CN110379470A - 单晶高温合金的组织和缺陷的模拟方法 - Google Patents

单晶高温合金的组织和缺陷的模拟方法 Download PDF

Info

Publication number
CN110379470A
CN110379470A CN201910283514.5A CN201910283514A CN110379470A CN 110379470 A CN110379470 A CN 110379470A CN 201910283514 A CN201910283514 A CN 201910283514A CN 110379470 A CN110379470 A CN 110379470A
Authority
CN
China
Prior art keywords
simulation
single crystal
free energy
defect
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910283514.5A
Other languages
English (en)
Inventor
巫荣海
岳珠峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Northwest University of Technology
Original Assignee
Northwest University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University of Technology filed Critical Northwest University of Technology
Priority to CN201910283514.5A priority Critical patent/CN110379470A/zh
Publication of CN110379470A publication Critical patent/CN110379470A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation

Abstract

本发明提供一种单晶高温合金的组织和缺陷的模拟方法,以介观相场法为框架,利用描述原子扩散的模拟方程模拟成分变化,利用描述原子局部有序‑无序的转变的模拟方程模拟序参量变化,利用描述位错密度的模拟方程模拟位错变化,利用描述位错攀移的模拟方程模拟空位变化。本发明方法在介观尺度内实现了组织和缺陷的共同演变,降低了建模和数值运算的工作量,而且能够解析组织和缺陷的相互作用机制。

Description

单晶高温合金的组织和缺陷的模拟方法
技术领域
本发明涉及材料技术领域,具体而言,涉及一种单晶高温合金组织和缺陷的模拟方法。
背景技术
单晶高温合金是航空发动机叶片的首选材料,其变形和损伤机理本质上表现为由微观组织(主要为γ/γ'相)和缺陷(主要为空位和位错) 的相互作用,因此,定量描述单晶高温合金组织和缺陷的同时演变,是正确揭示叶片变形和损伤机理的前提和基础。
航空发动机运行时,叶片在高温低应力环境中变形,现有实验技术手段只能观察变形中断后的静态组织和缺陷,无法实现观测高温变形过程中的组织和缺陷,需借助计算模拟手段。而目前没有一种模拟方法能够模拟高温变形过程中真实的γ/γ'相演化,并耦合空位和位错,因此无法实现组织和缺陷的同时演变。
需要说明的是,在上述背景技术部分发明的信息仅用于加强对本发明的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明的目的在于提供一种单晶高温合金组织和缺陷的模拟方法,解决现有模拟方法不能同时模拟高温变形过程中组织和缺陷的问题。
根据本发明的一个方面,提供一种单晶高温合金的组织和缺陷的模拟方法,其特征在于,包括:
确定模拟物理量:以所述单晶高温合金γ/γ'相中掺杂元素i的摩尔分数、第k个序参量、位错密度、空位密度为模拟物理量;
根据所述模拟物理量,利用如下公式计算所述单晶高温合金的自由能,
式中,F表示自由能,fchem表示化学自由能,fel表示弹性能;表示摩尔分数,表示第k个序参量,表示滑移系m的正刃型位错密度,表示滑移系m的负刃型位错密度,表示空位密度;
根据所述自由能,利用模拟方程模拟所述单晶高温合金的组织和缺陷;其中,利用模拟方程模拟所述单晶高温合金的组织和缺陷包括:利用描述原子扩散的模拟方程模拟成分变化,利用描述原子局部有序-无序的转变的模拟方程模拟序参量变化,利用描述位错密度的模拟方程模拟位错变化,利用描述位错攀移的模拟方程模拟空位变化。
在本发明的一种示例性实施方式中,所述化学自由能包括体积自由能和梯度自由能。
在本发明的一种示例性实施方式中,所述计算单晶高温合金的自由能包括:利用如下方程计算所述体积自由能:
式中,fbulk表示体积自由能,表示γ相的自由能,表示γ'相的自由能,为插值函数。
在本发明的一种示例性实施方式中,所述计算单晶高温合金的自由能包括:利用如下方程计算所述梯度自由能:
式中,fgrad表示梯度自由能,Kφ表示梯度自由能系数。
在本发明的一种示例性实施方式中,所述计算单晶高温合金的自由能包括:利用如下公式计算所述弹性能:
式中,εel表示弹性应变,σ表示应力,εel和σ满足胡克定律。
在本发明的一种示例性实施方式中,所述计算弹性能包括利用如下方程计算所述弹性应变:
εel=ε+εinel
式中,ε为总应变,εinel为非弹性应变,所述总应变根据公式计算;所述非弹性应变包括由γ/γ'共格界面引起的本征应变、由位错引起的本征应变和由空位引起的本征应变。
在本发明的一种示例性实施方式中,所述所述利用描述原子扩散的模拟方程模拟成分变化包括:利用如下模拟方程模拟成分变化:
在本发明的一种示例性实施方式中,所述所述利用描述原子局部有序-无序的转变的模拟方程模拟序参量变化包括:利用如下模拟方程模拟序参量变化:
在本发明的一种示例性实施方式中,所述所述利用描述位错密度的模拟方程模拟位错变化包括:利用如下模拟方程模拟位错变化:
其中,为位错滑移速度,为位错攀移速度,为位错的增殖和湮灭。
在本发明的一种示例性实施方式中,所述利用描述位错攀移的模拟方程模拟空位变化包括:利用如下模拟方程模拟空位变化:
本发明的模拟方法以介观相场法为框架,在该框架内同时描述单晶高温合金变形时γ/γ’相、空位和位错的演变,在介观尺度内实现了组织和缺陷的共同演变,无需跨尺度,不仅大大降低了建模和数值运算的工作量,而且能够解析组织和缺陷的相互作用机制,进而揭示航空发动机叶片的变形和损伤机理。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
具体实施方式
现在将更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
相关技术中,分子动力学以单个原子为基本模拟单位,可描述极少量空位和位错的演变。离散位错动力学不再分辨单个原子,以单根位错线段为基本模拟单位,可描述少量位错的演变。不同尺度相场法可描述空位、位错和γ/γ'相的演变。不同尺度相场法可描述空位、位错和γ/γ'相的演变。
但分子动力学和离散位错动力学的缺陷主要是:1)空间尺度太小,所能描述的位错数量远小于实验所测实际情况;2)时间尺度太小,无法描述γ/γ'相的演变。水平集方法的主要缺陷有:1)跟踪明锐特性使得计算效率很低;2)无法描述空位和位错。原子尺度相场方法(即晶体相场法)的优劣与分子动力学类似。介观尺度相场法虽能模拟真实的γ/γ'相演化,但还没有可以耦合介观空位和位错模型的相场方法,因而无法实现组织和缺陷的同时演变。
本发明实施方式中提供了一种单晶高温合金组织和缺陷的模拟方法,具备主要优点是:1)空间尺度足够大,可描述与实验所测一致的位错密度;2)时间尺度足够打,单位时间步长达100s,可描述102h时间内的γ/γ'相的演变;3)以自然形成的扩散界面代替传统明锐界面,无需再跟踪界面坐标,大大提高计算效率;4)适用于高温变形过程中定量描述单晶高温合金组织和缺陷的同时演变。
本发明实施方式的单晶高温合金组织和缺陷的模拟方法,包括:
步骤110,确定模拟物理量:以单晶高温合金γ/γ'相中掺杂元素i 的摩尔分数、第k个序参量、位错密度、空位密度为模拟物理量;
步骤210,根据所模拟物理量,利用如下公式计算单晶高温合金的自由能,
式中,F表示自由能,fchem表示化学自由能,fel表示弹性能;表示摩尔分数,表示第k个序参量,表示滑移系m的正刃型位错密度,表示滑移系m的负刃型位错密度,表示空位密度;
步骤310,根据自由能,利用模拟方程模拟单晶高温合金的组织和缺陷,包括:利用描述原子扩散的模拟方程模拟成分变化,利用描述原子局部有序-无序的转变的模拟方程模拟序参量变化,利用描述位错密度的模拟方程模拟位错变化,利用描述位错攀移的模拟方程模拟空位变化。
下面对本发明实施方式的单晶高温合金的组织和缺陷的模拟方法进行详细说明:
步骤110中,单晶高温合金γ/γ'相中,γ相为化学无序相,γ'相为化学有序相,例如,在镍基铝合金单晶高温合金的γ/γ'中,γ相为化学无序相,即Al原子随机地在Ni晶格中占位,γ'相为化学有序相,即Al原子在Ni晶格中占据特定位置,可能有四种不同的特定占位方式,从而形成四种不同的γ'相变体。因而,γ/γ'相可由掺杂元素i的摩尔分数和第k个序参量描述,序参量表征有序-无序转变。γ相表示为γ'相的k变体表示为其中l≠k。分别为γ相和γ'相的平衡成分。γ相和γ'相的界面(γ/γ'界面)可认为是γ相和γ'相的混合区域,γ'相变体之间的界面(即反相畴界) 可认为是γ'相k变体和l变体的混合区域。本发明掺杂元素i指合金中含量较少的元素,如二元合金中,镍基铝合金中的i指代Al。
介观尺度不辨别单根位错,而是以位错密度代表位错的存在。以分别表示滑移系m的正刃型和负刃型位错密度。同理,介观尺度不辨别单个空位,而是以空位密度代表空位的存在。空位无需区分滑移系,可用表示。
在本示例性实施方式中,步骤210中,自由能F中的化学自由能fchem包括体积自由能fbulk和梯度自由能fgrad。体积自由能表示离散原子状态相对组合形成均匀平衡相状态的能量,梯度自由能表示相界面处由于非均匀成分/结构状态相对相内均匀成分/结构状态的能量。
在本示例性实施方式中,体积自由能fbulk利用如下方程计算:
式中,为γ相的自由能,为γ'相的自由能, 为插值函数,以把γ/γ'界面作为γ和γ'相的混合;表示体积自由能对γ/γ'界面能和反相畴界能的贡献,其确切数值可通过ω系数调控。
在本示例性实施方式中,梯度自由能fgrad利用如下方程计算:
fgrad是为了进一步补偿γ/γ'界面能和反相畴界能,其数值通过梯度自由能系数Kφ调控。
在本示例性实施方式中,弹性能fel利用如下方程计算:
其中,εel表示弹性应变,σ表示应力,εel和σ遵循胡克定律
在本示例性实施方式中,弹性应变εel=ε+εinel,ε为总应变,εinel为非弹性应变,其中,在小变形范围内,总应变ε与位移u的关系为εinel包含:1)由γ/γ'共格界面引起的本征应变2)由位错引起的本征应变εdis=∑mηmPm,3)由空位引起的本征应变εvac=∑mξmQm;其中,bm为滑移系m的柏氏矢量,nm为滑移系m的法向量,Pm为滑移m 的投影张量,Qm为滑移系m的柏氏矢量张量。
由于弹性波的传播速度远大于组织和缺陷的演变速度,因此,可以假设力平衡瞬间完成,便可算得每一步的位移,应变和应力。
在本示例性实施方式中,步骤310中,成分的演变本质上是原子的扩散,因此,模拟方程可以为Allen-Cahn方程,该方程即为描述原子扩散的介观唯象公式:
在本示例性实施方式中,步骤310中,序参量的演变本质上为原子的局部有序-无序转变,因此,模拟方程为Cahn-Hilliard方程,该方程即为描述有序-无序转变的介观唯象公式:
在本示例性实施方式中,步骤310中,位错密度的演变实质上为位错的滑移、攀移、增殖、湮灭等,位错滑移和滑移本质上为位错线的平动,数学上用平移项描述,位错增殖/湮灭本质上是位错线的直接增加/减少,数学上用源项描述,因此,位错的模拟方程为。:
其中,为位错滑移速度,为位错攀移速度,为Peach-Koehler力,为位错的增殖和湮灭。
在本示例性实施方式中,步骤310中,空位的演变本质上与位错的攀移相关联,因此,这一过程的介观公式总结即为空位的模拟方程:
本发明物理基础坚实可靠,相场法所用的演变判断“体系自发地向自由能降低的方向演变”是热力学第二定律在恒压或恒容情况下的推论。在介观尺度构建包含组织和缺陷的物理参量并构建由这些物理参量描述的体系自由能,便可在同一尺度内(介观尺度)实现了组织和缺陷的共同演变,无需跨尺度,不仅大大降低了建模和数值运算的工作量,而且能够解析组织和缺陷的相互作用机制,进而揭示航空发动机叶片的变形和损伤机理。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由所附的权利要求指出。

Claims (10)

1.一种单晶高温合金的组织和缺陷的模拟方法,其特征在于,包括:
确定模拟物理量:以所述单晶高温合金γ/γ'相中掺杂元素i的摩尔分数、第k个序参量、位错密度、空位密度为模拟物理量;
根据所述模拟物理量,利用如下公式计算所述单晶高温合金的自由能,
式中,F表示自由能,fchem表示化学自由能,fel表示弹性能;表示摩尔分数,表示第k个序参量,表示滑移系m的正刃型位错密度,表示滑移系m的负刃型位错密度,表示空位密度;
根据所述自由能,利用模拟方程模拟所述单晶高温合金的组织和缺陷;其中,利用模拟方程模拟所述单晶高温合金的组织和缺陷包括:利用描述原子扩散的模拟方程模拟成分变化,利用描述原子局部有序-无序的转变的模拟方程模拟序参量变化,利用描述位错密度的模拟方程模拟位错变化,利用描述位错攀移的模拟方程模拟空位变化。
2.根据权利要求1所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述化学自由能包括体积自由能和梯度自由能。
3.根据权利要求2所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述计算单晶高温合金的自由能包括:利用如下方程计算所述体积自由能:
式中,fbulk表示体积自由能,表示γ相的自由能,表示γ'相的自由能,为插值函数。
4.根据权利要求2所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述计算单晶高温合金的自由能包括:利用如下方程计算所述梯度自由能:
式中,fgrad表示梯度自由能,Kφ表示梯度自由能系数。
5.根据权利要求1所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述计算单晶高温合金的自由能包括:利用如下公式计算所述弹性能:
式中,εel表示弹性应变,σ表示应力,εel和σ满足胡克定律。
6.根据权利要求4所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述计算弹性能包括利用如下方程计算所述弹性应变:
εel=ε+εinel
式中,ε为总应变,εinel为非弹性应变,所述总应变根据公式计算;所述非弹性应变包括由γ/γ'共格界面引起的本征应变、由位错引起的本征应变和由空位引起的本征应变。
7.根据权利要求1所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述利用描述原子扩散的模拟方程模拟成分变化包括:利用如下模拟方程模拟成分变化:
8.根据权利要求1所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述利用描述原子局部有序-无序的转变的模拟方程模拟序参量变化包括:利用如下模拟方程模拟序参量变化:
9.根据权利要求1所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述利用描述位错密度的模拟方程模拟位错变化包括:利用如下模拟方程模拟位错变化:
其中,为位错滑移速度,为位错攀移速度,为位错的增殖和湮灭。
10.根据权利要求1所述的单晶高温合金的组织和缺陷的模拟方法,其特征在于,所述利用描述位错攀移的模拟方程模拟空位变化包括:利用如下模拟方程模拟空位变化:
CN201910283514.5A 2019-04-10 2019-04-10 单晶高温合金的组织和缺陷的模拟方法 Pending CN110379470A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910283514.5A CN110379470A (zh) 2019-04-10 2019-04-10 单晶高温合金的组织和缺陷的模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910283514.5A CN110379470A (zh) 2019-04-10 2019-04-10 单晶高温合金的组织和缺陷的模拟方法

Publications (1)

Publication Number Publication Date
CN110379470A true CN110379470A (zh) 2019-10-25

Family

ID=68248464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910283514.5A Pending CN110379470A (zh) 2019-04-10 2019-04-10 单晶高温合金的组织和缺陷的模拟方法

Country Status (1)

Country Link
CN (1) CN110379470A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111899819A (zh) * 2020-06-28 2020-11-06 南京理工大学 一种辐照缺陷和纳米相协同演化的相场模拟方法
CN111899797A (zh) * 2020-07-07 2020-11-06 西北工业大学 镍基单晶中点缺陷对拉伸性能影响的分子模拟方法
CN112131710A (zh) * 2020-08-27 2020-12-25 中国科学院金属研究所 一种预测γ-TiAl中不同γ/γ界面类型出现比例的相场模拟方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150044816A1 (en) * 2013-08-09 2015-02-12 Industry-University Cooperation Foundation Hanyang University Method of manufacturing resistance change layer using irradiation of electron beam and resistive random access memory device using the same
CN105784508A (zh) * 2016-04-11 2016-07-20 沈阳工业大学 一种表征单晶Ni基合金蠕变性能的方法
CN107326314A (zh) * 2017-07-05 2017-11-07 中南大学 一种预测含铌镍基合金中δ相动态溶解体积分数的方法
US20170322152A1 (en) * 2014-03-12 2017-11-09 Nxgen Partners Ip, Llc System and method for making concentration measurements within a sample material using orbital angular momentum
CN108384986A (zh) * 2018-05-07 2018-08-10 宁波博威合金材料股份有限公司 一种铜合金材料及其应用
CN109086507A (zh) * 2018-07-24 2018-12-25 北京航空航天大学 一种评价含复合点缺陷镍基合金变形能力的方法
CN109411025A (zh) * 2018-11-09 2019-03-01 辽宁石油化工大学 一种混合型位错分叉原子结构的建模方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150044816A1 (en) * 2013-08-09 2015-02-12 Industry-University Cooperation Foundation Hanyang University Method of manufacturing resistance change layer using irradiation of electron beam and resistive random access memory device using the same
US20170322152A1 (en) * 2014-03-12 2017-11-09 Nxgen Partners Ip, Llc System and method for making concentration measurements within a sample material using orbital angular momentum
CN105784508A (zh) * 2016-04-11 2016-07-20 沈阳工业大学 一种表征单晶Ni基合金蠕变性能的方法
CN107326314A (zh) * 2017-07-05 2017-11-07 中南大学 一种预测含铌镍基合金中δ相动态溶解体积分数的方法
CN108384986A (zh) * 2018-05-07 2018-08-10 宁波博威合金材料股份有限公司 一种铜合金材料及其应用
CN109086507A (zh) * 2018-07-24 2018-12-25 北京航空航天大学 一种评价含复合点缺陷镍基合金变形能力的方法
CN109411025A (zh) * 2018-11-09 2019-03-01 辽宁石油化工大学 一种混合型位错分叉原子结构的建模方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RONGHAI WU.ET.: "Effect of initial γ/γ^ microstructure on creep of single crystal nickel-based superalloys:A phase-field simulation incorporating dislocation dynamics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
S.NEMAT-NASSAR.ET: "《Micromechanics: Overall properties of heterogeneous materials》", 31 December 1993, ELSEVIER SCIENCE PUBLISHERS *
孙长明: "铸造工艺及C含量对K4648合金组织与热疲劳性能的影响", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111899819A (zh) * 2020-06-28 2020-11-06 南京理工大学 一种辐照缺陷和纳米相协同演化的相场模拟方法
CN111899819B (zh) * 2020-06-28 2022-09-27 南京理工大学 一种辐照缺陷和纳米相协同演化的相场模拟方法
CN111899797A (zh) * 2020-07-07 2020-11-06 西北工业大学 镍基单晶中点缺陷对拉伸性能影响的分子模拟方法
CN112131710A (zh) * 2020-08-27 2020-12-25 中国科学院金属研究所 一种预测γ-TiAl中不同γ/γ界面类型出现比例的相场模拟方法
CN112131710B (zh) * 2020-08-27 2024-02-02 中国科学院金属研究所 一种预测γ-TiAl中不同γ/γ界面类型出现比例的相场模拟方法

Similar Documents

Publication Publication Date Title
CN110379470A (zh) 单晶高温合金的组织和缺陷的模拟方法
Wu et al. Magnesium interatomic potential for simulating plasticity and fracture phenomena
Girard et al. Evaluation of high‐resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation
Li et al. Circulation and dissipation on hot Jupiters
CN107784191B (zh) 基于神经网络模型的异性结构面峰值抗剪强度预测方法
Jiang et al. Accurate Deep Potential model for the Al–Cu–Mg alloy in the full concentration space
Paris A brief history of the crack tip stress intensity factor and its application
Jordan et al. A viscoplastic model for single crystals
Wu et al. A dislocation dynamics-assisted phase field model for Nickel-based superalloys: The role of initial dislocation density and external stress during creep
Hung et al. Variational estimation of the large-scale time-dependent meridional circulation in the Sun: proofs of concept with a solar mean field dynamo model
Li et al. Development of an anisotropic constitutive model for single-crystal superalloy for combined fatigue and creep loading
Zhou et al. Multi-agent reinforcement learning for wall modeling in LES of flow over periodic hills
Hill et al. On the performance of a generic length scale turbulence model within an adaptive finite element ocean model
Epstein et al. Stochastic analysis of meteorological fields
Prasad et al. A continuum model for the anisotropic creep of single crystal nickel-based superalloys
Bayerschen Single-crystal gradient plasticity with an accumulated plastic slip: theory and applications
CN107219136A (zh) 一种考虑不同减薄率的超塑性成形件疲劳寿命预测方法
Hutter Continuum mechanics in environmental sciences and geophysics
CN106342305B (zh) 一种面向多任务要求的测试性指标确定方法
Hodyss et al. Linear anelastic equations for atmospheric vortices
Feyel et al. FE computation of a triaxial specimen using a polycrystalline model
Malgieri et al. Reconstruction of Huygens' gedanken experiment and measurements based on video analysis tools
Canuto et al. What causes the divergences in local second-order closure models?
Matheou et al. On the synergy between numerics and subgrid scale modeling in LES of stratified flows: Grid convergence of a stratocumulus-topped boundary layer
Xiao et al. Impact of stratification mechanisms on turbulent characteristics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191025