CN110433799A - 一种铑、钯双金属负载TiO2光催化剂的制备方法 - Google Patents

一种铑、钯双金属负载TiO2光催化剂的制备方法 Download PDF

Info

Publication number
CN110433799A
CN110433799A CN201910756861.5A CN201910756861A CN110433799A CN 110433799 A CN110433799 A CN 110433799A CN 201910756861 A CN201910756861 A CN 201910756861A CN 110433799 A CN110433799 A CN 110433799A
Authority
CN
China
Prior art keywords
preparation
tio
suspension
rhodium
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910756861.5A
Other languages
English (en)
Inventor
王玲钰
崔大庆
肖松涛
欧阳应根
李腾
张琛琛
宋一兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201910756861.5A priority Critical patent/CN110433799A/zh
Publication of CN110433799A publication Critical patent/CN110433799A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化技术领域,涉及一种铑、钯双金属负载TiO2光催化剂的制备方法。所述的制备方法包括如下步骤:(1)将氯化铑、氯化钯和经干燥的TiO2粉末分散至去离子水中,加入牺牲剂搅拌成悬浮液;(2)在悬浮液中持续通入氮气,以驱除其中的溶解氧;(3)将悬浮液置于紫外光下照射,在此过程中持续搅拌保证悬浮状态;(4)将悬浮液进行离心分离,收集沉淀物,水洗;(5)将沉淀物烘干,然后在马弗炉中焙烧。利用本发明的铑、钯双金属负载TiO2光催化剂的制备方法,能够简单地制备高光催化活性的负载TiO2光催化剂,其相比铑、钯单金属负载TiO2光催化剂具有明显的协同作用。

Description

一种铑、钯双金属负载TiO2光催化剂的制备方法
技术领域
本发明属于光催化技术领域,涉及一种铑、钯双金属负载TiO2光催化剂的制备方法。
背景技术
随着能源短缺和环境污染问题的加剧,如何通过光催化技术将太阳能高效转化成可储存、可再生、清洁的氢能是国内外研究的一个热点。TiO2因其化学性质稳定、导带价带电位比氢更负、光量子效应显著、价格便宜等特点,成为研究最多、应用最广泛的光催化材料。但TiO2直接作为光催化剂也存在着吸收光集中在紫外光光区和光量子效率不高两个不足,导致其对太阳能转化为氢能的总效率不高。
对TiO2光催化制氢技术的研究通常是对TiO2光催化剂进行改性研究,包括形貌控制、负载改性、复合半导体、金属沉积、贵金属修饰、离子掺杂、表面敏化等改性方法,还有固体超强酸、超声波、磁场、电场、耦合、联用等处理技术以提高催化反应效率。这些改性方法在制备方法的难易程度、催化剂的稳定性、原材料的选择、产业化等方面各有优缺点,因此要通过高效、稳定的光催化系统实现裂解水高效产氢仍有很长的路要走,而对光催化制氢技术的不断研究也将有助于以可持续的方式解决全球能源问题。
贵金属改性TiO2光催化剂主要有以下几种作用机理:
(1)若贵金属沉积在TiO2表面,能够形成金属—二氧化钛异质结构,光生电子从TiO2表面转移到费米能级较低的贵金属,直至费米能级一致的时候便形成了空间电荷层,电荷的不平衡导致能带向上弯曲形成肖特基势垒(参见:Salvador P,Garcia Gonzalez ML,Munoz F.Catalytic role of lattice defects in the photoassisted oxidation ofwater at(001)n-titanium(IV)oxide rutile[J].Journal of Physical Chemistry,1992,96:10349-10353.)。肖特基势垒能有效地捕获光生电子,加速光生电子的转移而阻止回到空穴,延长了光生电子的寿命;
(2)若贵金属进入TiO2晶格中,改变了TiO2的晶体结构和电子结构,使TiO2的原子间的键长、平均静电荷等发生变化,晶格正负电荷中心不是同一个中心,便在晶体中产生局域电场,抑制光生电子回到价带空穴;
(3)贵金属纳米颗粒,特有表面等离子体共振效应(Surface Plasma Resonance),贵金属沉积对解决TiO2光催化材料光谱响应范围较窄和光量子效率不高的问题有着重要意义。
贵金属沉积大多以原子簇的形式沉积在半导体上,如果沉积量过多也可能阻碍光生电子的迁移,反而成为光生载流子的复合中心,降低光量子效率(参见:Ohtani B,IwaiK,Nishimoto S.Role of platinum deposits on titanium(Ⅳ)Oxide particles;structural and kinetic analyses of photocatalytic rraction in aqueous alcoholand acide solutions[J].J Phys Chem B,1992,101:3349-3352.)。
Anna Dobosz等(参见:Dobosz A,Sobczyński A.Water detoxification:photocatalytic decomposition of phenol on Au/TiO2[J].Monatshefte Für Chemie,2001,132(9):1037-1045.)制备了Au/TiO2光催化剂,催化降解苯酚的活性远远高于初始TiO2
崔鹏等(参见:崔鹏,徐南平,时钧.光催化还原法制备载Ag光催化剂[J].高校化学工程学报,2002,16(2):222-226.)制备了不同负载量(AgNO3溶液初始浓度在0.025wt.%~0.6wt.%)的Ag/TiO2催化剂,其光催化降解甲基橙的能力随AgNO3浓度的增加而先增后减,在0.5%时光催化降解效率有最大值。
Li等(参见:Li F B,Li X Z.The enhancement of photodegradationefficiency using Pt/TiO2 catalyst[J].Chemosphere,2002,48(10):1103-1111.)制备Pt/TiO2催化剂催化降解甲基橙以及亚甲蓝溶液,结果表明Pt的负载量为0.75%(摩尔分数)时,复合催化剂都有最大的催化效果。
Sakthivel等(参见:Sakthivel S,Shankar M V,Palanichamy M,etal.Enhancement of photo catalytic activity by metal deposition:Characterisation and photonic efficiency of Pt,Au and Pd deposited on TiO2catalyst[J].Water Research,2004,38(13):3001-3008.)分别制备了Pt/TiO2、Au/TiO2、Pd/TiO2复合催化剂来光催化降解酸性绿16溶液,结果表明Pt、Au、Pd负载量分别为0.8wt.%、0.8wt.%、0.05wt.%时复合催化剂有最大催化效率。
Grabowska等(参见:Grabowska E,Remita H,Zaleska A.Photocataly ticactivity of TiO2 loaded with metal clusters[J].Physicochemical Problems ofMineral Processing,2010,45(45):29-38.)用贵金属负载P25制备得Ag/TiO2、Au/TiO2复合催化剂,负载ST-01制备得Pt/TiO2催化剂,催化降解苯酚溶液时结果表明最大催化活性时Ag、Au负载量分别为2wt.%、1wt.%,Pt负载量为0.5wt.%,一小时后苯酚的降解率分别达到91%、49%和91%。
发明内容
