CN110362902A - 一种基于区间逐维分析的单源动载荷识别方法 - Google Patents
一种基于区间逐维分析的单源动载荷识别方法 Download PDFInfo
- Publication number
- CN110362902A CN110362902A CN201910591592.1A CN201910591592A CN110362902A CN 110362902 A CN110362902 A CN 110362902A CN 201910591592 A CN201910591592 A CN 201910591592A CN 110362902 A CN110362902 A CN 110362902A
- Authority
- CN
- China
- Prior art keywords
- value
- parameter
- dynamic
- vector
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computer Hardware Design (AREA)
- Algebra (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Operations Research (AREA)
- Complex Calculations (AREA)
Abstract
本发明公开了一种基于区间逐维分析的单源动载荷识别方法。首先,在结构确定性参数条件下,以核函数矩阵、测量位移响应信号与最佳正则化参数建立动载荷识别模型;其次,确定最佳平方逼近函数的阶数及高斯积分点,以高斯积分点对区间参数抽样,在每个样本输入下利用动载荷识别模型获得样本输出,基于切比雪夫正交多项式获得每个时刻动载荷关于每个区间参数的最佳平方逼近函数;最后,利用最佳平方逼近函数获得任意时刻的动载荷关于所有区间参数的最值点向量,在最值点向量处以动载荷识别模型获得任意时刻的动载荷界限,最终完成动载荷区间时间历程的识别。本发明考虑了小样本条件下结构参数不确定性对动载荷识别结果的影响规律,适用于非线性映射关系下大不确定性输入问题,可以用于指导动载荷测量领域结构外部激励的确定。
Description
技术领域
本发明涉及动载荷测量的技术领域,具体涉及区间参数结构的一种单源动载荷识别方法,适用于小样本条件下结构动力学分析、设计、优化与控制领域内外部激励的确定。
背景技术
近年来,我国在诸如大型飞机、航母舰艇、大型桥梁、高速列车等重大装备和工程建设方面快速发展。在这些军民用领域内,包括动力学分析、设计与优化、结构健康监测、疲劳寿命估计、鲁棒控制等在内的精细化管理对提高装备在服役周期内的动力学特性、经济性、可靠性与安全性至关重要。然而,准确获取动载荷是实施结构精细化管理的必要前提。动载荷识别是一项基于结构动态特性及测量响应信号来反演外部激励的技术,用以克服外部激励难以直接测量或不可测量的客观条件限制,如飞行器大攻角飞行的涡流载荷、海洋平台水载荷、战斗机内埋弹舱气动载荷、高层建筑阵风载荷等。
然而,在动载荷识别过程中广泛存在多源不确定性,包括结构物理参数(如材料参数与几何参数)、模型参数(如边界条件参数)、环境参数(如测量噪声)等,且这些不确定性对动载荷识别结果的影响不可忽略从不确定性角度出发,现有动载荷识别方法包括:其一,传统确定性参数条件下动载荷识别方法,这类方法中所有参数取值为固定值,因此无法评估结构与环境固有的不确定性效应;其二,以随机变量建模不确定性参数并实现动载荷不确定性效应的定量化,这类方法需要大容量试验数据来拟合随机变量的概率密度函数,因此无法适用于小样本条件下动载荷识别结果不确定性的定量化;其三,以区间数建模不确定性参数并以线性泰勒级数展开获得动载荷区间时间历程,这类方法采用线性函数逼近初始函数,因此对存在非线性映射关系的不确定性问题无能为力。
综上所述,现有技术存在的问题是:
(1)由于所有参数取值为固定值,传统确定性环境下的动载荷识别方法不能评估结构不确定性对动载荷识别结果的定量化影响。
(2)由于需要大容量试验数据来拟合随机变量的概率密度函数,基于随机变量建模的动载荷识别方法不能用来定量化小样本条件下结构不确定性对动载荷识别结果的影响。
(3)由于用线性泰勒级数展开来逼近初始函数,基于泰勒级数展开的动载荷识别方法不能用来评估存在非线性映射关系下结构不确定性对动载荷识别结果的影响。
解决上述问题的主要困难在于发明一种非线性映射关系的逼近函数与一种非线性逼近条件下区间传播技术,这些问题的解决对结构参数试验数据不足条件下完成动载荷识别具有重要意义,如飞行器初始设计阶段中很多结构参数没有足够的试验数据,而获得飞行器结构的动载荷激励是进行飞行器结构设计的必须条件,本发明专利可以有效解决这类问题。
发明内容
本发明要解决的技术问题是:在参数小样本条件下,考虑结构参数的不确定性对动载荷识别结果的影响,克服该问题现有解决方法不适用于非线性映射关系下大不确定性输入情形的限制,提出一种单源动载荷识别方法。
本发明的技术方案是一种基于区间逐维分析的单源动载荷识别方法,其实现步骤是:
第一步:给定由n个结构参数a1,a2,...,an组成的列向量模态截断阶数N0,获得结构有限元模型的刚度矩阵K与质量矩阵M,刚度矩阵K的行数记为N,特征多项式为|K-λM|,其中|·|表示矩阵行列式,获得特征多项式的零点获得由小到大排列的N个特征值,将前N0个特征值代入特征方程,求解获得第i阶模态向量
第二步:根据第一步中刚度矩阵K、质量矩阵M、第i阶模态向量给定比例阻尼参数α和β,获得第i阶模态刚度kpi、模态质量mpi,频率ωi、阻尼比ζi及阻尼频率ωdi,获得第i阶格林函数hi在时刻t处的取值hi(t);
第三步:给定时间步长Δt及测量总步数M0,获得第二步中第i阶格林函数hi在M0个时刻Δt,...,(M0-1)Δt,M0Δt的取值,记为给定单源动载荷在结构有限元模型中的自由度索引值k,给定测量位移响应信号在结构有限元模型中的自由度索引值获得位移响应信号在时刻Δt,2Δt,...,M0Δt处的取值,以列向量表示,其中y1是位移响应信号在时刻Δt处的取值,y2是位移响应信号在时刻2Δt处的取值,是位移响应信号在时刻M0Δt处的取值,获得核函数矩阵G;
第四步:根据第三步中核函数矩阵G,获得最优正则化参数αopt,待识别载荷以载荷列向量表示,其中f1表示待识别载荷在0时刻的取值,f2表示待识别载荷在Δt时刻的取值,表示待识别载荷在(M0-1)Δt时刻的取值,由G、αopt及建立载荷列向量的动载荷识别模型;
第五步:第四步中载荷列向量依赖于结构参数列向量以区间数对的每个分量建模,获得区间数列向量其中表示第1个参数的波动范围,是第1个参数的下界,是第1个参数的上界,表示第2个参数的波动范围,是第2个参数的下界,是第2个参数的上界,表示第n个参数的波动范围,是第n个参数的下界,是第n个参数的上界,aI的上界列向量表示为aI的下界列向量表示为aI的中点列向量表示为ac,aI的半径列向量记为ar,给定最佳平方逼近函数的阶数N1,给定高斯积分点xG的维数m,满足m≥2N1+1,获得高斯积分点列向量xG,利用xG对结构参数进行抽样,并将样本点存储于分块形式的输入样本点矩阵Binput,Binput的任一列对应的一次实现;
第六步:将第一步中列向量依次取值为第五步中输入样本点矩阵Binput的每一列,重复第一步至第四步,获得在每个样本点处的取值,并以Binput的按列分块格式存储于输出样本点矩阵Foutput,根据Foutput及最佳平方逼近理论建立的第l个分量关于第j个结构参数的最佳平方逼近函数g(l,j)(x);
第七步:根据第六步中g(l,j)(x),获得其一阶导函数的零点,将所获得的零点同标准区间[-1,1]的端点组成极值点向量x(l,j),获得的第l个分量关于第j个结构参数的最小值点和最大值点将j依次取值1至n,获得的第l个分量的最小值点向量和最大值点向量将和转化至aI张成的子空间内,获得结构参数最小值点列向量和结构参数最大值点列向量将第一步中取值并经第一步至第四步可获得的第l个分量的下界fl L,将第一步中取值并经第一步至第四步可获得的第l个分量的上界fl U;
第八步:将l依次取值1至M0并经第七步可以获得的下界和上界最终获得动载荷区间向量为完成动载荷区间时间历程的识别。
本发明与现有技术相比的优点在于:
(1)本发明采用基于切比雪夫多项式的最佳平方逼近函数,这是一个非线性函数,而现有技术采用基于线性泰勒级数展开函数。与现有技术相比,本发明可以用来定量化存在非线性映射关系下结构不确定性对动载荷识别结果的影响。
(2)本发明采用区间逐维方法获得动载荷识别结果的不确定性效应,现有技术采用区间自然扩展方法,而区间自然扩张方法会不可避免地导致动载荷识别结果的过度保守估计,而本发明摒弃区间自然扩张方法,可以避免动载荷识别结果的过度保守估计。
附图说明
图1为基于区间逐维分析的单源动载荷识别方法的原理图;
图2为基于区间逐维分析的单源动载荷识别方法的流程图;
图3为二十五杆空间刚架结构;
图4为测量位移响应信号;
图5为动载荷区间时间历程的识别结果。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
本发明提出一种基于区间逐维分析的单源动载荷识别方法。如图2,首先,在结构确定性参数条件下,基于结构有限元模型确定各阶模态向量及格林函数,给定时间步长及测量总步数以获得核函数矩阵,以核函数矩阵与测量位移响应信号获得最佳正则化参数,建立结构确定性参数条件下的动载荷识别模型;其次,确定最佳平方逼近函数的阶数及高斯积分点,以高斯积分点对区间参数抽样,在每个样本输入下利用动载荷识别模型获得样本输出,基于切比雪夫正交多项式获得每个时刻动载荷关于每个区间参数的最佳平方逼近函数;最后,利用最佳平方逼近函数获得任意时刻的动载荷关于所有区间参数的最值点向量,在最值点向量处以动载荷识别模型获得任意时刻的动载荷界限,最终完成动载荷区间时间历程的识别。
第一步:给定由n个结构参数a1,a2,...,an组成的列向量获得结构有限元模型的刚度矩阵K与质量矩阵M,刚度矩阵K的行数记为N,结构特征多项式为|K-λM|,其中|·|表示矩阵行列式,获得特征多项式的零点获得N个特征值,按照由小到大的顺序排列表示为λ1,...,λi,...,λN,其中λ1是第1阶特征值,λi是第i阶特征值,λN是第N阶特征值,给定满足1≤N0≤N的模态截断阶数N0,将前N0阶特征值代入特征方程中,
求解获得第1阶模态向量第i阶模态向量第N0阶模态向量
第二步:根据第一步中刚度矩阵K、质量矩阵M、第i阶模态向量获得第i阶模态刚度kpi和第i阶模态质量mpi,有
其中上标T表示转置运算,给定比例阻尼参数α和β,获得第i阶频率ωi、第i阶阻尼比ζi及第i阶阻尼频率ωdi,有
获得第i阶格林函数hi在时刻t处的取值hi(t)为
第三步:给定时间步长Δt及测量总步数M0,获得第二步中第i阶格林函数hi在M0个时刻Δt,...,(M0-1)Δt,M0Δt的取值,记为给定单源动载荷在结构有限元模型中的自由度索引值k,给定测量位移响应信号在结构有限元模型中的自由度索引值获得位移响应信号在时刻Δt,2Δt,...,M0Δt处的取值,以列向量表示,其中y1是位移响应信号在时刻Δt处的取值,y2是位移响应信号在时刻2Δt处的取值,是位移响应信号在时刻M0Δt处的取值,获得核函数矩阵G为
其中表示第i阶模态向量的第k个分量,表示第i阶模态向量的第个分量;
第四步:根据第三步中核函数矩阵G,获得最优正则化参数αopt
其中I是M0×M0阶单位矩阵,tr(·)表示矩阵的迹,||·||表示向量2-范数,待识别载荷以载荷列向量表示,其中f1表示待识别载荷在0时刻的取值,f2表示待识别载荷在Δt时刻的取值,表示待识别载荷在(M0-1)Δt时刻的取值,载荷列向量的动载荷识别模型为
第五步:第四步中载荷列向量依赖于结构参数列向量基于的试验数据以区间数对的每个分量建模,获得区间数列向量其中表示第1个参数的波动范围,是第1个参数的下界,是第1个参数的上界,表示第2个参数的波动范围,是第2个参数的下界,是第2个参数的上界,表示第n个参数的波动范围,是第n个参数的下界,是第n个参数的上界,aI的上界列向量表示为aI的下界列向量表示为aI的中点列向量ac为
其中表示第1个参数的中点值,表示第2个参数的中点值,表示第n个参数的中点值,aI的半径列向量ar为
其中表示第1个参数的半径,表示第2个参数的半径,表示第n个参数的半径,给定最佳平方逼近函数的阶数N1,给定高斯积分点xG的维数m,满足m≥2N1+1,获得高斯积分点列向量xG为
xG=[x1,x2,...,xm]T
利用xG对结构参数进行抽样,并将样本点存储于分块形式的输入样本点矩阵Binput,即
矩阵的第k1行第k2列位置的元素为
矩阵的第k1行第k2列位置的元素为
矩阵的第k1行第k2列位置的元素为
第六步:将第一步中列向量依次取值为第五步中输入样本点矩阵Binput的每一列,重复第一步至第四步,获得在每个样本点处的取值,并以Binput的按列分块格式存储于输出样本点矩阵Foutput,即
Foutput=[F1,...,Fj,...,Fn]
F1的每一列表示依次取值的相同列并经第一步至第四步而获得的的值,Fj的每一列表示依次取值的相同列并经第一步至第四步而获得的的值,Fn的每一列表示依次取值的相同列并经第一步至第四步而获得的的值,根据Foutput及最佳平方逼近理论建立的第l个分量关于第j个结构参数的最佳平方逼近函数g(l,j)(x),即
其中表示第k3阶切比雪夫多项式,多项式系数表示为
表示第五步中xG的第k4个分量,表示矩阵Fj中第l行第k4列位置的元素,表示第m阶切比雪夫多项式Um(x)的一阶导函数在处的取值;
第七步:根据第六步中g(l,j)(x),获得其一阶导函数的零点,即
将所获得的零点同标准区间[-1,1]的端点组成极值点向量x(l,j),获得的第l个分量关于第j个结构参数的最小值点和最大值点即
将j依次取值1至n,获得的第l个分量的最小值点向量和最大值点向量即
将和转化至aI张成的子空间内,获得结构参数最小值点列向量和结构参数最大值点列向量即
符号表示两个向量对应位置元素相乘,将第一步中取值并经第一步至第四步可获得的第l个分量的下界fl L,将第一步中取值并经第一步至第四步可获得的第l个分量的上界fl U;
第八步:将l依次取值1至M0并经第七步可以获得的下界和上界
最终获得动载荷区间向量为完成动载荷区间时间历程的识别。
以图3所示的底边四个点固支的二十五杆空间刚架结构为对象,选择欧拉-伯努利梁模拟刚架结构中每个圆柱形杆件的变形特性并建立刚架结构的有限元模型。根据杆件横截面积的不同,将杆件分为7组。考虑横截面积的分散性,以区间数建模并列于表2中。在节点1处的x方向施加载荷f(t)=1000e-5tsin(20t),选择节点4处的y方向位移的测量信号,位移响应的时间历程如图4所示。利用本发明方法识别的动载荷下界、上界如图5所示,其中载荷名义值指不考虑结构参数不确定性条件下的动载荷识别结果,原始载荷指所施加的待识别载荷f(t)。
从结果可以看出结构参数波动对动载荷识别结果具有明显影响,待识别载荷位于所识别的动载荷界限之内,这说明了本发明的有效性。在结构参数取值为相应区间数中点值条件下,图5中载荷名义值与真实载荷之间存在明显的误差,导致难以利用传统确定性条件下的动载荷识别方法来获得真实载荷的时间历程。综上所述,本发明可以有效地定量小样本条件下结构不确定性对动载荷识别结果的影响。
表2
杆件编号 | 横截面积(平方米) |
1 | [9.00,11.0]E-6 |
2,3,4,5 | [7.20,8.80]E-5 |
6,7,8,9 | [6.75,8.25]E-5 |
10,11,12,13 | [6.30,7.70]E-5 |
14,15,16,17 | [1.80,2.20]E-4 |
18,19,20,21 | [1.35,1.65]E-4 |
22,23,24,25 | [3.60,4.40]E-4 |
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
Claims (3)
1.一种基于区间逐维分析的单源动载荷识别方法,其特征在于包括以下步骤:
第一步:给定由n个结构参数a1,a2,...,an组成的列向量模态截断阶数N0,获得结构有限元模型的刚度矩阵K与质量矩阵M,刚度矩阵K的行数记为N,特征多项式为|K-λM|,其中|·|表示矩阵行列式,获得特征多项式的零点获得由小到大排列的N个特征值,将前N0个特征值代入特征方程,求解获得第i阶模态向量
第二步:根据第一步中刚度矩阵K、质量矩阵M、第i阶模态向量比例阻尼参数α和β,获得第i阶模态刚度kpi、模态质量mpi,频率ωi、阻尼比ζi及阻尼频率ωdi,获得第i阶格林函数hi在时刻t处的取值hi(t);
第三步:给定时间步长Δt及测量总步数M0,获得第二步中第i阶格林函数hi在M0个时刻Δt,...,(M0-1)Δt,M0Δt的取值,记为给定单源动载荷在结构有限元模型中的自由度索引值k,给定测量位移响应信号在结构有限元模型中的自由度索引值获得位移响应信号在时刻Δt,2Δt,...,M0Δt处的取值,以列向量表示,其中y1是位移响应信号在时刻Δt处的取值,y2是位移响应信号在时刻2Δt处的取值,是位移响应信号在时刻M0Δt处的取值,获得核函数矩阵G;
第四步:根据第三步中核函数矩阵G,获得最优正则化参数αopt,待识别载荷以载荷列向量表示,其中f1表示待识别载荷在0时刻的取值,f2表示待识别载荷在Δt时刻的取值,表示待识别载荷在(M0-1)Δt时刻的取值,由G、αopt及建立载荷列向量的动载荷识别模型;
第五步:第四步中载荷列向量依赖于结构参数列向量以区间数对的每个分量建模,获得区间数列向量其中表示第1个参数的波动范围,是第1个参数的下界,是第1个参数的上界,表示第2个参数的波动范围,是第2个参数的下界,是第2个参数的上界,表示第n个参数的波动范围,是第n个参数的下界,是第n个参数的上界,aI的上界列向量表示为aI的下界列向量表示为aI的中点列向量表示为ac,aI的半径列向量记为ar,给定最佳平方逼近函数的阶数N1,给定高斯积分点xG的维数m,满足m≥2N1+1,获得高斯积分点列向量xG,利用xG对结构参数进行抽样,并将样本点存储于分块形式的输入样本点矩阵Binput,Binput的任一列对应的一次实现;
第六步:将第一步中列向量依次取值为第五步中输入样本点矩阵Binput的每一列,重复第一步至第四步,获得在每个样本点处的取值,并以Binput的按列分块格式存储于输出样本点矩阵Foutput,根据Foutput及最佳平方逼近理论建立的第l个分量关于第j个结构参数的最佳平方逼近函数g(l,j)(x);
第七步:根据第六步中g(l,j)(x),获得其一阶导函数的零点,将所获得的零点同标准区间[-1,1]的端点组成极值点向量x(l,j),获得的第l个分量关于第j个结构参数的最小值点和最大值点将j依次取值1至n,获得的第l个分量的最小值点向量和最大值点向量将和转化至aI张成的子空间内,获得结构参数最小值点列向量和结构参数最大值点列向量将第一步中取值并经第一步至第四步可获得的第l个分量的下界fl L,将第一步中取值并经第一步至第四步可获得的第l个分量的上界fl U;
第八步:将l依次取值1至M0并经第七步可以获得的下界和上界最终获得动载荷区间向量为完成动载荷区间时间历程的识别。
2.根据权利要求1所述的一种基于区间逐维分析的单源动载荷识别方法,其特征在于,所述方法用基于切比雪夫正交多项式的最佳平方逼近函数代替线性泰勒级数展开。
3.根据权利要求1所述的一种基于区间逐维分析的单源动载荷识别方法,其特征在于,所述方法以区间逐维方法代替区间自然扩张方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910591592.1A CN110362902B (zh) | 2019-07-02 | 2019-07-02 | 一种基于区间逐维分析的单源动载荷识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910591592.1A CN110362902B (zh) | 2019-07-02 | 2019-07-02 | 一种基于区间逐维分析的单源动载荷识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110362902A true CN110362902A (zh) | 2019-10-22 |
CN110362902B CN110362902B (zh) | 2023-01-03 |
Family
ID=68217709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910591592.1A Active CN110362902B (zh) | 2019-07-02 | 2019-07-02 | 一种基于区间逐维分析的单源动载荷识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110362902B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111177966A (zh) * | 2019-12-30 | 2020-05-19 | 北京航空航天大学 | 一种基于贝叶斯理论的导弹结构不确定载荷区间重构方法 |
CN112329142A (zh) * | 2020-11-04 | 2021-02-05 | 北京航空航天大学 | 一种基于支持向量回归的机翼结构不确定动态载荷识别方法 |
CN112528366A (zh) * | 2020-12-03 | 2021-03-19 | 合肥工业大学 | 一种桥梁区间移动荷载识别方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105956368A (zh) * | 2016-04-21 | 2016-09-21 | 北京航空航天大学 | 一种复合材料层合结构的非概率动力可靠性评估方法 |
CN108846149A (zh) * | 2018-04-20 | 2018-11-20 | 北京航空航天大学 | 一种基于多源不确定性的结构分布式动态载荷识别的方法 |
US20190080040A1 (en) * | 2017-09-13 | 2019-03-14 | Dalian University Of Technology | Integration method for accurate modeling and analysis and reliability-based design optimization of variable stiffness composite plate and shell structures |
-
2019
- 2019-07-02 CN CN201910591592.1A patent/CN110362902B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105956368A (zh) * | 2016-04-21 | 2016-09-21 | 北京航空航天大学 | 一种复合材料层合结构的非概率动力可靠性评估方法 |
US20190080040A1 (en) * | 2017-09-13 | 2019-03-14 | Dalian University Of Technology | Integration method for accurate modeling and analysis and reliability-based design optimization of variable stiffness composite plate and shell structures |
CN108846149A (zh) * | 2018-04-20 | 2018-11-20 | 北京航空航天大学 | 一种基于多源不确定性的结构分布式动态载荷识别的方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111177966A (zh) * | 2019-12-30 | 2020-05-19 | 北京航空航天大学 | 一种基于贝叶斯理论的导弹结构不确定载荷区间重构方法 |
CN111177966B (zh) * | 2019-12-30 | 2021-10-01 | 北京航空航天大学 | 一种基于贝叶斯理论的导弹结构不确定载荷区间重构方法 |
CN112329142A (zh) * | 2020-11-04 | 2021-02-05 | 北京航空航天大学 | 一种基于支持向量回归的机翼结构不确定动态载荷识别方法 |
CN112329142B (zh) * | 2020-11-04 | 2022-07-01 | 北京航空航天大学 | 一种基于支持向量回归的机翼结构不确定动态载荷识别方法 |
CN112528366A (zh) * | 2020-12-03 | 2021-03-19 | 合肥工业大学 | 一种桥梁区间移动荷载识别方法 |
CN112528366B (zh) * | 2020-12-03 | 2022-09-20 | 合肥工业大学 | 一种桥梁区间移动荷载识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110362902B (zh) | 2023-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116644608B (zh) | 一种基于海洋环境数据的实海域船舶运动预报方法及系统 | |
CN110362902A (zh) | 一种基于区间逐维分析的单源动载荷识别方法 | |
CN107742031B (zh) | 基于实验和数学算法的驱替实验人造岩心分析制备方法 | |
CN112069567A (zh) | 基于随机森林和智能算法预测混凝土抗压强度的方法 | |
CN104200004A (zh) | 一种优化的基于神经网络的桥梁损伤识别方法 | |
CN107784191A (zh) | 基于神经网络模型的异性结构面峰值抗剪强度预测方法 | |
CN110017929B (zh) | 基于子结构灵敏度分析的船撞桥荷载与损伤同步识别方法 | |
CN105930571A (zh) | 基于单位温度响应监测值的大跨钢桥有限元模型修正方法 | |
CN113420440B (zh) | 一种基于海洋垂直结构的涡旋识别方法 | |
CN105824987A (zh) | 一种基于遗传算法的风场特征统计分布模型建立方法 | |
CN103884593A (zh) | 基于少量静态测量数据的结构损伤定位与程度识别方法 | |
CN111105136A (zh) | 一种基于归一化样本的灰色层次评估方法 | |
CN106568647A (zh) | 一种基于神经网络的混凝土强度预测方法 | |
KR102480382B1 (ko) | 인공지능 기반 풍하중 산정 시스템 | |
CN114048670B (zh) | 一种区域混凝土桥梁震后损伤快速评估智能算法 | |
CN113640712B (zh) | 一种舰船垂向感应磁场垂向分量的预测方法 | |
CN107657073A (zh) | 一种三明治复合材料结构的参数识别方法 | |
CN105138766B (zh) | 基于模糊聚类的高超声速气动热降阶模型的加点方法 | |
CN111625901B (zh) | 一种面向翼型的压力系数曲线智能生成方法 | |
CN113570165A (zh) | 基于粒子群算法优化的煤储层渗透率智能预测方法 | |
Karadogan et al. | Potential use of machine learning to determine yield locus parameters | |
Mosbah et al. | New methodology for calculating flight parameters with neural network-Extended Great Deluge method applied on a reduced scale wind tunnel model of an ATR-42 wing | |
CN108446413B (zh) | 一种注浆成型扩底桩桩径的优化测定方法 | |
CN114048646B (zh) | 基于有限元修正与人工智能的沥青面层损伤状态反演方法 | |
CN110532607B (zh) | 高超声速飞行器舵面结构分布载荷识别的传感器布局方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |