CN110364594B - 一种氮化镓或氮化铝纳米孔的制备方法 - Google Patents

一种氮化镓或氮化铝纳米孔的制备方法 Download PDF

Info

Publication number
CN110364594B
CN110364594B CN201910656222.1A CN201910656222A CN110364594B CN 110364594 B CN110364594 B CN 110364594B CN 201910656222 A CN201910656222 A CN 201910656222A CN 110364594 B CN110364594 B CN 110364594B
Authority
CN
China
Prior art keywords
gan
film layer
aln
thin film
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910656222.1A
Other languages
English (en)
Other versions
CN110364594A (zh
Inventor
闫李
柴旭朝
焦岳超
张梁
瞿博阳
郭倩倩
朱小培
李召
付凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyuan University of Technology
Original Assignee
Zhongyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongyuan University of Technology filed Critical Zhongyuan University of Technology
Priority to CN201910656222.1A priority Critical patent/CN110364594B/zh
Publication of CN110364594A publication Critical patent/CN110364594A/zh
Application granted granted Critical
Publication of CN110364594B publication Critical patent/CN110364594B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种氮化镓或氮化铝纳米孔的制备方法,包括以下步骤:在蓝宝石衬底上依次进行(1)GaN或AlN薄膜层的生长;(2)SiO2薄膜层的沉积;(3)Ni薄膜层的沉积并进行Ni薄膜层的退火处理,在Ni薄膜层的退火过程中,Ni薄膜自组装形成离散Ni颗粒;(4)SiO2薄膜层的刻蚀:以步骤(3)自组装形成的Ni颗粒为掩膜,刻蚀SiO2薄膜层,直至刻蚀面抵达GaN或AlN薄膜层;(5)Ni颗粒的腐蚀:腐蚀去除Ni颗粒后,GaN或AlN薄膜层上留下SiO2纳米柱;(6)GaN或AlN薄膜层的继续生长:GaN或AlN薄膜层继续外延生长且GaN或AlN薄膜层继续生长后的高度不高于SiO2纳米柱的高度;(7)SiO2纳米柱的腐蚀:腐蚀除去SiO2纳米柱,即得GaN或AlN纳米孔。本发明形成的纳米孔的界面要好,缺陷少。

Description

一种氮化镓或氮化铝纳米孔的制备方法
技术领域
本发明属于氮化镓或氮化铝纳米结构制备技术领域,具体涉及一种氮化镓或氮化铝纳米孔的制备方法。
背景技术
氮化镓氮化铝纳米光电器件具有优良的诸多性能,纳米线、纳米孔等纳米结构的制备尤为关键,其制备流程通常需要复杂的光刻工艺,在面临纳米级尺寸时,甚至需要效率低且成本高昂的电子束曝光技术。
中国专利CN107978662A一种氮化镓纳米孔洞的制备方法,包括以下具体步骤:
(1)首先在衬底上镀一层氮化铝层,然后在氮化铝层上外延一层氮化镓层,之后在氮化 镓层上镀一层二氧化硅层;(2)在二氧化硅层上蒸镀金层,然后在金层上蒸镀一层镍金属层,将镍金属层一定温度 下退火处理0.5-3分钟,形成镍金属岛结构;(3)在镍金属层上蒸镀铂金金属层,使得镍金属岛结构的高度大于铂金金属层的厚度, 形成氮化镓晶体结构;(4)将氮化镓晶体结构浸泡在王水中2-5分钟,使得镍金属岛结构溶解于王水中,氮化镓晶体结构形成裸露金层的纳米孔洞;(5)采用一定的工艺刻蚀氮化镓晶体结构的纳米孔洞的金层、二氧化硅层及氮化镓层, 即得氮化镓纳米孔洞结构。
该专利通过王水腐蚀掉镍金岛,然后通过铂金的阻挡,刻蚀掉镍金岛处,形成孔洞。这种刻蚀的方式会导致所形成的纳米孔存在较多界面缺陷,而且其使用大量的贵金属,制备成本高。
发明内容
本发明针对现有技术中氮化镓或氮化铝纳米孔存在的缺陷,提供一种氮化镓或氮化铝纳米孔的制备方法,形成的纳米孔的界面要好,缺陷少。
本发明采用如下技术方案:
一种氮化镓或氮化铝纳米孔的制备方法,包括以下步骤:在蓝宝石衬底上依次进行(1)GaN或AlN薄膜层的生长;(2)SiO2薄膜层的沉积;(3)Ni薄膜层的沉积并进行Ni薄膜层的退火处理,在Ni薄膜层的退火过程中,Ni薄膜自组装形成离散Ni颗粒;(4)SiO2薄膜层的刻蚀:以步骤(3)自组装形成的Ni颗粒为掩膜,刻蚀SiO2薄膜层,直至刻蚀面抵达GaN或AlN薄膜层;(5)Ni颗粒的腐蚀:腐蚀去除Ni颗粒后,GaN或AlN薄膜层上留下SiO2纳米柱;(6)GaN或AlN薄膜层的继续生长:GaN或AlN薄膜层继续外延生长且GaN或AlN薄膜层继续生长后的高度不高于SiO2纳米柱的高度;(7)SiO2纳米柱的腐蚀:腐蚀除去SiO2纳米柱,即得GaN或AlN纳米孔。
优选地,步骤(1)所述GaN或AlN薄膜层的生长包括以下步骤:首先在蓝宝石衬底上生长GaN或AlN缓冲层并进行GaN或AlN缓冲层的退火处理,然后生长GaN或AlN外延层,由此GaN或AlN缓冲层和GaN或AlN外延层共同构成GaN或AlN薄膜层。
优选地,所述GaN缓冲层生长的控制条件如下:温度为500~600℃,TMGa流量为60~80μmol/min,NH3流量为100~120mmol/min;所述AlN缓冲层生长的控制条件如下:在气压20~100Torr,生长温度为700~800℃的条件下,TMAl流量为0.8~1.2μmol/min,NH3流量为100~200mmol/min。
优选地,所述GaN缓冲层的退火处理操作如下:在气压为500~600Torr,温度为1000~1200℃的条件下,退火处理5~10min;所述AlN缓冲层的退火处理操作如下:在气压为20~100Torr,温度为 1100~1250℃的条件下,退火处理5~10min。
优选地,所述GaN外延层和步骤(6)GaN薄膜层的继续生长的控制条件均如下:在气压为500~600Torr,温度为1000~1200℃, NH3流量为200~300mmol/min,TMGa流量为60~80μmol/min;所述AlN外延层和步骤(6)AlN薄膜层的继续生长的控制条件均如下:在气压为20~100Torr,温度为1100~1250℃的条件下,NH3流量为100~200mmol/min,TMAl流量为4~10μmol/min。
优选地,步骤(6)所述GaN/AlN薄膜层继续生长后,在温度为 1000~1200℃的条件下,退火处理5~10min。
优选地,步骤(3)中,所述Ni薄膜层的退火处理是在氮气气氛下于900℃~1000℃退火处理2~3min。
优选地,步骤(5)中,所述Ni颗粒的腐蚀采用质量分数为3.0%~5.0%的盐酸进行。
优选地,步骤(7)中,所述SiO2纳米柱的腐蚀采用质量分数为30~50%的氢氟酸进行。
本发明的有益效果如下:
本发明在制备纳米孔时,所采用的是自下而上的生长方式,形成的纳米孔的界面要好,缺陷少,而现有技术中纳米孔的生成是通过干法刻蚀的方式,是自上而下,纳米孔的界面缺陷多,而界面缺陷的存在将会制约后续所制备的器件性能的发挥,而且现有技术中使用了大量的贵金属,制备成本高,本发明相比之下,在较低的成本控制下,制备出了形貌更佳的纳米孔结构。
附图说明
图1为实施例1步骤(4)处理后的层结构示意图;
图2为实施例1步骤(5)处理后的层结构示意图;
图3为实施例1步骤(6)处理后的层结构示意图;
图4为实施例1步骤(7)处理后的层结构示意图;
图5为实施例1步骤(8)处理后的层结构示意图;
图6为实施例1步骤(9)处理后的层结构示意图;
图7为实施例1步骤(10)处理后的层结构示意图;
图8为实施例1步骤(12)处理后的层结构示意图;
图9为实施例1步骤(7)采用不同退火温度处理后的SEM图;
图10为实施例1制备得到的GaN纳米孔AFM表征图。
具体实施方式
为了使本发明的技术目的、技术方案和有益效果更加清楚,下面结合附图和具体实施例对本发明的技术方案作出进一步的说明。
实施例1
一种GaN纳米孔的制备方法,包括以下步骤 :
1.蓝宝石衬底预处理:通过高温烘烤腔体和氮化处理来实现,目的是清除衬底表面的污染物,以及粗化表面并在表面形成生长台阶;预处理的具体控制条件如下:高温烘烤腔体采用低压金属有机物化学气相沉积(LP-MOCVD )在100~200Torr,1000~1200℃下H2氛围中烘烤10~15min;氮化工艺是在500~600℃,气压为500~600Torr下,通入NH3氮化 3~5min,氮化处理后,蓝宝石衬底表面变得粗糙,便于后续缓冲层的生长;
本实施例中,高温烘烤腔体和氮化处理的条件采用如下设置:
高温烘烤腔体采用低压金属有机物化学气相沉积(LP-MOCVD )在150Torr, 1200℃下H2氛围中烘烤12min;氮化处理是在500℃,气压为600Torr下,通入NH3氮化 4min;
2.低温GaN缓冲层生长:在气压500~600Torr,生长温度为500~600℃的条件下,TMGa流量为60~80μmol/min,NH3流量为100~120mmol/min,生长时间为100~120s,得到GaN缓冲层,其厚度控制在50nm以内;
本实施例中,在气压500Torr,生长温度为550℃的条件下,TMGa流量为70μmol/min,NH3流量为115mmol/min,生长时间为105s,得到GaN缓冲层;
3.GaN缓冲层的重结晶退火:在气压为500~600Torr,温度为 1000~1200℃的条件下,退火处理5~10min,退火处理有利于提高后续GaN生长的晶体质量;
本实施例中,在气压为570Torr,温度为 1150℃的条件下,退火处理7min;
4.高温GaN外延层的生长:在气压为100~200Torr,温度为1000~1200℃的条件下,NH3流量为200~300mmol/min,TMGa流量为60~80μmol/min,生长时间依据所制备外延层厚度确定;
本实施例中,在气压为130Torr,温度为1100℃的条件下, NH3流量为270mmol/min,TMGa流量为70μmol/min,生长时间7200s,由此在蓝宝石衬底上得到的复合层结构示意图如图1所示;
5.SiO2薄膜层的沉积:采用oxford Plasmalab 80Plus PECVD(Plasma EnhancedChemical Vapor Deposition, PECVD)在步骤4所得GaN外延层上,沉积一层2~3 μm厚的SiO2薄膜层;
本实施例中,沉积条件采用如下设置:温度:350℃,压强:1 Torr,功率:10~20W,气体流量:5% SiH4/N2的流量为150~200 sccm,N2O的流量为600~800 sccm,沉积速率:60~80nm/min,沉积时间为40min,由此得到的复合层结构示意图如图2所示;
6.Ni薄膜的沉积:采用电子束蒸发镀膜仪(Kurt J. Lesker PVD 75),条件如下:在气压低于5X10-7 Torr的环境下,以速率0.1Å/S的蒸发速率,沉积时间为50~100 s,在沉积的SiO2薄膜上沉积5~10 nm厚的Ni薄膜,本发明所述Ni薄膜的沉积厚度决定了后续退火后Ni自组装纳米颗粒的尺寸,一般Ni薄膜厚度越厚,Ni自组装颗粒尺寸越大;
本实施例中,采用如下设置:在气压低于5X10-7 Torr的环境下,以速率0.1Å/S的蒸发速率,沉积时间为60 s,在沉积的SiO2薄膜上沉积6 nm厚的Ni薄膜,由此得到的复合层结构示意图如图3所示;
7.Ni薄膜的退火:本实施例采用Allwin21公司的AW610 RTA,在900℃下,N2氛围中,退火3min;本发明中,通过退火温度可以调控Ni颗粒的密度和尺寸,Ni颗粒的密度和尺寸决定后续纳米孔的密度和尺寸,一般地,退火温度越高,Ni颗粒尺寸越大,密度越小,本实施例由此得到的复合层结构示意图如图4所示,在此退火过程中,Ni薄膜自组装成Ni纳米颗粒,Ni颗粒的尺寸为50-200nm;图9给出了Ni薄膜在不同退火温度下(800/850/900℃)退火处理后的SEM图,可以看出在不同退火温度下,Ni颗粒的密度和尺寸分布存在差异;
8.SiO2层的刻蚀:用反应离子刻蚀法(Reactive Ion Etch ,RIE)刻蚀SiO2层,把无Ni颗粒处的SiO2层刻蚀掉,直至到GaN外延层处;其中,RIE刻蚀条件:气体流量:CH3F 的流量为80~120 sccm,压强:50 mTorr,功率:130~150 w,刻蚀速率:35~50 nm/min,温度:15℃;
本实施例中,气体流量:CH3F 的流量为100 sccm,压强:50 mTorr,功率:150 w,刻蚀速率:42 nm/min,温度:15℃,由此得到的复合层结构示意图如图5所示,可以看出,SiO2层刻蚀得到SiO2纳米柱;
9.Ni颗粒的腐蚀:将质量分数为35%~38%的盐酸用其10倍体积的蒸馏水稀释后腐蚀掉Ni颗粒,只留下SiO2纳米柱,由此得到的复合层结构示意图如图6所示;
10.高温GaN外延层的生长:在气压为100~200Torr,温度为1000~1200℃的条件下,NH3流量为200~300mmol/min,TMGa流量为60~80μmol/min,生长时间以得到的GaN层的高度小于SiO2纳米柱的高度为准;
本实施例中,在气压为100~200Torr,温度为1000~1200℃的条件下, NH3流量为200~300mmol/min,TMGa流量为60~80μmol/min,生长时间为3600s,由此得到的复合层结构示意图如图7所示GaN在SiO2纳米柱间的缝隙内生长且其生长后的高度低于SiO2纳米柱;
11.GaN层的重结晶退火:在气压为500~600Torr,温度为 1000~1200℃的条件下,退火处理5~10min;
本实施例中,在气压为600Torr,温度为 1200℃的条件下,退火处理5min;
12.SiO2 湿法腐蚀:采用质量分数为40%的氢氟酸腐蚀掉SiO2 纳米柱,由此得到GaN纳米孔如图8所示,将得到的GaN纳米孔进行AFM表征,AFM表征如图10所示,可以明显看到纳米孔结构的存在,孔径大约50nm~150nm,纳米孔深度在150nm~200nm。
实施例2
除了将原料TMGa更换为TMAl外,其余采用与实施例1相同的操作步骤,即可得到AlN纳米孔。
最后所应说明的是:上述实施例仅用于说明而非限制本发明的技术方案,任何对本发明进行的等同替换及不脱离本发明精神和范围的修改或局部替换,其均应涵盖在本发明权利要求保护的范围之内。

Claims (10)

1.一种氮化镓或氮化铝纳米孔的制备方法,其特征在于,包括以下步骤:在蓝宝石衬底上依次进行(1)GaN或AlN薄膜层的生长;(2)SiO2薄膜层的沉积;(3)Ni薄膜层的沉积并进行Ni薄膜层的退火处理,在Ni薄膜层的退火过程中,Ni薄膜自组装形成离散Ni颗粒;(4)SiO2薄膜层的刻蚀:以步骤(3)自组装形成的Ni颗粒为掩膜,刻蚀SiO2薄膜层,直至刻蚀面抵达GaN或AlN薄膜层;(5)Ni颗粒的腐蚀:腐蚀去除Ni颗粒后,GaN或AlN薄膜层上留下SiO2纳米柱;(6)GaN或AlN薄膜层的继续生长:GaN或AlN薄膜层继续外延生长且GaN或AlN薄膜层继续生长后的高度不高于SiO2纳米柱的高度;(7)SiO2纳米柱的腐蚀:腐蚀除去SiO2纳米柱,即得GaN或AlN纳米孔。
2.根据权利要求1所述的氮化镓或氮化铝纳米孔的制备方法,其特征在于,步骤(1)所述GaN或AlN薄膜层的生长包括以下步骤:首先在蓝宝石衬底上生长GaN或AlN缓冲层并进行GaN或AlN缓冲层的退火处理,然后生长GaN或AlN外延层,由此GaN或AlN缓冲层和GaN或AlN外延层共同构成GaN或AlN薄膜层。
3.根据权利要求2所述的氮化镓或氮化铝纳米孔的制备方法,其特征在于,所述GaN缓冲层生长的控制条件如下:温度为500~600℃,TMGa流量为60~80μmol/min,NH3流量为100~120mmol/min;所述AlN缓冲层生长的控制条件如下:温度为700~800℃,TMAl流量为0.8~1.2μmol/min,NH3流量为100~200mmol/min。
4.根据权利要求2所述的氮化镓或氮化铝纳米孔的制备方法,其特征在于,所述GaN缓冲层的退火处理操作如下:在气压为500~600Torr,温度为 1000~1200℃的条件下,退火处理5~10min;所述AlN缓冲层的退火处理操作如下:在气压为20~100Torr,温度为 1100~1250℃的条件下,退火处理5~10min。
5.根据权利要求2所述的氮化镓或氮化铝纳米孔的制备方法,其特征在于,所述GaN外延层和步骤(6)GaN薄膜层的继续生长的控制条件均如下:在气压为500~600Torr,温度为1000~1200℃, NH3流量为200~300mmol/min,TMGa流量为60~80μmol/min;所述AlN外延层和步骤(6)AlN薄膜层的继续生长的控制条件均如下:在气压为20~100Torr,温度为1100~1250℃的条件下,NH3流量为100~200mmol/min,TMAl流量为4~10μmol/min。
6.根据权利要求1所述的氮化镓或氮化铝纳米孔的制备方法,其特征在于,步骤(6)所述GaN或AlN薄膜层继续生长后,在温度为 1000~1200℃的条件下,退火处理5~10min。
7.根据权利要求1所述的氮化镓或氮化铝纳米孔的制备方法,其特征在于,步骤(3)中,所述Ni薄膜层的退火处理是在氮气气氛下于900℃~1000℃退火处理2~3min。
8.根据权利要求1所述的氮化镓或氮化铝纳米孔的制备方法,其特征在于,步骤(5)中,所述Ni颗粒的腐蚀采用质量分数为3.0%~5.0%的盐酸进行。
9.根据权利要求1所述的氮化镓或氮化铝纳米孔的制备方法,其特征在于,步骤(7)中,所述SiO2纳米柱的腐蚀采用质量分数为30~50%的氢氟酸进行。
10.采用权利要求1至9任一项所述的氮化镓或氮化铝纳米孔的制备方法制备得到的氮化镓或氮化铝纳米孔。
CN201910656222.1A 2019-07-19 2019-07-19 一种氮化镓或氮化铝纳米孔的制备方法 Expired - Fee Related CN110364594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910656222.1A CN110364594B (zh) 2019-07-19 2019-07-19 一种氮化镓或氮化铝纳米孔的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910656222.1A CN110364594B (zh) 2019-07-19 2019-07-19 一种氮化镓或氮化铝纳米孔的制备方法

Publications (2)

Publication Number Publication Date
CN110364594A CN110364594A (zh) 2019-10-22
CN110364594B true CN110364594B (zh) 2020-05-29

Family

ID=68220974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910656222.1A Expired - Fee Related CN110364594B (zh) 2019-07-19 2019-07-19 一种氮化镓或氮化铝纳米孔的制备方法

Country Status (1)

Country Link
CN (1) CN110364594B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445742B2 (en) * 2003-08-15 2008-11-04 Hewlett-Packard Development Company, L.P. Imprinting nanoscale patterns for catalysis and fuel cells
CN102709410A (zh) * 2012-06-04 2012-10-03 中国科学院半导体研究所 纳米柱发光二极管的制作方法
CN103094078A (zh) * 2013-01-13 2013-05-08 况维维 一种半导体器件用氮化镓外延的制备方法
WO2016056887A1 (en) * 2014-10-09 2016-04-14 Mimos Berhad Humidity sensor with nanoporous polyimide membranes and a method of fabrication thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116531A1 (en) * 2001-12-20 2003-06-26 Kamins Theodore I. Method of forming one or more nanopores for aligning molecules for molecular electronics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445742B2 (en) * 2003-08-15 2008-11-04 Hewlett-Packard Development Company, L.P. Imprinting nanoscale patterns for catalysis and fuel cells
CN102709410A (zh) * 2012-06-04 2012-10-03 中国科学院半导体研究所 纳米柱发光二极管的制作方法
CN103094078A (zh) * 2013-01-13 2013-05-08 况维维 一种半导体器件用氮化镓外延的制备方法
WO2016056887A1 (en) * 2014-10-09 2016-04-14 Mimos Berhad Humidity sensor with nanoporous polyimide membranes and a method of fabrication thereof

Also Published As

Publication number Publication date
CN110364594A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
JP4117156B2 (ja) Iii族窒化物半導体基板の製造方法
KR100682880B1 (ko) 결정 성장 방법
TWI435375B (zh) Iii-v族氮化物半導體基板之製造方法
US8828849B2 (en) Production of single-crystal semiconductor material using a nanostructure template
CN100418191C (zh) 外延生长方法
KR100695117B1 (ko) GaN 제조방법
KR100682881B1 (ko) 결정 성장 방법
JP2004502298A5 (zh)
TW201301554A (zh) 於一基材上形成奈米結構的方法及其之用途
JP2013026513A (ja) アモルファスシリコン膜の成膜方法および成膜装置
US8906487B2 (en) Base material with single-crystal silicon carbide film, method of producing single-crystal silicon carbide film, and method of producing base material with single-crystal silicon carbide film
CN116732607A (zh) 氮化物外延结构、外延生长方法及其应用
JP4511378B2 (ja) SOI基板を用いた単結晶SiC層を形成する方法
JP2019029568A (ja) 半導体積層物の製造方法および窒化物結晶基板の製造方法
CN110364594B (zh) 一种氮化镓或氮化铝纳米孔的制备方法
CN107075729A (zh) 氮化物半导体模板的制造方法
US7763529B2 (en) Method of fabricating silicon carbide (SiC) layer
CN102306623A (zh) 一种制备纳米级二氧化硅图形掩膜的方法
JP2018181885A (ja) 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法
CN107078033A (zh) 氮化物半导体模板的制造方法
KR100991861B1 (ko) 선택적 에피 성장과 블록공중합체 나노템플레이트를 이용한나노점의 제조방법 및 이에 의한 반도체 소자
JP2012054427A (ja) 化合物半導体の製造方法
CN105551939B (zh) 自组装制备带空腔的iii‑v族氮化物复合衬底的方法
JP2019067887A (ja) 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法
CN112071963A (zh) 一种led外延片及制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200529

Termination date: 20210719

CF01 Termination of patent right due to non-payment of annual fee