本发明的目的是提供一种铑、钯双金属负载TiO2光催化剂的制备方法,以能够简单地制备高光催化活性的负载TiO2光催化剂。
为实现此目的,在基础的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,所述的制备方法包括如下步骤:
(1)将氯化铑、氯化钯和经干燥的TiO2粉末分散至去离子水中,加入牺牲剂搅拌成悬浮液;
(2)在悬浮液中持续通入氮气,以驱除其中的溶解氧;
(3)将悬浮液置于紫外光下照射,在此过程中持续搅拌保证悬浮状态;
(4)将悬浮液进行离心分离,收集沉淀物,水洗;
(5)将沉淀物烘干,然后在马弗炉中焙烧。
在一种优选的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,其中步骤(1)中,铑、钯、TiO2的质量比为0.1-0.8:0.2-0.9:99-19.7。
在一种优选的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,其中步骤(1)中,TiO2粉末为真空干燥得到,干燥时间为8-16h。
在一种优选的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,其中步骤(1)中,所述的牺牲剂为甲醇和/或乙二醇。
在一种优选的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,其中步骤(1)中,去离子水与牺牲剂的体积比为2:1-2.5:1。
在一种优选的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,其中步骤(2)中,通入氮气的时间为0.5-2h。
在一种优选的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,其中步骤(3)中,紫外光下照射时间为2-4h。
在一种优选的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,其中步骤(5)中,真空烘干温度为70-90℃,真空烘干时间为8-16h。
在一种优选的实施方案中,本发明提供一种铑、钯双金属负载TiO2光催化剂的制备方法,其中步骤(5)中,焙烧温度为300-400℃(最优350℃),焙烧升温速率为1.5-2.5℃·min-1(最优2℃·min-1),焙烧时间为4-6h(最优5h)。
本发明的有益效果在于,利用本发明的铑、钯双金属负载TiO2光催化剂的制备方法,能够简单地制备高光催化活性的负载TiO2光催化剂,其相比铑、钯单金属负载TiO2光催化剂具有明显的协同作用(比单一铑负载TiO2及单一钯负载TiO2光催化剂催化光解水产氢速率之和提高了30%以上)。
附图说明
图1为实施例1中本发明的制备方法的流程图。
图2为实施例1中不同催化剂光解水的产氢速率对比图。
具体实施方式
以下通过实施例对本发明的具体实施方式作出进一步的说明。
实施例1:
(1)铑、钯双金属负载TiO2光催化剂的制备
分别称取0.0517g氯化铑和0.0337g氯化钯分散至去离子水中,再将TiO2粉末(粒径40nm左右)真空干燥12h后称取4g分散至上述去离子水中,再加入10mL甲醇配制成100mL悬浮液,密封至250mL烧杯中。持续通入氮气30分钟,以驱除悬浮液中的溶解氧。再将悬浮液置于紫外光(光源为300W氙灯)下照射2h,在这过程中用磁力搅拌器不断搅拌悬浮液。可观察到悬浮液的颜色逐渐变化,为金属前驱体被还原过程。继而通过离心和水洗收集沉淀物,在真空干燥箱中80℃烘干12h,然后在马弗炉中623K(升温速率2℃·min-1)焙烧5h。将得到的复合催化剂编号为0.5Rh-0.5Pd/TiO2(铑、钯、二氧化钛的重量占比分别为0.5wt.%、0.5wt.%、99wt.%)。
对制得催化剂进行表征,确定催化剂制备成功。
(2)Pd负载TiO2催化剂的制备
称取0.0335g氯化钯分散至去离子水中,再将TiO2粉末(粒径40nm左右)真空干燥12h后称取4g分散至上述去离子水中,再加入10mL甲醇配制成100mL悬浮液,密封至250mL烧杯中。持续通入氮气30分钟,以驱除悬浮液中的溶解氧。再将悬浮液置于紫外光(光源为300W氙灯)下照射2h,在这过程中用磁力搅拌器不断搅拌悬浮液,可观察到悬浮液的颜色逐渐变化,然后通过离心和水洗收集沉淀物,在真空干燥箱中80℃烘干12h,然后在马弗炉中623K(升温速率2℃·min-1)焙烧1h。对最后得到的Pd/TiO2复合催化剂编号为0.5Pd/TiO2(钯、二氧化钛的重量占比分别为0.5wt.%、99.5wt.%)。
对制得催化剂进行表征,确定催化剂制备成功。
(3)其它催化剂制备
同上方法分别制备催化剂0.5Rh/TiO2(铑、二氧化钛的重量占比分别为0.5wt.%、99.5wt.%)、0.5Rh-0.5Pd/TiO2(铑、钯、二氧化钛的重量占比分别为0.5wt.%、0.5wt.%、99wt.%)、1Rh/TiO2(铑、二氧化钛的重量占比分别为1wt.%、99wt.%)、1Pd/TiO2(钯、二氧化钛的重量占比分别为1wt.%、99wt.%)等,并对各制得催化剂进行表征,确定催化剂制备成功。
(4)光催化分解水制氢活性评价
光催化分解水制氢活性评价的装置主体采用的是北京泊菲莱科技有限公司的Labsolar 6A全玻璃自动光催化在线气体分析系统,整套光催化分解水制氢活性评价系统包括反应系统、气体循环系统、真空系统和在线分析系统。系统会根据设定的参数每隔一段时间自动取样在线分析氢气的量。
上述制备各催化剂光解水的产氢速率如图2所示,Rh-Pd/TiO2双金属复合催化剂大大提高了产氢速率,Rh、Pd双金属负载具有明显的协同作用,0.5Rh-0.5Pd/TiO2催化产氢速率较0.5Rh/TiO2和0.5Pd/TiO2催化产氢速率之和提高了37.2%。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。

Claims (9)

1.一种铑、钯双金属负载TiO2光催化剂的制备方法,其特征在于,所述的制备方法包括如下步骤:
(1)将氯化铑、氯化钯和经干燥的TiO2粉末分散至去离子水中,加入牺牲剂搅拌成悬浮液;
(2)在悬浮液中持续通入氮气,以驱除其中的溶解氧;
(3)将悬浮液置于紫外光下照射,在此过程中持续搅拌保证悬浮状态;
(4)将悬浮液进行离心分离,收集沉淀物,水洗;
(5)将沉淀物烘干,然后在马弗炉中焙烧。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,铑、钯、TiO2的质量比为0.1-0.8:0.2-0.9:99-19.7。
3.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,TiO2粉末为真空干燥得到,干燥时间为8-16h。
4.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,所述的牺牲剂为甲醇和/或乙二醇。
5.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,去离子水与牺牲剂的体积比为2:1-2.5:1。
6.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,通入氮气的时间为0.5-2h。
7.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,紫外光下照射时间为2-4h。
8.根据权利要求1所述的制备方法,其特征在于:步骤(5)中,真空烘干温度为70-90℃,真空烘干时间为8-16h。
9.根据权利要求1所述的制备方法,其特征在于:步骤(5)中,焙烧温度为300-400℃,焙烧升温速率为1.5-2.5℃·min-1,焙烧时间为4-6h。
CN201910756861.5A 2019-08-16 2019-08-16 一种铑、钯双金属负载TiO2光催化剂的制备方法 Pending CN110433799A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910756861.5A CN110433799A (zh) 2019-08-16 2019-08-16 一种铑、钯双金属负载TiO2光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910756861.5A CN110433799A (zh) 2019-08-16 2019-08-16 一种铑、钯双金属负载TiO2光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN110433799A true CN110433799A (zh) 2019-11-12

Family

ID=68436104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910756861.5A Pending CN110433799A (zh) 2019-08-16 2019-08-16 一种铑、钯双金属负载TiO2光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110433799A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387278A (zh) * 2020-10-22 2021-02-23 烟台大学 铋/铑共掺杂二氧化钛复合材料及其制备方法和光催化应用
CN112427034A (zh) * 2020-10-22 2021-03-02 烟台大学 铑掺杂二氧化钛复合材料及其制备方法和光催化应用
CN113413897A (zh) * 2021-07-19 2021-09-21 中国科学院山西煤炭化学研究所 一种高效复合光催化剂及其制备方法和应用
CN115212874A (zh) * 2022-08-16 2022-10-21 深圳市康弘智能健康科技股份有限公司 用于可见光催化净化甲醛的改进光催化材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188711A1 (en) * 2000-09-15 2002-03-20 The Hydrogen Solar Production Company Limited Photocatalyst for use in the production of hydrogen from water or aqueous solutions of organic compounds
DE69733503T2 (de) * 1996-01-22 2006-03-23 Petroleum Energy Center Mit Metallionen dotierter Photokatalysator
CN101497038A (zh) * 2008-11-12 2009-08-05 湖南城市学院 响应可见光的纳米二氧化钛光催化剂及其制备方法
CN102500363A (zh) * 2011-03-10 2012-06-20 中国科学院福建物质结构研究所 贵金属定向负载二氧化钛光催化剂及其制备方法
CN105582916A (zh) * 2016-01-14 2016-05-18 内江洛伯尔材料科技有限公司 一种二氧化钛依次沉积纳米金和铑的光催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69733503T2 (de) * 1996-01-22 2006-03-23 Petroleum Energy Center Mit Metallionen dotierter Photokatalysator
EP1188711A1 (en) * 2000-09-15 2002-03-20 The Hydrogen Solar Production Company Limited Photocatalyst for use in the production of hydrogen from water or aqueous solutions of organic compounds
CN101497038A (zh) * 2008-11-12 2009-08-05 湖南城市学院 响应可见光的纳米二氧化钛光催化剂及其制备方法
CN102500363A (zh) * 2011-03-10 2012-06-20 中国科学院福建物质结构研究所 贵金属定向负载二氧化钛光催化剂及其制备方法
CN105582916A (zh) * 2016-01-14 2016-05-18 内江洛伯尔材料科技有限公司 一种二氧化钛依次沉积纳米金和铑的光催化剂的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387278A (zh) * 2020-10-22 2021-02-23 烟台大学 铋/铑共掺杂二氧化钛复合材料及其制备方法和光催化应用
CN112427034A (zh) * 2020-10-22 2021-03-02 烟台大学 铑掺杂二氧化钛复合材料及其制备方法和光催化应用
CN112427034B (zh) * 2020-10-22 2022-03-01 烟台大学 铑掺杂二氧化钛复合材料及其制备方法和光催化应用
CN112387278B (zh) * 2020-10-22 2022-03-01 烟台大学 铋/铑共掺杂二氧化钛复合材料及其制备方法和光催化应用
CN113413897A (zh) * 2021-07-19 2021-09-21 中国科学院山西煤炭化学研究所 一种高效复合光催化剂及其制备方法和应用
CN115212874A (zh) * 2022-08-16 2022-10-21 深圳市康弘智能健康科技股份有限公司 用于可见光催化净化甲醛的改进光催化材料的制备方法

Similar Documents

Publication Publication Date Title
CN110433799A (zh) 一种铑、钯双金属负载TiO2光催化剂的制备方法
Zhao et al. A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride
Cho et al. Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation
Hitoki et al. Ta3N5 as a novel visible light-driven photocatalyst (λ< 600 nm)
Li et al. A redox shuttle accelerates O2 evolution of photocatalysts formed in situ under visible light
Liu et al. Water reduction and oxidation on Pt–Ru/Y 2 Ta 2 O 5 N 2 catalyst under visible light irradiation
Sclafani et al. Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension
Luo et al. Hierarchical Heterogeneity at the CeO x–TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures
Qiu et al. Integrated pn/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@ TiO2-Cu2O ternary hybrids with steering charge transfer
CN104923264B (zh) 一种贵金属修饰的CdS纳米棒光催化剂的制备方法和应用
CN108745382B (zh) 一种NiCd双非贵金属修饰的CdS可见光催化剂的制备方法及其应用
Di et al. Preparation of Z-scheme Au-Ag2S/Bi2O3 composite by selective deposition method and its improved photocatalytic degradation and reduction activity
CN106238043A (zh) 二氧化钛负载高分散铂复合光催化材料的制备及应用方法
Sun et al. Integrating Pt@ Ni (OH) 2nanowire and Pt nanoparticle on C3N4with fast surface kinetics and charge transfer towards highly efficient photocatalytic water splitting
CN105944741A (zh) 一种GO/Ag3PO4/AgBr三元复合光催化剂及其制备方法
Camposeco et al. Highly efficient photocatalytic hydrogen evolution by using Rh as co-catalyst in the Cu/TiO2 system
CN105498820A (zh) 高可见光电子转移Au/g-C3N4负载型光催化材料的制备方法
CN109174144B (zh) Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用
CN111151246A (zh) 一种金原子/二氧化钛复合材料、其制备方法及用途
Chen et al. Boosting visible-light hydrogen evolution on CdS hollow nanospheres with CoN as cocatalyst
Zheng et al. Titania modification with a ruthenium (II) complex and gold nanoparticles for photocatalytic degradation of organic compounds
CN103007932A (zh) 一种二氧化钛纳米带负载双金属整体式催化剂的制备方法
Jalil et al. Facile transfer of surface plasmon electrons of Au-NPs to Zn 3 V 2 O 8 surfaces: a case study of sunlight driven H 2 generation from water splitting
Chen et al. Roles of various Ni species on TiO 2 in enhancing photocatalytic H 2 evolution
JP2023539607A (ja) 太陽光中でco2+h2oをc1酸素化物へ共変換する連続プロセスのための光触媒デバイス

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191112

RJ01 Rejection of invention patent application after publication