CN110396403A - 靶向cyp1b1酶的近红外荧光探针及其制备和用途 - Google Patents

靶向cyp1b1酶的近红外荧光探针及其制备和用途 Download PDF

Info

Publication number
CN110396403A
CN110396403A CN201810373475.3A CN201810373475A CN110396403A CN 110396403 A CN110396403 A CN 110396403A CN 201810373475 A CN201810373475 A CN 201810373475A CN 110396403 A CN110396403 A CN 110396403A
Authority
CN
China
Prior art keywords
infrared fluorescent
near infrared
probe
cyp1b1
fluorescent probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810373475.3A
Other languages
English (en)
Other versions
CN110396403B (zh
Inventor
孟青青
王增涛
李绍顺
董金云
崔家华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201810373475.3A priority Critical patent/CN110396403B/zh
Publication of CN110396403A publication Critical patent/CN110396403A/zh
Application granted granted Critical
Publication of CN110396403B publication Critical patent/CN110396403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供了一种靶向CYP1B1酶的近红外荧光探针及其制备和用途,所述荧光探针包括亲和配体、信号基团和用于连接配体和信号基团的连接链;所述连接链包含多个乙二醇片段;所述亲和配体为α‑萘黄酮衍生物,信号基团为近红外荧光分子。本发明是一种以肿瘤的特异性标记物CYP1B1酶为靶点的近红外分子探针,有效避免了信号基团的引入对CYP1B1酶抑制活性的影响,并将促进近红外分子探针在肿瘤活体成像中的应用,在肿瘤早期诊断方面将具有良好应用前景及临床转化价值。

Description

靶向CYP1B1酶的近红外荧光探针及其制备和用途
技术领域
本发明涉及近红外活体成像和分子影像探针领域,涉及一种靶向CYP1B1酶的近红外荧光探针及其制备和用途,具体来说是一种由近红外荧光染料与能与细胞色素P4501B1酶特异性结合的配体组成的诊断试剂复合物,通过靶向细胞色素P450 1B1酶在肿瘤细胞中特异性富集,可用于靶向肿瘤的荧光造影及肿瘤的早期诊断。
背景技术
在肿瘤的早期诊断和定位中,无创伤的分子影像学技术通过特异性探针既能够显示肿瘤所在位置,同时也可以反映出肿瘤细胞中特定信号分子的变化。通常在肿瘤细胞中特异性表达的受体或蛋白可以作为分子成像的生物靶标,而对其具有高亲合性的抗体或小分子在通过合适的连接链连接上信号基团后便形成了针对该生物靶标的分子探针(Fass,L.“Imaging and cancer:A review.”Mol.Oncol.2008,2,115-152.)。近红外荧光(nearinfrared,NIR)染料是一类聚甲菁染料的杂环化合物,吸收及发射光谱均处于近红外(700—1000nm)之间。其具有诸多优点:(1)具有良好的组织渗透性,吸收的红外光在生物组织中的穿透深度较大,而激发的荧光受生物组织本底的影响较小,所以可检测到深层组织的荧光信号;(2)无毒性和放射性;(3)游离荧光染料清除快等。另外,利用NIR技术进行活体成像也具有诸多的优势,主要表现在:基团标记能力强,信号强度大,成像材料广;通过成像设备能够从深层组织中检测到肿瘤。因此运用NIR染料与靶向配体连接,实现肿瘤的定位,在肿瘤的诊断、治疗、及愈后检测中具有非常重要的作用。但目前近红外荧光探针存在的问题是分子成像的靶标在正常组织中或多或少也有分布,造成了分子探针在体内有较高的本底信号,降低了对肿瘤显像的特异性和灵敏性。
细胞色素P450(CYP450)酶广泛存在于人体组织中,参与许多内源性和外源性物质的生物转化,在调节机体与外界环境的相互作用以及保持机体体内环境的稳定性中起着重要的作用。其成员之一CYP1B1作为一种重要的胞内氧化酶,主要催化底物的羟基化反应,可以催化前致癌物的代谢活化,同时可引起肿瘤细胞对部分抗肿瘤药物产生耐药性,是目前抗肿瘤药物研究中的新靶点(Rochat,B.;Morsman,J.M.;Murray,G.I.;Figg,W.D.;McLeod,H.L.Human CYP1B1and Anticancer Agent Metabolism:Mechanism for Tumor-specificDrug Inactivation?”J.Pharmacol.Exp.Ther.,2001,296,537-541.)。大量研究表明,CYP1B1酶在包括乳腺癌、肺癌、肾癌和卵巢癌等肿瘤组织中高表达,而在正常组织中表达量很少(Murray,G.I.;Taylor,M.C.;McFadyen,M.C.;McKay,J.A.;Greenlee,W.F.;Burke,M.D.;Melvin,W.T.“Tumor-specific Expression of Cytochrome P450CYP1B1.”CancerRes.,1997,57,3026-3031.),并且CYP1B1酶能够在早期癌变细胞中被诱导表达,因此其被预测可用于介导荧光肿瘤标记物,显示出作为肿瘤标记物用于肿瘤早期诊断的潜力及应用价值。
α-萘黄酮是人工合成的黄酮类化合物,对CYP1B1酶有较强的抑制活性,但同时也能与CYP1A1和CYP1A2两种酶结合,缺乏选择性(Shimada,T.;Yamazaki,H.;Foroozesh,M.;Hopkins,N.E.;Alworth,W.L.;Guengerich,F.P.Selectivity of polycyclic inhibitorsfor human cytochrome P450s 1A1,1A2,and 1B1.Chem.Res.Toxicol.,1998,11,1048-1056.)。在前期的研究中,我们以α-萘黄酮为先导物,通过对其萘环及B环进行结构修饰筛选到的6,7,10-三甲氧基-α-萘黄酮系列化合物对CYP1B1酶表现出强抑制性和高选择性(CN201210475989.2,CN 201410228733.0)。为肿瘤诊断及个体化治疗服务的在体显示CYP1B1酶的小分子探针尚无文献报道,鉴于目前用于肿瘤诊断的分子探针特异性不高的问题,探索靶向CYP1B1的分子探针在肿瘤早期发现和诊断中的应用价值,有望提高治愈率,降低死亡率,具有重要意义。
发明内容
本发明要解决的技术问题是,针对现有技术不足,提供一种靶向CYP1B1酶的新型近红外小分子探针及其制备方法和应用。通过对胞内CYP1B1酶进行近红外活体成像,在体显示其表达部位与水平,为肿瘤的早期诊断提供新方法,解决目前肿瘤治疗中诊断困难和诊断特异性不高的问题。
本发明的原理是:CYP1B1酶具有在肿瘤组织中特异性高表达和在早期癌变细胞中被诱导表达的两大特征,显示出作为肿瘤标志物用于肿瘤早期诊断的潜力及应用价值。在前期研究中,我们获得了已报道的对CYP1B1具有最强抑制活性的化合物3’-氟-6,7,10-三甲基氧-α-萘黄酮,并且结合对α-萘黄酮与CYP1B1的蛋白共结晶结构的分析,我们发现α-萘黄酮结合在关闭的CYP1B1催化口袋,荧光基团的引入可能干扰探针与CYP1B1的结合,若在α-萘黄酮3位引入取代基,取代基可能伸向具有一定柔性的Loop区,使引入基团对活性的影响减小。因此我们设计合成了3位羟基的α-萘黄酮衍生物,方便进一步引入信号基团,获得分子探针。此外,α-萘黄酮与CYP1A1,CYP1A2及CYP1B1的复合物单晶结构显示,虽然α-萘黄酮均结合在三个蛋白较为保守的底物结合区域,但α-萘黄酮在与CYP1B1的共结晶中显示出了与CYP1A1和CYP1A2截然不同的结合取向,这也预示着通过合理结构修饰,可能获得仅选择性与CYP1B1酶结合的α-萘黄酮衍生物。并进一步选择了2-3个乙二醇片段(n=1,2)作为连接链,因此我们设计并合成了3位碳原子连接羟基烷基醚侧链的6,7,10-三甲基氧-α-萘黄酮系列化合物,并分别在此基础上连接信号组件制备本发明所述的分子探针。所述信号基团是一种近红外荧光分子Cy5.5,具有良好的组织渗透性,吸收的红外光在生物组织中的穿透深度较大,而激发的荧光受生物组织本底的影响较小,所以可检测到深层组织的荧光信号。
本发明的目的是通过以下技术方案实现的:
第一方面,本发明提供了一种靶向CYP1B1酶的近红外荧光探针,包括亲和配体、信号基团和用于连接配体和信号基团的连接链;所述连接链包含多个乙二醇片段;所述亲和配体为α-萘黄酮衍生物,信号基团为近红外荧光分子。优选近红外荧光分子为Cy5.5。
优选地,所述荧光探针的结构式如式I所示:
其中,n=1或2。
更优选地,所述荧光探针的结构式如式I所示:
其中,n=2。
第二方面,本发明提供了一种靶向CYP1B1酶的近红外荧光探针的制备方法,包括以下步骤:
A、将与二羰基二叔丁酯反应,得氨基被叔丁氧羰基保护的化合物II
B、将化合物II与碘单质反应,生成化合物III
C、将化合物III与3'-氟-6,7,10-三甲氧基-α-萘黄酮醇反应,生成衍生物IV
D、将衍生物IV在盐酸存在下脱除叔丁氧羰基保护基,生成衍生物V
E、衍生物V与水溶性Cy5.5-NHS反应,即得所述近红外荧光探针;
其中各结构式中的n=1或2。
优选地,步骤B的反应在三苯基膦和咪唑存在下进行。
优选地,步骤C的反应在碳酸钾存在下进行。
第三方面,本发明还提供了一种靶向CYP1B1酶的近红外荧光探针在制备肿瘤诊断试剂中的用途。
与现有技术相比,本发明具有如下的有益效果:
1)本发明所述的分子探针的设计有效避免了信号基团的引入对CYP1B1酶抑制活性产生较大影响。
2)本发明提供的近红外荧光探针可选择性靶向CYP1B1酶。近红外荧光成像技术已应用于临床肿瘤外科手术,具有检测深度大且无损检测的优点,目前部分靶向于肿瘤特异性标记物的近红外分子探针已进行临床前研究。本发明提供的近红外荧光探针可通过与CYP1B1酶结合特异性地在肿瘤细胞中富集,实现在体实时的肿瘤成像。
3)本发明所选用的靶点CYP1B1酶为肿瘤的特异性标记物,作为一个在癌细胞病变早期就出现且仅在肿瘤细胞中特异性表达的标记物,前期未见报道以其为活体成像的生物靶标进行分子探针的研究,本发明所述的以肿瘤的特异性标记物CYP1B1酶为靶点的近红外分子探针将有效促进近红外分子探针在肿瘤活体成像中的应用,在肿瘤早期诊断方面将具有良好应用前景及临床转化价值。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明制得结构式I近红外荧光探针的制备路线图;
图2为本发明的近红外荧光探针在结肠癌细胞HCT-15中的共聚焦显微成像结果;其中:图2a为探针I-1;图2b为探针I-2;
图3为检测乳腺癌细胞Bcap37和结肠癌细胞HCT-15中CYP1B1酶表达的WesternBlot实验及本发明的近红外荧光探针在结肠癌细胞HCT-15中的饱和曲线;其中:图3a为Western Blot实验结果;图3b为I-1在结肠癌细胞HCT-15中饱和曲线;图3c为I-2在结肠癌细胞HCT-15中的饱和曲线;
图4为结肠癌细胞HCT-15荷瘤小鼠在仅注射I-2(Imaging)和共同注射I-2及阻断剂ANF后(Blocking)不同时间点的近红外荧光活体成像结果和肿瘤部位荧光强度的量化结果;其中:图4a为近红外荧光活体成像结果;图4b为肿瘤部位荧光强度的量化结果;
图5为结肠癌细胞HCT-15移植瘤小鼠在仅注射I-2(Imaging)和共同注射I-2及阻断剂ANF后(Blocking)主要离体组织中I-2的生物分布情况和量化结果;其中图5a为生物分布情况;图5b为生物分布的量化结果。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及一种具有结构式I的由6,7,10-三甲氧基-3'-氟-α-萘黄酮醇衍生的近红外荧光探针I-1的制备方法,如图1所示,包括以下步骤:
步骤一:将2-(2-氨基乙氧基)乙醇(2mmol)溶于6mL二氯甲烷,在冰浴下逐滴加入溶于4mL二氯甲烷的二羰基二叔丁酯(2.3mmol)。滴加完毕后,撤去冰浴,反应液于室温下搅拌过夜。反应结束后,用10mL二氯甲烷稀释反应液,有机相先后用等体积水,饱和碳酸氢钠溶液和饱和氯化钠溶液洗涤。用无水硫酸钠干燥有机相后,减压浓缩可获得无色油状物叔丁氧酰基2-(2-羟基乙氧基)乙基胺II-1(n=1),收率:98%。1HNMR(400MHz,CDCl3):3.65(t,J=4.0Hz,2H),3.47-3.50(m,4H),3.23(t,J=4.8Hz,2H),1.36(s,9H)。
步骤二:将II-1(1.5mmol)和碘单质(1.8mmol)加入10mL二氯甲烷中,并充分搅拌,随后在冰浴下滴加溶于10mL二氯甲烷中的三苯基膦(2mmol)和咪唑(2mmol)和混合物。随着反应的进行,反应液中的碘逐渐溶解形成奶黄色悬浊液。滴加完毕后,撤去冰浴,室温搅拌过夜。反应结束后,在反应液中加入10mL乙酸乙酯和10mL10%硫代硫酸钠水溶液,用分液漏斗将有机相和水相分开,水相用10mL乙酸乙酯萃取三次并将其与之前的有机相合并。合并后的有机相先后用饱和碳酸氢钠和饱和氯化钠溶液洗涤,用无水硫酸钠干燥。干燥后的有机相减压浓缩,混合物经柱层析后获得无色油状物叔丁氧酰基2-(2-碘代烷氧基)乙基胺III-1(n=1),收率:98%。1HNMR(400MHz,CDCl3):3.65(t,J=7.2Hz,2H),3.48(t,J=4.8Hz,2H),3.25-3.26(m,2H),3.19(t,J=7.2Hz,2H),1.38(s,9H)。
步骤三:在氮气保护下,将6,7,10-三甲氧基-3'-氟-α-萘黄酮醇(0.2mmol,合成方法参见已授权专利CN 201410228733.0)和III-1(0.4mmol)溶于10mL干燥的N,N-二甲基甲酰胺中。在充分搅拌下,分批向反应液中加入碳酸钾固体(2mmol)。反应在室温下搅拌过夜,用饱和氯化铵溶液淬灭反应,分出有机相。水相用乙酸乙酯萃取后,合并有机相,并用无水硫酸钠干燥。有机相减压浓缩后获得的粗品,经过柱层析可得黄色油状的氨基被叔丁氧酰基保护的3'-氟-6,7,10-三甲氧基-α-萘黄酮醇羟基-2-(2-氨基乙氧基)乙基醚衍生物IV-1(n=1),收率:95%。1HNMR(400MHz,CDCl3):8.26-8.33(m,2H),7.46(m,2H),7.04-7.17(m,3H),4.40(m,2H),4.06(s,3H),4.03(s,3H),3.90(s,3H),3.76(m,2H),3.48(m,2H),3.26(m,2H),1.39(s,9H)。
步骤四:在氮气保护下,将IV-1(0.14mmol)溶于5mL乙酸乙酯,并加入0.5mL乙酸乙酯:浓盐酸=1:1的混合液。反应液在室温下搅拌5小时,脱保护产物以黄色粉末的形式从反应液中沉淀析出,过滤后可得3'-氟-6,7,10-三甲氧基-α-萘黄酮醇羟基-2-(2-氨基乙氧基)乙基醚衍生物的盐酸盐V-1(n=1),收率:78%。1HNMR(400MHz,CDCl3):8.08-8.21(m,5H),7.59-7.65(m,1H),7.35-7.39(m,1H),7.14-7.22(m,3H),4.38(m,2H),3.99(s,3H),3.90(s,3H),3.82(s,3H),3.77(m,2H),3.63(m,2H),2.95(m,2H)。
步骤五:将V-1(4.0μmol)和水溶性Cy5.5-NHS(3.0μmol)溶于0.5mL干燥的二甲亚砜中,加入20μL三乙胺,室温避光搅拌过夜。反应结束后,反应液直接用半制备HPLC分离纯化得到近红外荧光探针I-1,使用YMC的C-18填料柱(250mm×10mm),流动相为从95%dd水(含0.05M醋酸铵)/5%乙腈到5%dd水(含0.05M醋酸铵)/95%乙腈,20分钟内梯度洗脱,流速3mL/min,Rf=8.755min,得纯化后产物I-1,冻干后为深蓝色固体,收率,77%。1H NMR(600MHz,DMSO-d6):9.00-9.02(m,2H),8.38-8.44(m,4H),8.33(d,J=8.4Hz,1H),8.27(d,J=12Hz,1H),8.21(s,2H),7.81(dd,J1=J2=5.1Hz,1H),7.73(dd,J1=J2=9.0Hz,2H),7.67(dd,J1=7.8Hz,J2=14.4Hz,1H),7.41(dd,J1=J2=7.2Hz,1H),7.29(s,1H),7.28(s,2H),6.54-6.60(m,1H),6.29-6.33(m,2H),4.35-4.39(m,4H),4.24-4.25(m,2H),4.18-4.20(m,2H),4.09-4.12(m,2H),3.99(s,3H),3.91(s,3H),3.82(s,3H),3.69(m,2H),2.03-2.05(m,2H),1.93-1.94(m,12H),1.72-1.76(m,2H),1.51-1.56(m,2H),1.31-1.37(m,5H)。13CNMR(150MHz,DMSO-d6):174.03,173.66,173.24,172.36,163.29,161.69,154.55,153.61,153.53,152.52,151.26,151.09,147.82,146.13,145.95,140.93,140.14,139.75,134.04,133.89,133.63,133.57,131.12,131.07,130.20,130.14,128.03,127.97,127.30,127.26,125.91,124.97,122.08,121.57,121.49,119.39,117.96,117.83,117.62,115.47,115.31,114.08,111.81,111.61,110.64,103.14,102.86,98.10,71.31,69.74,69.50,57.89,56.91,56.63,56.49,51.19,51.14,46.20,43.88,38.73,35.48,27.49,27.38,26.17,25.35,12.86.ESI-HRMS:C67H67FN3O20S4[M-H]-calcd1380.3179;found 1380.3196.HPLC纯度:>95%(检测波长:254nm,参比波长:360nm)。
实施例2
本实施例涉及一种具有结构式I的由6,7,10-三甲氧基-3'-氟-α-萘黄酮醇衍生的近红外荧光探针I-2的制备方法,如图1所示,包括以下步骤:
步骤一:同实施例1步骤一,以2-(2-(2-氨基乙氧基)乙氧基)乙醇代替2-(2-氨基乙氧基)乙醇,得无色油状物叔丁氧酰基2-(2-(2-羟基乙氧基)乙氧基)乙基胺II-2(n=2),收率:98%。1HNMR(400MHz,CDCl3):3.76(t,J=4.4Hz,2H),3.61-3.65(m,6H),3.56(t,J=5.2Hz,2H),3.32(t,J=5.2Hz,2H),1.45(s,9H)。
步骤二:同实施例1步骤二,以II-2代替II-1,得无色油状物叔丁氧酰基2-(2-(2-碘代乙氧基)乙氧基)乙基胺III-2(n=2),收率:70%。1HNMR(400MHz,CDCl3):5.03(br,1H),3.76(t,J=6.8Hz,2H),3.64-3.66(m,4H),3.56(t,J=4.8Hz,2H),3.26-3.34(m,4H),1.45(s,9H)。
步骤三:同实施例1步骤三,以III-2代替III-1,得黄色油状的氨基被叔丁氧酰基保护的3'-氟-6,7,10-三甲氧基-α-萘黄酮醇羟基-2-(2-(2-氨基乙氧基)乙氧基)乙基醚衍生物IV-2(n=2),收率:87%。1HNMR(400MHz,CDCl3):8.31-8.39(m,2H),7.51(m,2H),7.09-7.21(m,3H),4.48-4.49(m,2H),4.11(s,3H),4.09(s,3H),3.96(s,3H),3.84-3.85(m,2H),3.59-3.62(m,4H),3.50-3.52(m,2H),3.28(m,2H),1.41(s,9H)。
步骤四:同实施例1步骤四,以IV-2代替IV-1,得黄色油状的3'-氟-6,7,10-三甲氧基-α-萘黄酮醇羟基-2-(2-(2-氨基乙氧基)乙氧基)乙基醚衍生物V-2(n=2),收率:71%。1HNMR(400MHz,CDCl3):8.24-8.32(m,2H),7.46-7.53(m,2H),7.07-7.21(m,3H),4.30-4.32(m,2H),4.08(s,3H),4.07(s,3H),3.94(s,3H),3.81-3.83(m,2H),3.65-3.68(m,6H),3.50-3.52(m,2H),2.99-3.02(m,2H)。
步骤五:同实施例1步骤五,以V-2代替V-1,Rf=8.893min,得深蓝色固体I-2(n=2),收率:72%。1H NMR(600MHz,DMSO-d6):9.01-9.03(m,2H),8.42-8.44(m,4H),8.34(d,J=8.4Hz,1H),8.28(d,J=10.8Hz,1H),8.21(s,2H),7.80(dd,J1=J2=5.4Hz,1H),7.74(dd,J1=J2=8.4Hz,2H),7.66(dd,J1=7.8Hz,J2=14.4Hz,1H),7.41(dd,J1=J2=7.2Hz,1H),7.31(s,1H),7.29(s,2H),6.54-6.60(m,1H),6.30-6.33(m,2H),4.37-4.40(m,4H),4.24-4.25(m,2H),4.18-4.21(m,2H),4.09-4.12(m,2H),3.99(s,3H),3.93(s,3H),3.83(s,3H),3.69(m,2H),3.43-3.47(m,4H),2.03-2.06(m,2H),1.93-1.94(m,12H),1.72-1.76(m,2H),1.52-1.56(m,2H),1.31-1.37(m,5H)。13C NMR(150MHz,DMSO-d6):174.04,173.66,173.25,172.49,163.28,161.67,154.55,153.61,153.53,152.52,151.26,151.09,147.82,146.07,145.88,140.92,140.18,139.76,134.06,133.93,133.63,133.57,131.11,131.06,130.19,130.11,128.05,127.99,127.30,127.25,125.99,125.01,122.05,121.57,121.48,119.44,117.93,117.80,117.62,115.47,115.32,114.08,111.85,111.64,110.64,103.18,102.88,98.11,71.33,70.03,69.94,69.58,65.94,57.89,56.91,56.65,56.50,51.20,51.154,46.23,43.89,38.85,35.46,27.49,27.38,26.16,25.35,12.85.ESI-HRMS:C69H71FN3O21S4[M-H]-calcd1424.3441;found 1424.3477.HPLC纯度:>95%(检测波长:254nm,参比波长:360nm)。
实施例3
实施例1和2中得到的带有PEG链的α-萘黄酮衍生物V-1和V-2对CYP1A1,CYP1A2,CYP1B1酶的抑制活性测定。
本实验用7-乙氧基-3H-吩噁嗪3-酮脱乙氧基(EROD)实验测定其对CYP1A1,CYP1A2,CYP1B1酶的抑制活性和选择性(Yamaori et al,Biochem.Pharmacol.2010,79:1691-1698.)反应体系(200μL)包含CYP1A1(10fmol),CYP1A2(60fmol)或CYP1B1(20fmol),不同浓度的待测化合物,NADPH再生系统(1.3mMNADPNa2,3.3mM葡萄糖-6-磷酸,0.5U/ml葡萄糖-6-磷酸-脱氢酶),3.3mM氯化镁溶液和150nM的7-乙氧基-3H-吩噁嗪-3-酮。每个实验组或者对照组设5个复孔作为平行实验。反应缓冲液为含1%BSA溶液的50mM Tris-HCl(pH7.4)缓冲液。反应体系于37℃预热5min后,加入NADPH再生系统启动反应,含CYP1A1酶的反应体系于37℃孵育15min,含CYP1A2酶体系温孵45min,含CYP1B1酶体系温孵35min。待反应结束后加入100微升预冷乙腈终止反应,10min内采用多功能酶标仪检测荧光值,激发波长和发射波长分别为545nm和590nm。然后运用统计软件Prism计算IC50数值,最终的IC50测定结果采用三次重复实验的平均值,以α-萘黄酮(ANF)为阳性对照。实验结果如表1所示:
表1、V-1和V-2对CYP1A1,CYP1A2,CYP1B1酶的抑制活性和选择性
由表1的结果可知,与ANF组相比,V-1对CYP1B1酶的抑制活性略有降低,V-2保持了与ANF相当的CYP1B1酶抑制能力。在PEG链引入后,V-1对CYP1A1和1B1(CYP1A1/1B1)的IC50值比值相比ANF有明显下降,说明选择性消失,对CYP1A2和1B1的选择性较ANF有所提高,进一步延长PEG链后,V-2保持了一定的CYP1A1和1B1间的选择性并具有显著的CYP1A2和1B1选择性。由于CYP1A1也是肿瘤特异性表达的一种细胞色素酶,因此虽然对CYP1A1和1B1选择性有所下降,但并不影响探针特异性肿瘤成像的能力。而CYP1A2酶大量存在于肝脏中且无肿瘤特异性,探针具有CYP1A2和1B1间的高选择性是我们所期待看到的,也预示着我们获得的探针具有肿瘤特异性成像的能力。
实施例4
本实施例进行了近红外荧光探针I-1和I-2对CYP1B1酶高表达的结肠癌细胞HCT-15的共聚焦显微成像研究。
将CYP1B1酶高表达的HCT-15结肠癌细胞以合适密度种于8孔NuncTM Lab-TekTM腔室载玻片系统中,在细胞培养箱37℃,5%CO2中培养12h之后吸取多余的培养基,分别加入0.5μM的近红外荧光探针I-1和I-2,另外设置阻断对照组(阻断组分别采用0.5μMI-1和I-2与50μM相应的未连接荧光片段的V-1和V-2共同孵育),每组2个复孔。37℃,5%CO2中孵育1小时后,吸除含有荧光探针的培养基并用PBS缓冲液洗三遍。之后按说明书拆除载玻片上的腔室,加上含有染核染料DAPI的封片油,并盖上盖玻片封片。随后用共聚焦显微镜分别对两种荧光探针共孵育过的细胞进行成像。成像结果如图2所示,两组探针中,阻断组(Blocking)的荧光强度均明显低于成像组(Imaging),从而在细胞水平上定性说明了探针I-1和I-2通过与CYPIB1酶特异性结合在细胞内富集。
实施例5
本实施例对乳腺癌细胞Bcap37和结肠癌细胞HCT-15中CYP1B1酶的表达用WesternBlot实验进行了测定,步骤如下:
(a)细胞处理:将生长于6孔板中的Bcap37及HCT-1细胞分别用细胞铲刮下,转移至离心管中;PBS清洗三次后,每管加入含蛋白酶抑制剂(1%,V/V)的NP-40细胞裂解液(100μL),置于冰上裂解20min;
(b)蛋白预处理:将上述细胞裂解液在4℃预冷的离心机中15000rpm离心5min,吸取上清液,使用BCA蛋白浓度测定试剂盒进行蛋白定量;定量后每份取约30μg蛋白,加入PBS(20μL)及5×loading buffer(5μL),95℃加热5min,冷却后于4℃冰箱保存;
(c)制胶:将去离子水(7.25mL)、PAGE mix(30%,4mL)及4×seperating buffer(3.75mL)混合后,加入AP(100μL)及TEMED(20μL)制分离胶,加入固定好的两片玻璃平板中,约30min后凝固;去离子水(2.5mL)、PAGE mix(30%,0.5mL)及4×stacking buffer(3.75mL)混合后,加入AP(50μL)及TEMED(20μL)制浓缩胶,随后加入已凝固的分离胶上方,并插入梳板,待凝固后移去梳板,形成用于加样的凹槽;
(d)电泳:将预处理的蛋白快速加入到制好的浓缩胶的凹槽里,电泳槽中加1×running buffer,启动电泳仪(浓缩胶80V,30min;分离胶120V),marker条带显著分离后停止电泳。
(e)转膜:将PVDF膜压在分离胶上,浸入blotting buffer后于转移槽中进行转膜(300mA,1.5h,转移槽用4℃冰水冷却);转膜完毕后,用含5%脱脂奶粉的TBS-T缓冲液封闭膜1h;封闭后用TBS-T缓冲液将膜漂洗;
(f)杂一抗:将封闭后的PVDF膜置于封闭袋中,加入含叠氮化钠(20μL)及牛血清白蛋白(BSA,0.5g)的TBS-T缓冲液(10mL);封闭液中含有1:10000的兔抗人CYP1B1酶的多克隆抗体及1:8000的鼠抗人GAPDH单克隆抗体;于4℃冰箱中封闭过夜,封闭后用TBS-T缓冲液漂洗三次;
(g)杂二抗:将结合一抗的PVDF膜置于含有1:10000山羊抗兔及1:10000山羊抗鼠抗体的TBS-T缓冲液(10mL)中,摇床上室温孵育1h;
(h)显影:将结合二抗的PVDF膜于TBS-T缓冲液中漂洗3次后,在双色激光成像仪上成像。
实验结果如图3a所示,在CYP1B1酶相应的分子量处有明显条带,说明Bcap37和HCT-15细胞中均有CYP1B1酶表达。
实施例6
本实施例在细胞水平测定了近红外荧光探针I-1和I-2与CYP1B1酶的平衡解离常数Kd。
将实施例5中已测定为CYP1B1酶高表达的结肠癌细胞HCT-15以合适的密度种于六孔板中,在37℃,5%CO2中培养12h后之后吸除培养基,按照5nM、50nM、100nM、250nM、500nM的浓度每孔分别加入500μL探针I-1和I-2。另外设置空白对照组(不加荧光探针)与阻断对照组(阻断组分别采用各浓度荧光探针与5μmol的ANF共同孵育,细胞内剩余的荧光强度为非特异性结合的荧光探针,在每组数据中扣除)。在37℃,5%CO2中孵育1h后吸除含有分子探针的培养基并用PBS缓冲液洗两遍。细胞用胰酶消化并悬浮于1mL培养基中,转移至离心管中进行离心(1000r/min,5min),离心完毕后弃去上清液,用0℃的PBS缓冲液重悬再进行离心,如此重复两遍最终悬浮于0℃PBS溶液中并转移至流式管,将样品至于冰浴上待测。用流式细胞仪测定Cy5.5的吸收波长段不同浓度探针孵育后的细胞荧光强度,并分别扣除各浓度下通过非特异性结合被细胞摄取的探针荧光强度(阻断组数据)。利用统计软件Prism绘制分子探针与CYP1B1酶高表达的HCT-15细胞结合的饱和曲线并计算平衡解离常数Kd。实验结果如附图3b和3c所示,计算I-1和I-2的Kd值分别为260.2nM和265.7nM,均在纳摩尔级别,由此可见两种分子探针在细胞水平上保持了对CYP1B1酶的高亲合性,符合在体成像分子探针的要求。
实施例7
本实施例为探针I-2的荷瘤(结肠癌细胞HCT-15)小鼠活体成像能力评价与生物分布的测定实验。
将5×106个HCT-15细胞接种于裸鼠右前臂,约接种后两周,待肿瘤直径达到0.5cm后,给荷瘤小鼠注射探针I-2并在不同的时间段进行近红外荧光活体成像。将仅注射探针I-2的小鼠(15nmol/只,每组5只)作为成像组,并设置同时注射探针I-2(15nmol/只,每组5只)和CYP1B1抑制剂α-萘黄酮(20mg/kg)的小鼠作为阻断组,在注射后2小时,6小时,24小时用IVIS2000小动物活体成像设备分别对两组小鼠进行近红外成像。实验结果如附图4所示,在注射后2小时荧光探针就显示出了在肿瘤部位的富集,在3个时间点,成像组肿瘤部位的荧光强度均高于阻断组,肿瘤部位始终清晰可见,注射探针后6小时两组差异最为显著(P<0.001),由此在体内实验中证实了探针可通过与CYP1B1酶特异性结合在肿瘤组织中富集。为了获得探针在小鼠体内的生物分布数据,在24h的成像实验结束后,我们将两组小鼠颈椎脱臼处死,分离收集各主要脏器组织(心脏,肺,肝脏,肾脏,脾脏,消化系统,肌肉)及肿瘤组织进行体外近红外成像。结果如附图5所示,探针主要富集在肿瘤部位,成像组肿瘤组织的荧光强度显著高于阻断组,其肿瘤组织/肌肉组织的比值分别为23.3±7.39和9.9±5.45,显示出了明显的阻断效应,证实了在CYP1B1酶过表达的HCT-15移植瘤中,探针I-2可通过与CYP1B1特异性结合在肿瘤组织中富集。
综上所述,本专利设计并合成了通过与CYP1B1酶特异性结合在肿瘤组织中富集的探针I-1和I-2,对两个探针进行了对CYP1B1酶的亲合力测定并研究了其体外肿瘤成像能力。随后对I-2在荷瘤小鼠中的活体成像能力进行了评价并研究了探针的生物分布。研究结果证明所设计的近红外荧光探针I在细胞水平和小动物活体成像中都能通过与CYP1B1酶特异性结合在肿瘤细胞中富集,为获得具有临床转化价值的分子探针奠定了基础。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (7)

1.一种靶向CYP1B1酶的近红外荧光探针,其特征在于,包括亲和配体、信号基团和用于连接配体和信号基团的连接链;所述连接链包含多个乙二醇片段;所述亲和配体为α-萘黄酮衍生物,信号基团为近红外荧光分子。
2.根据权利要求1所述的靶向CYP1B1酶的近红外荧光探针,其特征在于,所述荧光探针的结构式如式I所示:
其中,n=1或2。
3.根据权利要求2所述的靶向CYP1B1酶的近红外荧光探针,其特征在于,所述荧光探针的结构式如式I所示:
其中,n=2。
4.一种根据权利要求1-3任一项所述的靶向CYP1B1酶的近红外荧光探针的制备方法,其特征在于,包括以下步骤:
A、将与二羰基二叔丁酯反应,得化合物II
B、将化合物II与碘单质反应,生成化合物III
C、将化合物III与3'-氟-6,7,10-三甲氧基-α-萘黄酮醇反应,生成衍生物IV
D、将衍生物IV在盐酸存在下脱除叔丁氧羰基保护基,生成衍生物V
E、衍生物V与水溶性Cy5.5-NHS反应,即得所述近红外荧光探针;
其中各结构式中的n=1或2。
5.根据权利要求3所述的靶向CYP1B1酶的近红外荧光探针的制备方法,其特征在于,步骤B的反应在三苯基膦和咪唑存在下进行。
6.根据权利要求3所述的靶向CYP1B1酶的近红外荧光探针的制备方法,其特征在于,步骤C的反应在碳酸钾存在下进行。
7.一种根据权利要求1所述的靶向CYP1B1酶的近红外荧光探针在制备肿瘤诊断试剂中的用途。
CN201810373475.3A 2018-04-24 2018-04-24 靶向cyp1b1酶的近红外荧光探针及其制备和用途 Active CN110396403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810373475.3A CN110396403B (zh) 2018-04-24 2018-04-24 靶向cyp1b1酶的近红外荧光探针及其制备和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810373475.3A CN110396403B (zh) 2018-04-24 2018-04-24 靶向cyp1b1酶的近红外荧光探针及其制备和用途

Publications (2)

Publication Number Publication Date
CN110396403A true CN110396403A (zh) 2019-11-01
CN110396403B CN110396403B (zh) 2020-07-14

Family

ID=68322302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810373475.3A Active CN110396403B (zh) 2018-04-24 2018-04-24 靶向cyp1b1酶的近红外荧光探针及其制备和用途

Country Status (1)

Country Link
CN (1) CN110396403B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111620918A (zh) * 2020-06-19 2020-09-04 辽宁中医药大学 8-β-D-葡萄吡喃糖-4`,7-二羟基异黄酮FAM衍生物及其合成方法
CN111647001A (zh) * 2020-06-15 2020-09-11 中国科学院长春应用化学研究所 一种基于小分子抑制剂的荧光探针及其制备方法和应用
CN112708602A (zh) * 2019-10-25 2021-04-27 中国科学院天津工业生物技术研究所 盾叶薯蓣来源的薯蓣皂素合成相关蛋白及编码基因与应用
CN113730606A (zh) * 2021-09-09 2021-12-03 上海交通大学 靶向cyp1b1酶的nir/pet双模态探针前体及其制备和用途
CN114751854A (zh) * 2022-03-23 2022-07-15 中国科学院自动化研究所 近红外荧光探针及其制备方法和应用
CN116375696A (zh) * 2023-03-30 2023-07-04 上海交通大学 靶向cyp1b1酶的近红外荧光探针及其制备和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993157A (zh) * 2012-11-21 2013-03-27 上海交通大学 α-萘黄酮衍生物及其制备方法、用途
CN104059045A (zh) * 2014-05-27 2014-09-24 上海交通大学 水溶性α-萘黄酮醇衍生物及其制备方法、用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993157A (zh) * 2012-11-21 2013-03-27 上海交通大学 α-萘黄酮衍生物及其制备方法、用途
CN104059045A (zh) * 2014-05-27 2014-09-24 上海交通大学 水溶性α-萘黄酮醇衍生物及其制备方法、用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN X. ET AL.,: ""In vivo Near-Infrared Fluorescence Imaging of Integrin αvβ3 in Brain Tumor Xenografts"", 《CANCER RESEARCH》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708602A (zh) * 2019-10-25 2021-04-27 中国科学院天津工业生物技术研究所 盾叶薯蓣来源的薯蓣皂素合成相关蛋白及编码基因与应用
CN112708602B (zh) * 2019-10-25 2022-04-05 中国科学院天津工业生物技术研究所 盾叶薯蓣来源的薯蓣皂素合成相关蛋白及编码基因与应用
CN111647001A (zh) * 2020-06-15 2020-09-11 中国科学院长春应用化学研究所 一种基于小分子抑制剂的荧光探针及其制备方法和应用
CN111647001B (zh) * 2020-06-15 2021-11-12 中国科学院长春应用化学研究所 一种基于小分子抑制剂的荧光探针及其制备方法和应用
CN111620918A (zh) * 2020-06-19 2020-09-04 辽宁中医药大学 8-β-D-葡萄吡喃糖-4`,7-二羟基异黄酮FAM衍生物及其合成方法
CN113730606A (zh) * 2021-09-09 2021-12-03 上海交通大学 靶向cyp1b1酶的nir/pet双模态探针前体及其制备和用途
CN113730606B (zh) * 2021-09-09 2022-06-28 上海交通大学 靶向cyp1b1酶的nir/pet双模态探针前体及其制备和用途
CN114751854A (zh) * 2022-03-23 2022-07-15 中国科学院自动化研究所 近红外荧光探针及其制备方法和应用
CN114751854B (zh) * 2022-03-23 2023-09-15 中国科学院自动化研究所 近红外荧光探针及其制备方法和应用
CN116375696A (zh) * 2023-03-30 2023-07-04 上海交通大学 靶向cyp1b1酶的近红外荧光探针及其制备和用途

Also Published As

Publication number Publication date
CN110396403B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN110396403A (zh) 靶向cyp1b1酶的近红外荧光探针及其制备和用途
Kim et al. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe
Cao et al. Fast clearing RGD‐based near‐infrared fluorescent probes for in vivo tumor diagnosis
JP2020500863A (ja) 阻害剤官能化超小型ナノ粒子およびその方法
CN106929003B (zh) 一种多功能近红外荧光探针及其制备方法和应用
CN109627236A (zh) 用于活体检测硝基还原酶的光声探针及其制备方法与应用
CN114933633B (zh) 一种特异性识别fgfr4的天然肽探针及其应用
CN110023740A (zh) 基于活性的探针化合物、组合物及其使用方法
Wei et al. Engineering a lipid droplet targeting fluorescent probe with a large Stokes shift through ester substituent rotation for in vivo tumor imaging
CN112159396A (zh) 一种检测γ-谷氨酰转肽酶近红外荧光分子探针及其制备方法与应用
Bao et al. NIR absorbing DICPO derivatives applied to wide range of pH and detection of glutathione in tumor
CN112341445B (zh) 靶向cyp1b1酶的用于放射性18f标记的探针前体
Jia et al. Water-soluble chromenylium dyes for shortwave infrared imaging in mice
CN110862819A (zh) 基于近红外荧光染料的pH荧光探针及其制备方法和应用
Hu et al. A near-infrared GPX4 fluorescent probe for non-small cell lung cancer imaging
Lu et al. Assessing Early Atherosclerosis by Detecting and Imaging of Hypochlorous Acid and Phosphorylation Using Fluorescence Nanoprobe
Gurram et al. Near-infrared fluorescent probe for fast track of cyclooxygenase-2 in Golgi apparatus in cancer cells
CN113817023B (zh) 一种靶向fgfr4的亲和肽及其应用
Wang et al. Design, synthesis and in vivo fluorescence imaging study of a cytochrome P450 1B1 targeted NIR probe containing a chelator moiety
CN113979912A (zh) 两种前列腺特异性膜抗原靶向荧光探针及其制备方法与应用
CN106634964B (zh) 噁嗪类化合物在制备近红外荧光探针中的应用
Wang et al. A caspase-3 activatable photoacoustic probe for in vivo imaging of tumor apoptosis
CN109796444B (zh) 一种近红外双荧光探针化合物及制法和应用
Tang et al. A novel aminopeptidase N triggered near-infrared fluorescence probe for imaging enzyme activity in cells and mice
CN114249696B (zh) 一种鲁米诺类化合物及其制备方法和应用、药物组合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant