极9,采用离子束溅射工艺淀积厚度为50nm±10nm的Au,真空度为3×10-2Pa以下,离子束能量为100eV±10eV;生长铟柱,用作铟柱10。
11)铟柱剥离并划片:将长铟后的外延片背面用石蜡固定在玻璃基板上,实现外延片底面与基板的固定,采用高粘附性胶带去除多余的铟,浮胶、划片。

Claims (4)

1.一种带有应力平衡层的大规模铟镓砷焦平面探测器,所述的探测器结构为:在半绝缘InP衬底(1)上,依次为N+型InP层(2)、组分渐变的N+型InxAl1-xAs缓冲层(3)、InxGa1-xAs吸收层(4)、P+型InxAl1-xAs帽层(5)、氮化硅SiNx钝化膜(6)、P电极(7)、加厚电极(8)、UBM Au电极(9)、铟柱(10);在半绝缘InP衬底(1)的背面为应力平衡层(11);其特征在于:
所述的大规模铟镓砷焦平面探测器在半绝缘InP衬底(1)的背面有应力平衡层(11);
所述的应力平衡层(11)为双层SiNx复合膜,第一层为厚度d1的低应力膜;第二层为厚度d2的高应力膜;d1和d2由长膜前芯片平面度PV值决定,当0≤PV≤10μm时,d1为d2为当10≤PV≤20μm时,d1为d2为当20≤PV≤30μm时,d1为d2为当30≤PV≤40μm时,d1为d2为当40≤PV≤50μm时,d1为d2为
2.根据权利要求1所述的一种带有应力平衡层的大规模铟镓砷焦平面探测器,其特征在于:所述的应力平衡层(11)采用感应耦合等离子体化学气相淀积方法制备,其中:低应力膜生长条件为:ICP功率为750±5W,RF功率为0W,衬底温度75±5℃,采用SiH4、N2为作为工艺气体,SiH4:N2为1.0~1.2,压强12~16mTorr;高应力膜生长条件为:ICP功率为1200±5W、RF功率为200±5W,衬底温度75±5℃,采用SiH4、N2为作为工艺气体,SiH4:N2为0.8~1.0,压强8~10mTorr。
3.根据权利要求1所述的一种带有应力平衡层的大规模铟镓砷焦平面探测器,其特征在于:UBM Au电极(9)、铟柱(10)采用一体化光刻,采用4620厚胶光刻。
4.根据权利要求1所述的一种带有应力平衡层的大规模铟镓砷焦平面探测器,其特征在于:所述的铟柱(10)的铟柱剥离采用石蜡固定的干法剥离法,即铟柱生长完成后,先采用石蜡将外延片背面贴在玻璃基板上,用胶带去除多余的铟,再进行浮胶。
CN201910618698.6A 2019-07-10 2019-07-10 带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法 Active CN110444607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910618698.6A CN110444607B (zh) 2019-07-10 2019-07-10 带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910618698.6A CN110444607B (zh) 2019-07-10 2019-07-10 带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法

Publications (2)

Publication Number Publication Date
CN110444607A true CN110444607A (zh) 2019-11-12
CN110444607B CN110444607B (zh) 2021-01-01

Family

ID=68430039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910618698.6A Active CN110444607B (zh) 2019-07-10 2019-07-10 带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法

Country Status (1)

Country Link
CN (1) CN110444607B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854141A (zh) * 2019-11-21 2020-02-28 中国电子科技集团公司第四十四研究所 一种单片集成型平衡光电探测器芯片及制作方法
CN112420871A (zh) * 2020-09-30 2021-02-26 无锡中科德芯光电感知技术研究院有限公司 台面型铟镓砷探测器芯片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300603A (ja) * 1997-04-23 1998-11-13 Denso Corp 半導体式変位検出装置の製造方法
CN101358337A (zh) * 2008-09-25 2009-02-04 上海蓝光科技有限公司 一种非极性GaN薄膜的生长方法
CN103413839A (zh) * 2013-07-30 2013-11-27 中国科学院上海技术物理研究所 一种具有双层钝化膜的AlGaN基紫外探测器及制备方法
CN105633008A (zh) * 2014-11-06 2016-06-01 中国科学院苏州纳米技术与纳米仿生研究所 一种铟柱的制备方法、红外焦平面阵列探测器
CN109449238A (zh) * 2018-10-10 2019-03-08 中国科学院上海技术物理研究所 一种大规模小像元铟镓砷焦平面探测器制备方法
CN109755349A (zh) * 2019-01-14 2019-05-14 中国科学院上海技术物理研究所 一种低应力钝化的台面型延伸波长铟镓砷探测器制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300603A (ja) * 1997-04-23 1998-11-13 Denso Corp 半導体式変位検出装置の製造方法
CN101358337A (zh) * 2008-09-25 2009-02-04 上海蓝光科技有限公司 一种非极性GaN薄膜的生长方法
CN103413839A (zh) * 2013-07-30 2013-11-27 中国科学院上海技术物理研究所 一种具有双层钝化膜的AlGaN基紫外探测器及制备方法
CN105633008A (zh) * 2014-11-06 2016-06-01 中国科学院苏州纳米技术与纳米仿生研究所 一种铟柱的制备方法、红外焦平面阵列探测器
CN109449238A (zh) * 2018-10-10 2019-03-08 中国科学院上海技术物理研究所 一种大规模小像元铟镓砷焦平面探测器制备方法
CN109755349A (zh) * 2019-01-14 2019-05-14 中国科学院上海技术物理研究所 一种低应力钝化的台面型延伸波长铟镓砷探测器制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854141A (zh) * 2019-11-21 2020-02-28 中国电子科技集团公司第四十四研究所 一种单片集成型平衡光电探测器芯片及制作方法
CN112420871A (zh) * 2020-09-30 2021-02-26 无锡中科德芯光电感知技术研究院有限公司 台面型铟镓砷探测器芯片及其制备方法

Also Published As

Publication number Publication date
CN110444607B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN100587919C (zh) 用于氮化物外延生长的纳米级图形衬底的制作方法
US20140120656A1 (en) Fabrication method of inverted solar cells
US8809097B1 (en) Passivated emitter rear locally patterned epitaxial solar cell
CN106848016A (zh) GaN基多孔DBR的制备方法
CN108122749B (zh) 一种基于图形化载片的SiC基GaN_HEMT背面工艺
CN110444607A (zh) 带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法
CN109449238A (zh) 一种大规模小像元铟镓砷焦平面探测器制备方法
CN112018216A (zh) 一种太阳能电池衬底的转移方法
CN111816696A (zh) 一种自对准的GaN肖特基二极管及其制造方法
CN109755349A (zh) 一种低应力钝化的台面型延伸波长铟镓砷探测器制备方法
CN109755351B (zh) 一种柔性薄膜太阳电池及其制作方法
CN102263166B (zh) 采用纳米粒子提高AlGaN基探测器性能的方法
CN109560784A (zh) 兰姆波谐振器及其制备方法
JP2002277605A (ja) 反射防止膜の成膜方法
CN110739357A (zh) 纳米倒金字塔-准微米金字塔背钝化太阳电池及制法
CN104538478B (zh) 一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法
CN110828581A (zh) 一种柔性太阳电池及其制作方法
CN109346405B (zh) 一种GaN基SBD倒装芯片的制备方法
CN115566096A (zh) 一种AlGaN/Nb2C基紫外光电探测器及其制备方法
WO2020029581A1 (zh) 柔性太阳能电池及其制作方法
TWI556285B (zh) 在矽基板上磊晶成長鍺薄膜的方法
CN106876250A (zh) 氮化镓薄膜材料外延生长的方法
US10403783B2 (en) Nanostructured substrates for improved lift-off of III-V thin films
CN102723404B (zh) 倒置生长宽谱吸收iii-v多结电池的制备方法
CN105483617A (zh) 一种在非硅衬底上制备Mg2Si薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant