CN110373267B - 一种用于萃取植物精油的添加剂及植物精油的提取方法 - Google Patents
一种用于萃取植物精油的添加剂及植物精油的提取方法 Download PDFInfo
- Publication number
- CN110373267B CN110373267B CN201910640327.8A CN201910640327A CN110373267B CN 110373267 B CN110373267 B CN 110373267B CN 201910640327 A CN201910640327 A CN 201910640327A CN 110373267 B CN110373267 B CN 110373267B
- Authority
- CN
- China
- Prior art keywords
- polyoxyethylene ether
- essential oil
- carbon dioxide
- plant essential
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B9/00—Essential oils; Perfumes
- C11B9/0007—Aliphatic compounds
- C11B9/0015—Aliphatic compounds containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B9/00—Essential oils; Perfumes
- C11B9/02—Recovery or refining of essential oils from raw materials
- C11B9/025—Recovery by solvent extraction
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
本发明提供了一种用于萃取植物精油的添加剂,为聚氧乙烯醚类化合物RO(CH2CH2O)nH,其中,基团R为含C6‑12的脂肪基,聚合度n的取值为5~10。本发明还提供一种植物精油的提取方法,该方法主要利用超临界二氧化碳萃取并加入上述添加剂从植物原料中提取植物精油。本发明使用上述添加剂能够实现对天然植物原料的香气物质进行更高效地提取,有效提高植物精油的提取效率,而且上述添加剂的加入量比较低,超临界二氧化碳萃取后无需脱除添加剂,即可得到品质较高的植物精油,能够避免因脱除添加剂造成的香气物质的损失。
Description
技术领域
本发明属于香精香料制备领域,具体涉及一种用于萃取植物精油的添加剂及利用该添加剂提取植物精油的方法。
背景技术
植物精油是一类存在与芳香植物的叶、根、皮、花和果中,可随水蒸气蒸馏,且具有一定气味的挥发性油状液体。目前,获得植物精油的方法主要有挤压法、水蒸气蒸馏法、有机溶剂提取法等。挤压法、水蒸气蒸馏法提取效率较低,有机溶剂提取法不仅需要大量的有机溶剂,易污染环境,而且在后处理过程中往往需要冷冻脱蜡、蒸馏等操作,工艺复杂。近年来,超临界二氧化碳萃取技术在精油制备方面表现出了良好的发展势头,它是利用超临界状态下的二氧化碳的高渗透性、流动性、低粘性且无毒、无味、无溶剂残留的特点对原材料进行萃取的一种方法,研究表明,超临界二氧化碳萃取与传统溶剂萃取相比能够较好地保持原料的香气特征,适用于热敏性、易挥发的香料分子,是生产高品质天然香料的一种有效手段。例如,杜丽君等发表在分析测试学报,2019,38(1)上的,名称为“水蒸气蒸馏法与超临界CO2萃取法结合气相色谱-质谱分析胡椒木精油成分”的论文中记载采用超临界CO2法对精油的天然成分破坏较少,保留了大量的活性成分,且精油获得量较高。
虽然超临界二氧化碳有诸多方面的优点,但二氧化碳始终是一个低极性的溶剂,溶剂化能力较差,对于植物中极性偏高的香气成分(醇类、酮类、酸类等)萃取效率较低。为此,黄山神草生物科技有限公司于2013年10月28日提出1件发明专利申请,该发明专利申请的申请号为CN201310512626.6、发明名称为“一种用超临界二氧化碳萃取菊花精油的方法”,该发明专利申请公开了一种用超临界二氧化碳萃取菊花精油的方法,本发明以干燥、粉碎的菊花为原料,用超临界二氧化碳以无水乙醇为夹带剂萃取菊花精油的粗品浓液,再将浓液进行冰冻、过滤、浓缩得到高纯度的菊花精油,其中,夹带无水乙醇的二氧化碳量为菊花质量的30%-50%。上述发明专利申请提供的方法以乙醇为夹带剂应用到超临界二氧化碳萃取技术中,所得到的菊花精油的提取率虽提高,但是,上述夹带剂的加入量较大,在提取菊花精油的同时,也造成了蛋白质、多糖等大分子的溶出,如此,上述方法虽然一定程度上提高了植物精油的提取效率,但还需要后处理以进一步脱除其中的大分子物质,同时在脱除夹带剂的过程中,长时间加热又会造成易挥发、易氧化香味物质的损失,导致产品感官风格特征不突出。
发明内容
有鉴于此,本发明确有必要提供一种用于萃取植物精油的添加剂及植物精油的提取方法,以解决上述问题。
为此,本发明提供的技术方案为:一种用于萃取植物精油的添加剂,为聚氧乙烯醚类化合物RO(CH2CH2O)nH,其中,基团R为含C6-12的脂肪基,聚合度n的取值为5~10。本文中“C6-12”代表含有6~12个碳原子,聚合度“n”的取值为正整数,可以为5、6、7、8、9或10。
基于上述,所述聚氧乙烯醚类化合物为直链烷基醇聚氧乙烯醚、直链烯烃基聚氧乙烯醚或直链炔烃基聚氧乙烯醚。其中,所述直链烷基醇聚氧乙烯醚的结构简式为CH3(CH2)4-10CH2O(CH2CH2O)5-10H。
基于上述,所述聚氧乙烯醚类化合物为支链烷基醇聚氧乙烯醚、支链烯烃基聚氧乙烯醚或支链炔烃基聚氧乙烯醚。
基于上述,所述支链烷基醇聚氧乙烯醚的结构简式为[CH3(CH2)m1][CH3(CH2)m2]CHCH2O(CH2CH2O)5-10H,其中m1与m2之和的取值为2~8,且m1和m2为0或正整数。
优选地,所述聚氧乙烯醚类化合物为2-甲基戊醇八聚氧乙烯醚、正己醇五聚氧乙烯醚、正己醇十聚氧乙烯醚、2-乙基丁醇五聚氧乙烯醚、正庚醇六聚氧乙烯醚、4-烯基庚醇五聚氧烯醚、正辛醇五聚氧乙烯醚、正辛醇九聚氧乙烯醚、3-正丙烯基壬醇六聚氧乙烯醚、3-正丙基辛醇十聚氧乙烯醚、正癸醇五聚氧乙烯醚、2-正丁基庚醇八聚氧乙烯醚、3-烯基十一醇七聚氧乙烯醚、2-甲基十一醇五聚氧乙烯醚、正己醇五聚氧乙烯醚、2-丙基辛醇八聚氧乙烯醚、2-炔基庚醇五聚氧乙烯醚或2-正戊基己醇六聚氧乙烯醚等。
本发明还提供一种植物精油的提取方法,包括步骤:向植物原料中加入上述添加剂和超临界二氧化碳溶剂进行植物精油萃取处理,其中,所述添加剂的加入量为所述超临界二氧化碳溶剂质量的0.01%~1%。其中,所述添加剂的加入量根据实际情况,可以为所述超临界二氧化碳溶剂质量的0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%等。
基于上述,所述植物原料与所述超临界二氧化碳溶剂的料液比为1:8~1:12g/mL。优选地,所述料液比为1:9~1:11g/mL。
基于上述植物精油的提取方法,将所述植物原料和所述添加剂置于萃取釜中,然后于35℃~60℃和8~30MPa的条件下,注入所述超临界二氧化碳溶剂萃取0.5~5h得到萃取液,对所述萃取液进行分离提纯处理,制得所述植物精油。其中,可以采用静态萃取法或动态循环萃取法得到所述萃取液。优选地,在得到所述萃取液的过程中,在上述温度和压力条件下,以10~30L/h的流速动态循环萃取1~4h得到所述萃取液。
基于上述,所述对所述萃取液进行分离提纯处理的步骤包括:所述萃取液先进入第一级分离器中进行降温处理,再进入第二级分离器中去除二氧化碳,制得所述植物精油。具体地,所述萃取液进入所述第一级分离器中,通过降温降压处理脱除其中溶解性低的大分子物质,再进入所述第二级分离器中,超临界二氧化碳溶剂以气体形式从出口排出,最终直接得到所述植物精油。
基于上述,所述植物原料来源于新鲜植物的根、茎、叶、花、果实、果皮中的一种或其任意的组合。其中,根据实际需要,所述植物原料可以预处理成颗粒状、片状或丝状。
与现有技术相比,由于本发明提供的添加剂聚氧乙烯醚类化合物RO(CH2CH2O)nH中的基团RO为含C6-12的脂肪醇基,其极性较低,与植物精油萃取用溶剂有较好的亲和性,如丁烷、二氧化碳;同时所述聚氧乙烯醚类化合物中的聚氧乙烯醚基团能够增加萃取用溶剂的溶剂化能力,促进植物原料中的中高极性组分的溶解,因此,所述聚氧乙烯醚类化合物作为植物精油萃取用溶剂的添加剂,能够辅助植物精油萃取用溶剂萃取植物精油,提高植物精油的萃取效率。所述添加剂聚氧乙烯醚类化合物可以用作超临界萃取技术、亚临界萃取技术等萃取技术的添加剂,比如,用作亚临界丁烷萃取技术的添加剂、超临界二氧化碳萃取技术的添加剂等。
本发明还提供一种植物精油的提取方法,该提取方法主要利用超临界萃取技术,以二氧化碳为萃取溶剂,并加入所述添加剂聚氧乙烯醚类化合物从植物原料中提取植物精油;由于所述聚氧乙烯醚类化合物作为二氧化碳的添加剂,既与二氧化碳有较好的亲和性,又能提高二氧化碳的溶剂化能力,促进植物原料中的中高极性精油组分的溶解,所以,本发明提供的植物精油的提取方法能够实现对天然植物原料的香气物质进行更高效地提取,有效提高植物精油的提取效率。另外,由于所述添加剂聚氧乙烯醚类化合物在本发明提供的植物精油的提取方法中的加入量相对比较低,采用超临界二氧化碳萃取后无需脱除所述添加剂聚氧乙烯醚类化合物,即可得到品质较高的植物精油,而且该方法还能避免因脱除添加剂造成的香气物质的损失。因此,由本发明提供的上述方法制备的植物精油香气饱满逼真,可用于烟草、日化、食品、医药、农业等领域。
具体实施方式
下面通过具体实施方式,对本发明的技术方案做进一步的详细描述。
实施例1
本实施例提供一种用于萃取植物精油的添加剂为2-乙基丁醇五聚氧乙烯醚。
本实施例提供一种利用上述添加剂的烟草精油的提取方法,包括:将100g新鲜烟丝填充至超临界二氧化碳萃取釜中,随后加入0.83g(即添加量为二氧化碳质量的0.1%,在该实验条件下,二氧化碳的密度为834.89kg/m3)2-乙基丁醇五聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1000mL(即料液比1:10g/mL),在50℃、压力25MPa、流速30L/h的条件下动态循环萃取2h,得到烟草萃取液;所述烟草萃取液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到烟草精油,该烟草精油的产率为1.52%。
对照例1
本对照例提供一种烟草精油的提取方法,该方法与实施例1的区别主要在于,本对照例1中未添加2-乙基丁醇五聚氧乙烯醚。具体地,本对照例提供的提取方法为:将100g新鲜烟丝填充至超临界二氧化碳萃取釜中,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1000mL(即料液比1:10g/mL),在50℃、压力25MPa、流速30L/h的条件下动态循环萃取2h,得到萃取原液;所述萃取原液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到烟草精油,该烟草精油的产率为0.96%。
烟草精油成分分析试验
分别准确称取300mg的实施例1和对照例1所得的烟草精油,分别用二氯甲烷溶解后,加入内标(乙酸苯乙酯),通过GC-MS分别对两者进行成分分析,分析结果如表1所示。其中,该成分分析采用的仪器条件如下:
色谱柱:DB-5MS毛细管柱(30m×0.25mm×0.25μm);进样口温度:250℃;载气:高纯氦气;流速1.0mL/min;进样量:1μL;分流比10:1;程序升温:60℃保持1min,再以5℃/min的升温速率加热到260℃,并保持5min。
电离方式:EI;离子源温度:230℃;电子能量:70eV;四级杆温度:150℃;电子倍增器电压:1.89kV;质量扫描范围33~500amu;扫描方式:全扫描;溶剂延迟:7.0min。
表1实施例1和对照例1所得的烟草精油的成分分析表
注:“-”表示未检出
从表1中可以看出:在相同检测条件下,采用GC-MS法,实施例1得到的烟草精油中能够检测出68种组分,而对照例1得到的烟草精油中能够检测出62种组分;而且实施例1得到的烟草精油的有效成分含量明显高于对照例1得到的烟草精油的有效成分含量,因此,与对照例1提供的烟草精油的提取方法相比,实施例1提供的烟草精油的提取方法中,加入了添加剂2-乙基丁醇五聚氧乙烯醚,能够从烟叶中提取更多的有效成分,如:大马士酮、烟碱、巨豆三烯酮、苯乙醇等,从而充分说明了实施例1中加入添加剂2-乙基丁醇五聚氧乙烯醚能够提高超临界二氧化碳对烟叶有效成分的提取效率。
实施例2
本实施例提供一种用于萃取植物精油的添加剂为正辛醇九聚氧乙烯醚。
本实施例提供一种利用上述添加剂的烟草精油的提取方法,包括:将100g新鲜烟丝填充至超临界二氧化碳萃取釜中,随后加入1.03g(即添加量为二氧化碳质量的0.15%,在该实验条件下,二氧化碳的密度为857.82kg/m3)正辛醇九聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂800mL(即料液比1:8g/mL),在45℃、压力25MPa、流速20L/h的条件下动态萃取3h,得到烟草萃取液;所述烟草萃取液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到烟草精油,该烟草精油的产率为1.32%。
实施例3
本实施例提供一种用于萃取植物精油的添加剂为3-正丙烯基壬醇六聚氧乙烯醚。
本实施例提供一种利用上述添加剂的烟草精油的提取方法,包括:将100g新鲜烟丝填充至超临界二氧化碳萃取釜中,随后加入0.80g(即添加量为二氧化碳质量的0.1%,在该实验条件下,二氧化碳的密度为724.63kg/m3)3-正丙烯基壬醇六聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1100mL(即料液比为1:11g/mL),在60℃、压力20MPa、流速30L/h的条件下动态萃取1h,得到烟草萃取液;所述烟草萃取液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到烟草精油,该烟草精油的产率为1.49%。
实施例4
本实施例提供一种用于萃取植物精油的添加剂为2-正丁基庚醇八聚氧乙烯醚。
本实施例提供一种利用上述添加剂的烟草精油的提取方法,包括:将100g新鲜烟丝填充至超临界二氧化碳萃取釜中,随后加入1.00g(即添加量为二氧化碳质量的0.1%,在该实验条件下,二氧化碳的密度为830.33kg/m3)2-正丁基庚醇八聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1200mL(即料液比为1:12g/mL),在60℃、压力30MPa、流速10L/h的条件下动态萃取3h,得到烟草萃取液;所述烟草萃取液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到烟草精油,该烟草精油的产率为1.66%。
实施例5
本实施例提供一种用于萃取植物精油的添加剂为正癸醇五聚氧乙烯醚。
本实施例提供一种利用上述添加剂的玫瑰精油的提取方法,包括:将干燥后的新鲜玫瑰花瓣100g置于超临界萃取釜中,随后加入4.45g(即添加量为二氧化碳质量的0.5%,在该实验条件下,二氧化碳的密度为890.92kg/m3)正癸醇五聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1000mL(即料液比1:10g/mL),在45℃、压力30MPa、流速25L/h的条件下动态萃取4h,得到玫瑰萃取液;所述玫瑰萃取液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到玫瑰精油,产率为0.98%。
实施例6
本实施例提供一种用于萃取植物精油的添加剂为3-烯基十一醇七聚氧乙烯醚。
本实施例提供一种利用上述添加剂的玫瑰精油的提取方法,包括:将干燥后的新鲜玫瑰花瓣100g置于超临界萃取釜中,随后加入5.86g(即添加量为二氧化碳质量的0.7%,在该实验条件下,二氧化碳的密度为929.68kg/m3)3-烯基十一醇七聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂900mL(即料液比1:9g/mL),在35℃、压力30MPa、流速25L/h的条件下动态萃取4h,得到玫瑰萃取液;所述玫瑰萃取液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到玫瑰精油,产率为1.04%。
对照例2
本对照例2提供一种玫瑰精油的提取方法,该方法利用超临界二氧化碳萃取技术,但未加入聚氧乙烯醚类化合物。具体地,本对照例2提供的方法包括:将干燥后的新鲜玫瑰花瓣100g,转移至超临界萃取釜中,随后加入体积分数为10%的乙醇100mL,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1000mL,在45℃、压力30MPa、流速25L/h的条件下动态萃取4h,得到玫瑰萃取原液;所述玫瑰萃取液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳以气体的形式蒸发;再经旋转蒸发处理除去乙醇夹带剂,得到玫瑰浸膏,产率为1.05%;得到的玫瑰浸膏用体积分数为95%的乙醇在-10℃冷冻脱蜡2次以除去蜡质,减压旋转蒸发出去乙醇溶剂,得到致香成分的含量较高的玫瑰精油0.32g,产率为0.32%。
从上述数据可以看出:实施例5和6提供的玫瑰精油的提取方法,在利用超临界二氧化碳萃取技术的同时分别加入添加剂正癸醇五聚氧乙烯醚和3-烯基十一醇七聚氧乙烯醚,对玫瑰萃取液进行两级分离处理后就可以得到玫瑰精油,不需要额外去除对应的添加剂;对照例2提供的玫瑰精油的提取方法,在利用超临界二氧化碳萃取技术的同时加入夹带剂乙醇溶液,该方法得到的玫瑰萃取原液需要先经两级分离处理,再旋蒸处理去除其中的乙醇夹带剂,随后再进行脱蜡处理才能得到玫瑰精油。实施例5和6得到的玫瑰精油的产率虽略低于对照例2得到玫瑰浸膏的产率,但远高于对照例2得到的玫瑰精油的产率。由此可见,实施例5和6提供的玫瑰精油的提取方法中加入所述脂肪醇聚氧乙烯醚类化合物添加剂能够有效促进玫瑰花瓣中致香成分的提取,并且与对照例2提供的提取方法中加入乙醇相比,省去了后处理中除去乙醇夹带剂的步骤,精简了制备过程。
实施例7
本实施例提供一种用于萃取植物精油的添加剂为正己醇五聚氧乙烯醚。
本实施例提供一种利用上述添加剂的茶叶精油的提取方法,包括:将100g新鲜的茶叶叶片转移至超临界萃取釜中,随后加入8.58g(即添加量为二氧化碳质量的1%,在该实验条件下,二氧化碳的密度为857.82kg/m3)正己醇五聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1000mL(即料液比1:10g/mL),在45℃、压力25MPa、流速20L/h的条件下动态萃取3h,得到茶叶萃取液;所述茶叶萃取液先进入第一级分离器中进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到茶叶精油1#,即茶叶精油的产率为0.95%。
实施例8
本实施例提供一种用于萃取植物精油的添加剂为2-甲基十一醇五聚氧乙烯醚。
本实施例提供一种利用上述添加剂的茶叶精油的提取方法,包括:将100g新鲜的茶叶叶片转移至超临界萃取釜中,随后加入8.24g(即添加量为二氧化碳质量的0.8%,在该实验条件下,二氧化碳的密度为857.82kg/m3)2-甲基十一醇五聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1200mL(即料液比1:12g/mL),在45℃、压力25MPa、流速20L/h的条件下动态萃取3h,得到茶叶萃取液;所述茶叶萃取液进入第一级分离器并进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳变为气体状态,与萃出物分离,放出二氧化碳,得到茶叶精油,该茶叶精油的产率为0.92%。
实施例9
本实施例提供一种用于萃取植物精油的添加剂为2-炔基庚醇十聚氧乙烯醚。
本实施例提供一种利用上述添加剂的茶叶精油的提取方法,包括:将100g新鲜的茶叶叶片转移至超临界萃取釜中,随后加入3.94g(即添加量为二氧化碳质量的0.5%,在该实验条件下,二氧化碳的密度为787.28kg/m3)2-炔基庚醇十聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1000mL(即料液比1:10g/mL),在60℃、压力25MPa、流速20L/h的条件下动态萃取3h,得到茶叶萃取液;所述茶叶萃取液先进入第一级分离器并进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到茶叶精油,该茶叶精油的产率为0.87%。
实施例10
本实施例提供一种用于萃取植物精油的添加剂为2-正戊基己醇六聚氧乙烯醚。
本实施例提供一种利用上述添加剂的茶叶精油的提取方法,包括:将100g新鲜的茶叶叶片转移至超临界萃取釜中,随后加入4.45g(即添加量为二氧化碳质量的0.5%,在该实验条件下,二氧化碳的密度为890.92kg/m3)2-正戊基己醇六聚氧乙烯醚,开启二氧化碳储罐供给阀门注入超临界二氧化碳溶剂1000mL(即料液比1:10g/mL),在45℃、压力30MPa、流速20L/h的条件下动态萃取3h,得到茶叶萃取液;所述茶叶萃取液先进入第一级分离器并进行降温减压处理,脱除其中的溶解性低的大分子物质,再经过第二级分离器处理,二氧化碳溶剂转化为气体状态,与萃出物分离,排出二氧化碳气体,得到茶叶精油,该茶叶精油的产率为1.00%。
对照例3
本对照例提供一种茶叶精油的提取方法,该提取方法为传统的乙醇浸提法,具体地,在100g新鲜茶叶叶片中加入体积分数为95%的乙醇1000mL(即料液比为1:10g/mL),在45℃条件下浸泡提取三次,每次提取1h,合并得到的提取物溶液,旋转蒸发出去乙醇溶剂,得到茶叶浸膏,得到的茶叶浸膏在-10℃冷冻脱蜡2次,得到茶叶精油2#,产率为0.65%。
将上述实施例7得到的茶叶精油1#和对照例3得到的茶叶精油2#分别用体积分数为95%乙醇稀释至质量浓度为10%,用自动注射加香仪注射于空白卷烟中,注射量为1μL/支。注射完毕后,将卷烟装入烟盒中,密封于22℃±2℃和RH 60%±5%条件下放置1周,然后对加香效果进行评价,评价结果如表3所示。
表3茶叶精油感官评价结果
样品编号 | 香气质 | 香气量 | 杂气 | 浓度 | 透发性 | 细腻 | 柔和 | 刺激 | 残留 |
1<sup>#</sup> | 22.93 | 20.76 | 13.68 | 15.85 | 14.77 | 18.71 | 15.69 | 12.92 | 12.60 |
2<sup>#</sup> | 21.22 | 21.11 | 12.20 | 13.76 | 13.54 | 21.38 | 16.82 | 10.48 | 11.67 |
注:空白卷烟各项指标均为0,当平均分大于11.2则说明该指标有明显改善,分值越大,改善的程度越高。
从表3中可以看出:与对比例3得到的茶叶精油相比,实施例8得到的茶叶精油的香气质增加,烟气细腻柔和,浓度增加,杂气、刺激和残留明显降低。而且本发明实施例7~10得到的茶叶精油的产率高于对照例3得到的茶叶精油的产率。如此表明采用本发明实施例7~10提供的茶叶精油的提取方法,加入添加剂所述聚氧乙烯醚类化合物,不仅能从茶叶中高效萃取有效物质,还不会降低茶树精油的品质;且与比传统溶剂萃取法得到的茶树精油相比,实施例7~10得到的茶树精油的感官品质更好。
因此,本发明实施例提供的植物精油的提取方法在制备植物精油时,加入少量所述添加剂聚氧乙烯醚类化合物,能够有效提高超临界二氧化碳对植物精油的提取效率;而且与一般添加剂如甲醇、乙醇等相比,本发明提供的所述添加剂聚氧乙烯醚类化合物的加入比例较低,省去脱除添加剂的过程,节省了制备步骤,减少了脱除添加剂过程带来的香气物质的损失。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。
Claims (9)
1.一种植物精油的提取方法,包括步骤:向植物原料中加入添加剂和超临界二氧化碳溶剂进行植物精油萃取处理,其中,所述添加剂的加入量为所述超临界二氧化碳溶剂质量的0.01%~1%;所述添加剂为聚氧乙烯醚类化合物RO(CH2CH2O)nH,且基团R为含C6-12的脂肪基、聚合度n的取值为5~10。
2.根据权利要求1所述的植物精油的提取方法,其特征在于,所述聚氧乙烯醚类化合物为直链烷基醇聚氧乙烯醚、直链烯烃基聚氧乙烯醚或直链炔烃基聚氧乙烯醚。
3.根据权利要求1所述的植物精油的提取方法,其特征在于,所述聚氧乙烯醚类化合物为支链烷基醇聚氧乙烯醚、支链烯烃基聚氧乙烯醚或支链炔烃基聚氧乙烯醚。
4.根据权利要求3所述的植物精油的提取方法,其特征在于,所述支链烷基醇聚氧乙烯醚的结构简式为[CH3(CH2)m1][CH3(CH2)m2]CHCH2O(CH2CH2O)5-10H,其中m1与m2之和的取值为2~8,且m1和m2为0或正整数。
5.根据权利要求1所述的植物精油的提取方法,其特征在于,所述聚氧乙烯醚类化合物为2-甲基戊醇八聚氧乙烯醚、正己醇五聚氧乙烯醚、正己醇十聚氧乙烯醚、2-乙基丁醇五聚氧乙烯醚、正庚醇六聚氧乙烯醚、4-烯基庚醇五聚氧乙烯醚、正辛醇五聚氧乙烯醚、正辛醇九聚氧乙烯醚、3-正丙烯基壬醇六聚氧乙烯醚、3-正丙基辛醇十聚氧乙烯醚、正癸醇五聚氧乙烯醚、2-正丁基庚醇八聚氧乙烯醚、3-烯基十一醇七聚氧乙烯醚、2-甲基十一醇五聚氧乙烯醚、2-丙基辛醇八聚氧乙烯醚、2-炔基庚醇五聚氧乙烯醚或2-正戊基己醇六聚氧乙烯醚。
6. 根据权利要求1~5任一项所述的植物精油的提取方法,其特征在于,所述植物原料与所述超临界二氧化碳溶剂的料液比为1:8~1:12 g/mL。
7. 根据权利要求6所述的植物精油的提取方法,其特征在于,将所述植物原料和所述添加剂置于萃取釜中,然后于35℃~60℃和8~30 MPa的条件下,注入所述超临界二氧化碳溶剂萃取0.5~5 h得到萃取液,对所述萃取液进行分离提纯处理,制得所述植物精油。
8.根据权利要求7所述的植物精油的提取方法,其特征在于,所述对所述萃取液进行分离提纯处理的步骤包括:所述萃取液先进入第一级分离器中进行降温处理,再进入第二级分离器中去除二氧化碳,最终制得所述植物精油。
9.根据权利要求8所述的植物精油的提取方法,其特征在于,所述植物原料来源于新鲜植物的根、茎、叶、花、果实、果皮中的一种或其任意的组合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910640327.8A CN110373267B (zh) | 2019-07-16 | 2019-07-16 | 一种用于萃取植物精油的添加剂及植物精油的提取方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910640327.8A CN110373267B (zh) | 2019-07-16 | 2019-07-16 | 一种用于萃取植物精油的添加剂及植物精油的提取方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110373267A CN110373267A (zh) | 2019-10-25 |
CN110373267B true CN110373267B (zh) | 2021-04-16 |
Family
ID=68253420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910640327.8A Active CN110373267B (zh) | 2019-07-16 | 2019-07-16 | 一种用于萃取植物精油的添加剂及植物精油的提取方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110373267B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111493067B (zh) * | 2020-04-15 | 2021-11-09 | 上海抚佳精细化工有限公司 | 一种农药组合增效剂及其应用 |
CN113491713A (zh) * | 2021-06-24 | 2021-10-12 | 四川大学华西医院 | 一种脂肪间充质干细胞培养上清凝胶及其制备方法 |
CN114292437A (zh) * | 2021-12-31 | 2022-04-08 | 石狮市中纺学服装及配饰产业研究院 | 一种超临界二氧化碳萃取浆料中pva的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104403801A (zh) * | 2014-12-19 | 2015-03-11 | 杨玉峰 | 一种表面活性剂水溶液提取橘皮精油的方法 |
CN105146739A (zh) * | 2015-07-28 | 2015-12-16 | 中国烟草总公司郑州烟草研究院 | 一种毛烟精油的制备方法及其应用 |
WO2016172123A1 (en) * | 2015-04-24 | 2016-10-27 | Colgate-Palmolive Company | Porous protein particles as carriers for actives |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8329958B2 (en) * | 2004-07-02 | 2012-12-11 | Biocon Limited | Combinatorial synthesis of PEG oligomer libraries |
-
2019
- 2019-07-16 CN CN201910640327.8A patent/CN110373267B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104403801A (zh) * | 2014-12-19 | 2015-03-11 | 杨玉峰 | 一种表面活性剂水溶液提取橘皮精油的方法 |
WO2016172123A1 (en) * | 2015-04-24 | 2016-10-27 | Colgate-Palmolive Company | Porous protein particles as carriers for actives |
CN105146739A (zh) * | 2015-07-28 | 2015-12-16 | 中国烟草总公司郑州烟草研究院 | 一种毛烟精油的制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110373267A (zh) | 2019-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110373267B (zh) | 一种用于萃取植物精油的添加剂及植物精油的提取方法 | |
RU2566902C2 (ru) | Способы экстракции и выделения компонентов целлюлозного материала | |
CN111418874B (zh) | 一种雪茄风味卷烟纸的涂布制备方法 | |
CN102161935B (zh) | 一种烟草内源性香料及其制备方法和应用 | |
CN112795430B (zh) | 一种提取奇楠沉香精油的提取方法 | |
CN107216949A (zh) | 一种从桧木中提取芬多精和精油的变压蒸馏方法 | |
CN113951552B (zh) | 一种krk26烟草提取物、其制备方法和用途 | |
Song et al. | Meta‐analysis and review of cannabinoids extraction and purification techniques | |
CN109222213B (zh) | 一种烟草原料中新植二烯的绿色提取富集及分离纯化方法 | |
CN110396456B (zh) | 萃取添加剂及利用超临界萃取法提取植物精油的方法 | |
CN110373270B (zh) | 一种植物精油萃取用添加剂及萃取植物精油的方法 | |
CN111004679B (zh) | 细梗香草提取物及香精 | |
CN110477441B (zh) | 一种去除烟叶蜡质的添加剂、除蜡溶剂及去除方法 | |
CN113633017A (zh) | 一种烟草提取物及其制备方法和应用、烟草制品 | |
CN114041623B (zh) | 一种旱烟特征致香成分、其制备方法和用途 | |
CN113951534B (zh) | 一种茉莉提取物、其制备方法和用途 | |
CN111363626A (zh) | 一种全息玫瑰精油及其绿色制备方法 | |
CN110373271B (zh) | 一种去除植物蜡质用添加剂及植物蜡质的去除方法 | |
CN109602065B (zh) | 从再造烟叶浓缩工序所排废气中回收的香精及其回收方法和应用 | |
CN110373273B (zh) | 一种植物蜡质的脱除添加剂及脱除方法 | |
CN109135928A (zh) | 提高茉莉花精油稳定性的方法 | |
CN110373272B (zh) | 一种用于脱除植物蜡质的添加剂及植物原料的预处理方法 | |
CN109007957B (zh) | 一种烟草提取物、其制备方法及烟草制品 | |
CN110643433A (zh) | 一种石斛花精油的提取方法 | |
CN104774693A (zh) | 利用烟草废弃物制备的烟花精油及其应用和制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |