CN110349914A - 具有改进的可靠性和效率的功率器件结构 - Google Patents

具有改进的可靠性和效率的功率器件结构 Download PDF

Info

Publication number
CN110349914A
CN110349914A CN201910272960.6A CN201910272960A CN110349914A CN 110349914 A CN110349914 A CN 110349914A CN 201910272960 A CN201910272960 A CN 201910272960A CN 110349914 A CN110349914 A CN 110349914A
Authority
CN
China
Prior art keywords
protection ring
well structure
trap
voltage
around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910272960.6A
Other languages
English (en)
Inventor
申旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synaptics Inc
Original Assignee
Synaptics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synaptics Inc filed Critical Synaptics Inc
Publication of CN110349914A publication Critical patent/CN110349914A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2173Class D power amplifiers; Switching amplifiers of the bridge type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • H03F3/185Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Amplifiers (AREA)

Abstract

根据一个或多个实施例的系统和方法被提供用于转换放大器中使用的高侧功率级输出驱动器的改进的可靠性和效率。在一个示例中,系统包括功率器件结构,所述功率器件结构包括形成在半导体p衬底内的n阱结构和形成在n阱结构内的p阱结构。系统还包括形成在p阱结构上的一个或多个NMOS电子功率器件和形成在p阱结构上的p阱保护环,所述p阱保护环配置成围绕一个或多个NMOS电子功率器件。系统还包括形成在n阱结构上的n阱保护环,所述n阱保护环配置成围绕p阱结构;以及形成在n阱结构上的p+保护环,所述p+保护配置成围绕n阱保护环。

Description

具有改进的可靠性和效率的功率器件结构
技术领域
根据一个或多个实施例,本公开一般涉及功率器件,并且更具体地涉及例如改进转换放大器中的功率器件结构的可靠性和效率。
背景技术
许多现代设备(诸如膝上型计算机、计算机平板、MP3播放器和智能电话)使用转换放大器。在许多应用中,这些设备利用转换放大器(诸如转换DC-DC转换器或D类放大器)来保证例如音频信号的放大以驱动扬声器。对于DC-DC转换器或D类放大器所必需的是功率级输出驱动器。由于现代设备的小型化以及由小型化引起的热耗散的限制,电流功率器件可能失效,从而导致灾难性系统故障,诸如电池故障或器件过热。因此,存在改进功率级输出驱动器的效率以增加包含转换DC-DC转换器或D类放大器的现代设备的电池寿命和可靠性的持续需要。
发明内容
本公开提供了解决本领域中对于转换放大器中使用的高侧功率级输出驱动器的改进的可靠性和效率的需要的系统和方法。本公开的范围由权利要求限定,所述权利要求通过参考并入到此部分中。通过考虑以下的一个或多个实施例的详细描述,将向本领域技术人员给予对本公开的更完整的理解以及其附加优点的实现。将对将首先被简要描述的附图进行参考。
附图说明
参考以下附图和之后的详细描述可以更好地理解本公开的各方面及其优点。应当理解的是,在一个或多个附图中类似的参考标号用于标识图示的类似的元件,其中在其中的示出是出于图示本公开的实施例的目的,而不是出于限制本公开的实施例的目的。附图中的部件不一定是按比例的,而是将重点放在清楚地图示本公开的原理上。
图1A-C图示了根据本公开的一个或多个实施例的示例性转换和DC-DC转换器放大器功率级输出驱动器的示意图。
图2A-B图示了根据本公开的一个或多个实施例的示例性高侧功率级输出驱动器的示意图。
图3图示了常规PMOS高侧功率级输出驱动器的示例性布局。
图4图示了常规PMOS高侧功率级输出驱动器的示例性横截面。
图5图示了根据本公开的一个或多个实施例的P+保护环增强型PMOS高侧功率级输出驱动器的示例性布局。
图6图示了根据本公开的一个或多个实施例的P+保护环增强型PMOS高侧功率级输出驱动器的示例性横截面。
图7图示了常规NMOS高侧功率级输出驱动器的示例性布局。
图8A-B图示了常规NMOS高侧功率级输出驱动器的示例性横截面。
图9图示了根据本公开的一个或多个实施例的P+保护环增强型NMOS高侧功率级输出驱动器的示例性布局。
图10图示了根据本公开的一个或多个实施例的P+保护环增强型NMOS高侧功率级输出驱动器的示例性横截面。
具体实施方式
本公开描述了解决改进现代设备中使用的音频放大器转换功率级输出驱动器的效率以提高可靠性和电池寿命的需要的系统和方法。在一个实施例中,本公开的音频系统包括由附加p+保护环围绕的转换放大器H-桥高侧功率级输出驱动器。附加p+保护环使由在“关断”循环期间的电感扬声器负载形成的电流转向,以通过降低功率和热耗散来改进高侧功率级输出驱动器内的可靠性和效率。
本公开的实施例可以与用于降低转换调节器或D-类转换放大器的高侧功率级输出驱动器处的功率和热耗散的预先存在的解决方案形成对比。例如,常规的转换放大器可以添加功率级输出驱动器之间的空间,以补偿例如由转换电感扬声器负载引起的电流。许多转换放大器功率输出级由于系统内的附加功率耗散损耗而在H-桥放大器输出级的操作中经历降低的效率和可靠性。此外,添加的功率耗散可能引起针对包括在集成电路管芯内形成的转换放大器电路的应用的热问题。本发明的各种实施例通过在高侧功率级输出驱动器周围添加p+保护环结构以使在驱动电感负载时形成的电流转向来解决这些问题以有效地降低转换放大器集成电路内的功率和热耗散。
图1A-C图示了根据本公开的一个或多个实施例的示例性转换放大器和DC-DC转换器功率级输出驱动器的示意图。在一些实施例中,图1A的音频放大器100形成音频编解码器电路的部分。音频放大器100提供音频放大器功率级输出驱动器101以驱动电感扬声器负载135,其可实现于移动电话、膝上型计算机、平板电脑、音频/视频系统或其它类似设备中。如所图示的那样,音频放大器功率级输出驱动器101被实现为D-类放大器H-桥。
如图1A中所示,在一些实施例中,音频放大器功率级输出驱动器101包括两个p沟道横向扩散金属氧化物半导体场效应晶体管(PMOS)高侧功率级输出驱动器M1和M2,以及两个n沟道横向扩散金属氧化物半导体场效应晶体管(NMOS)低侧功率级输出驱动器M3和M4。在其它实施例中,功率级输出驱动器M1、M2、M3和M4可形成为互补金属氧化物半导体场效应(CMOS)晶体管。两个高侧晶体管M1、M2的相应源极连接到供电电压Pvdd。在一些实施例中,供电电压Pvdd向晶体管M1、M2提供十二伏DC功率。然而,在其它实施例中可提供其它功率供电电压(例如,诸如高达三十伏DC或更高的电压)。相应漏极连接到其源极连接到接地107的两个低侧晶体管M3、M4的漏极。电感扬声器负载135连接在晶体管开关对M1、M3和M2、M4之间。
图1A的控制回路103A和103B可以分别向晶体管M1、M3和M2、M4的栅极提供脉宽调制控制信号104A和104B。在一些实施例中,第一脉宽调制(PMW)控制信号104A连接到晶体管M1的栅极端子,第二PMW控制信号104A连接到晶体管M3的栅极端子,第三PMW控制信号104B连接到晶体管M2的栅极端子,以及第四PMW控制信号104B连接到晶体管M4的栅极端子。电流基于驱动M1-M4的转换PWM信号104A-B的转换循环沿两个方向流动。在M1和M3二者均是“关断”时的转换循环的阶段中,扬声器电流Ispk继续流过M1并且可以引起M1内的局部热耗散的增加,从而导致M1内的温度升高。在M2和M4二者均是“关断”时的转换循环的阶段期间,扬声器电流Ispk继续流过M2并且可以引起M2内的局部热耗散的增加。如本文中进一步讨论的那样,本发明减少了高侧功率级输出驱动器M1和M2内的这种局部热耗散。
图1B图示了在降压转换器中实现的功率级输出驱动器102。功率级输出驱动器102的构造类似于音频放大器功率级输出驱动器101的构造。在这点上,M5被实现为PMOS高侧功率级输出驱动器,以及M6被实现为NMOS低侧功率级输出驱动器。功率级输出驱动器102驱动被示出为电感器111和电容器113的高电感负载。高侧晶体管M5的源极连接到供电电压Pvdd。在一些实施例中,供电电压Pvdd向晶体管M5和M6提供十二伏DC功率。然而,在其它实施例中可提供其它功率供电电压(例如,诸如高达三十伏DC或更高的电压)。M5的漏极端子连接到M6的漏极端子,以及M6的源极端子连接到接地107。电感器111在第一端处连接在晶体管开关对M5和M6漏极端子之间,并且在第二端处连接到电容器113。电容器113连接到接地107。
控制回路103C可以向晶体管M5的栅极端子提供第一脉宽调制(PMW)控制信号104C,并且向晶体管M6的栅极端子提供第二PMW控制信号104C。在M5和M6二者均是“关断”时的转换循环的阶段期间,电流115继续流过M5并且可以引起M5内的局部热耗散的增加,从而导致M5内的温度升高。
图1C图示了在升压转换器中实现的功率级输出驱动器103。功率级输出驱动器103的构造类似于音频放大器功率级输出驱动器101的构造。在这点上,M7被实现为PMOS高侧功率级输出驱动器,而M8被实现为NMOS低侧功率级输出驱动器。功率级输出驱动器103连接到被示出为电感器121的电感负载,所述电感器121在一端处连接到M7和M8的漏极端子,并且在第二端处连接到DC源123的正端子。DC源123的负端子连接到接地107。M7的源极端子连接到电容器127和Pvdd。M8的源极端子连接到接地107。控制回路103D可以向晶体管M7的栅极端子提供第一脉宽调制(PMW)控制信号104D,并且向晶体管M8的栅极端子提供第二PMW控制信号104D。在M7和M8二者均是“关断”时的转换循环的阶段期间,电流125继续流过M7并且可引起M7内的局部热耗散的增加,从而导致M7内的温度升高。
图2A-B图示了根据本公开的一个或多个实施例的示例性高侧功率级输出驱动器的示意图。图2A图示了利用PMOS高侧驱动器M9和NMOS低侧驱动器M10来实现的功率级输出驱动器201。在一些实施例中,功率级输出驱动器201实现在基于半导体的衬底中。PMOS高侧驱动器源极端子连接到电源Pvdd。在一些实施例中,Pvdd可提供十二伏DC。然而,在其它实施例中,Pvdd可提供高达三十伏DC。M10的源极端子连接到接地107和N阱 (Nwell)205。M9和M10的漏极端子可以连接到图2A中所图示的电感器作为电流源211。控制回路203A可向晶体管M9的栅极端子提供第一脉宽调制(PWM)控制信号204A,并且向晶体管M10的栅极端子提供第二PMW控制信号204A。在M9和M10二者均是“关断”时的转换循环的阶段期间,电流212继续经由体二极管217流过M9,并且可以引起M9内的局部热耗散的增加,从而导致靠近M9的功率级输出驱动器201的局部区域内的温度升高。
图2B图示了利用NMOS高侧驱动器M11和NMOS低侧驱动器M12实现的功率级输出驱动器202。在一些实施例中,功率级输出驱动器202实现在基于半导体的衬底中。NMOS高侧驱动器漏极端子连接到电源Pvdd。在一些实施例中,Pvdd可提供十二伏DC。然而,在其它实施例中,Pvdd可提供高达三十伏DC。M12的源极端子连接到接地107和N阱 205。M11的源极端子和M12的漏极端子可以连接到图2B中所图示的电感器作为电流源221。控制回路203B可向M11的栅极端子提供第一脉宽调制(PMW)控制信号204B,并且向M12的栅极端子提供第二PMW控制信号204B。在M11和M12二者均是“关断”时的转换循环的阶段期间,电流222继续经由体二极管219流过高侧NMOS M11,并且可引起M11内局部热耗散的增加,从而导致M11附近的功率级输出驱动器201的局部区域内的温度升高。在这点上,在驱动高电感负载的半导体转换放大器的功率级输出驱动器中利用基于半导体的高功率器件M9-M10和M11-M12可能引起过度热耗散,这是由于在高侧功率器件和低侧功率器件二者均是“关断”时的转换循环期间,电流流过高侧MOS器件。
图3图示了常规PMOS高侧功率级输出驱动器300的示例性布局。如图3中所示,在一些实施例中,可以在诸如psub 303的半导体p衬底上形成常规PMOS高侧功率级输出驱动器300。然而,在其它实施例中,其它衬底类型也是可能的。在一些实施例中,psub 303可以在电接地处被偏置。然而,在其它实施例中,psub 303可以在正电压或负电压处被偏置。n阱结构305可形成于psub 303内。在一些实施例中,n阱结构305可以在电源Pvdd电压处被偏置。然而,在其它实施例中,n阱结构305可以在不同的电压处被偏置。在一些实施例中,Pvdd可以是十二伏DC。然而,其它DC电压是可能的,诸如从近似十二伏DC到三十伏DC的电压范围。PMOS电子功率器件304A-D(例如,PMOS功率器件304A-D)可以形成在n阱结构305上。在一些实施例中,可以在n阱结构305上形成四个PMOS电子器件304。然而,在其它实施例中,可以在n阱结构305上形成更多或更少的PMOS电子器件304。
n阱保护环307可以形成在n阱结构305上。在一些实施例中,n阱保护环307可以在电源Pvdd电压处被偏置。然而,在其它实施例中,n阱保护环307可以在不同的电压处被偏置。在一些实施例中,n阱保护环307可以围绕所有PMOS功率器件304A-D。在其它实施例中,n阱保护环307可以围绕少于所有PMOS功率器件304A-D,诸如围绕PMOS功率器件304A-C,或者更少。在一些实施例中,psub保护环309可以形成在psub 303上并且可以围绕n阱结构305。在一些实施例中,psub保护环309可以在电接地处被偏置。然而,在其它实施例中,psub保护环309可以在正电压或负电压处被偏置。
图4图示了常规PMOS高侧功率级输出驱动器300的示例性横截面。如所示出的那样,常规PMOS高侧功率级输出驱动器300的横截面包括psub 303,以及形成在psub 303内的n阱结构305。PMOS电子器件304A-D形成在n阱结构305上。PMOS电子器件304A-D中的每一个包括源极植入404(例如,示出为404a-d)、漏极植入405(例如,示出为405a-d)以及栅极控制端子406(例如,示出为406a-d并且标识为图4中的poly)。在一些实施例中,n阱保护环307形成在n阱结构305上并且被偏置到Pvdd。在其它实施例中,n阱保护环307被偏置到小于Pvdd的电压。Psub保护环309形成在psub 303上并且被偏置到接地。在其它实施例中,psub保护环309被偏置到小于或等于Pvdd的电压。
当高侧PMOS功率器件304D被“接通”时,电流411A从源极植入404d流到漏极植入405d以及到电感负载(例如,例如图1A的电感扬声器负载135)。在高侧和低侧功率器件二者均是“关断”时的转换循环期间,如本文中所讨论的那样,电流411B通过寄生PNP器件417从漏极植入405d流到n阱保护环307和psub保护环309。电流411B流入寄生PNP器件417,并且被划分成电流I1和I2,如图4中所示。寄生PNP器件417在图4中示出为具有连接到漏极植入405d的集电极417A、连接到n阱保护环307的基极417B以及连接到psub保护环309的发射极417C。在这点上,电流I1流到n阱保护环307,并且电流I2流到psub保护环309。在“关断”循环期间由于psub 303中的电流411B引起的总功率耗散由等式1.1给出。
等式1.1中的项0.7是寄生PNP器件417发射极到基极电压,并且等式1.1中的项12.7是寄生PNP器件417发射极到集电极电压。在一些实施例中,寄生PNP器件417发射极到基极电压可以大于或小于近似0.7伏,该电压基于寄生PNP器件417的物理属性和电属性。在一些实施例中,寄生PNP器件417发射极到集电极电压可大于或小于近似12.7伏,该电压基于寄生PNP器件417的物理属性和电属性以及n阱保护环307的电压偏置,如本文中所讨论的那样。如所示出的那样,大部分功率耗散是由于电流I2,并且热耗散(例如,以及psub 303中的温度升高)可主要由电流I2引起。在这点上,假设针对寄生PNP器件417的一个或两个β(beta),则在寄生PNP器件417的发射极到集电极处消耗的功率近似是发射极到基极处消耗的功率的十二至二十四倍。常规PMOS高侧功率级输出驱动器300的局部区域中的高功率消耗创建了对于热相关的骤回或击穿风险的重要关注。因此,减小电流I2是减小常规PMOS高侧功率级输出驱动器300的热耗散以及效率和可靠性的后续损耗的关键。
图5图示了根据本公开的一个或多个实施例的P+保护环增强型PMOS高侧功率级输出驱动器500的示例性布局。P+保护环增强型PMOS高侧功率级输出驱动器500包括功率MOS结构。P+保护环增强型PMOS高侧功率级输出驱动器500类似于并且包括常规PMOS高侧功率级输出驱动器300的布局、构造和电压偏置的所有特征,如本文中所描述的那样。另外,P+保护环增强型PMOS高侧功率级输出驱动器500包括形成在n阱结构305上并且配置成围绕n阱保护环307的p+保护环520。在一些实施例中,p+保护环520完全围绕n阱保护环307。在其它实施例中,p+保护环520部分地围绕n阱保护环307,从而在p+保护环520内形成间隙521。应当理解,在一些实施例中不包括间隙521,诸如当p+保护环520完全围绕n阱保护环307时。在一些实施例中,p+保护环520在n阱结构305的相同电压处被设定。在其它实施例中,p+保护环520在n阱结构305的较低电压处被设定。
图6图示了根据本公开的一个或多个实施例的P+保护环增强型PMOS高侧功率级输出驱动器500的示例性横截面。如所示出的那样,P+保护环增强型PMOS高侧功率级输出驱动器500的横截面包括psub 303和形成在psub 303内的n阱结构305。PMOS电子器件304A-D形成在n阱结构305上。PMOS电子器件304A-D中的每一个包括源极植入404(例如,示出为404a-d)、漏极植入405(例如,示出为405a-d)以及栅极控制端子406(例如,示出为406a-d并且标识为图6中的poly)。在一些实施例中,n阱保护环307形成在n阱结构305上并且被偏置到Pvdd。在其它实施例中,n阱保护环307被偏置到小于Pvdd的电压。Psub保护环309形成在psub 303上并且被偏置到接地。在其它实施例中,psub保护环309被偏置到小于或等于Pvdd的电压。图6附加地示出p+保护环520,并且在一些实施例中,p+保护环520在n阱结构305的相同电压处被偏置。在其它实施例中,p+保护环520在n阱结构305的较低电压处被设定。
当高侧PMOS功率器件304D“接通”时,电流411A从源极植入404d流到漏极植入405d以及到电感负载(例如,例如图1A的电感扬声器负载135)。在高侧和低侧功率器件均是“关断”时的转换循环期间,如本文中所讨论的那样,电流411B通过寄生PNP器件417从漏极植入405d流到n阱保护环307和psub保护环309,以及通过寄生PNP器件619流到n阱保护环307和p+保护环520。由于添加了p+保护环520以进一步划分电流411B并将电流I2减小到显著较低的功率和热耗散,所以添加了寄生PNP器件619。在这点上,电流411B被划分成电流I1a、I1b、I2和I3,并且在寄生PNP器件417和寄生PNP器件619之间共享,如图6中所示。寄生PNP器件619被示出为具有连接到漏极植入405d的集电极619A、连接到n阱保护环307的基极619B以及连接到p+保护环520的发射极417C。寄生PNP器件417被示出为具有连接到漏极植入405d的集电极417A、连接到n阱保护环307的基极417B以及连接到psub保护环309的发射极417C。在这点上,电流I1a和I1b流到n阱保护环307,电流I2流到psub保护环309,并且电流I3流到p+保护环520。在“关断”循环期间由于psub 303中的电流411B引起的总功率耗散由等式1.2给出。
等式1.2中与I1a和I1b一起使用的项0.7是寄生PNP器件417和寄生PNP器件619发射极到基极电压。等式1.2中与I3一起使用的项0.7是寄生PNP器件619发射极到基极电压。等式1.2中的项12.7是寄生PNP器件417发射极到集电极电压。在一些实施例中,寄生PNP器件417和寄生PNP器件619发射极到基极电压以及寄生PNP器件619发射极到基极电压可以大于或小于近似0.7伏,该电压基于寄生PNP器件417和寄生PNP器件619的物理属性和电属性。在一些实施例中,寄生PNP器件417发射极到集电极电压可大于或小于近似12.7伏,发射极到集电极电压基于寄生PNP器件417的物理属性和电属性以及n阱保护环307的电压偏置,如本文中所讨论的那样。
如本文中所讨论的那样,大部分功率耗散是由于电流I2,并且热耗散(例如,以及psub 303中的温度升高)可主要由电流I2引起。通过添加p+保护环520形成的并联寄生PNP器件619保证附加电流路径I3以使电流411B转向并由此减小电流I2。添加的并联寄生PNP器件619的β大于寄生PNP器件417的β。并联寄生PNP器件619的电压降近似为0.7v,其显著小于Pvdd,以引起功率损耗的减小并且改进可靠性和效率。
图7图示了常规NMOS高侧功率级输出驱动器700的示例性布局。如图7中所示,在一些实施例中,可以在诸如psub 703的半导体衬底上形成常规NMOS高侧功率级输出驱动器700。然而,在其它实施例中,其它衬底类型也是可能的。在一些实施例中,psub 703可以在电接地处被偏置。然而,在其它实施例中,psub 703可以在正电压或负电压处被偏置。深n阱结构705可以形成在psub 703内。在一些实施例中,深n阱结构705可以在电源PVdd电压处被偏置。然而,在其它实施例中,深n阱结构705可以在不同的电压处被偏置。在一些实施例中,Pvdd可以是十二伏DC。然而,其它DC电压是可能的,诸如从近似十二伏DC到三十伏DC的电压范围。p阱(pwell)结构712可以形成在深n阱结构705内。在一些实施例中,p阱结构712可以在电源Pvdd电压处被偏置。然而,在其它实施例中,p阱结构712可以在不同的电压处被偏置。深n阱保护环707可以形成在深n阱结构705上并且围绕p阱结构712。在一些实施例中,深n阱保护环707可以在电源PVdd电压处被偏置。然而,在其它实施例中,深n阱保护环707可以在不同的电压处被偏置。
NMOS电子功率器件704A-D(例如,NMOS功率器件704A-D)可以形成在p阱结构712上。在一些实施例中,可以在p阱结构712上形成四个NMOS电子器件704。然而,在其它实施例中,可以在p阱结构712上形成更多或更少的NMOS电子器件704。在一些实施例中,p阱保护环714可以围绕所有NMOS功率器件704A-D。在其它实施例中,p阱保护环714可以围绕少于所有的NMOS功率器件704A-D,诸如围绕NMOS功率器件704A-C,或者更少。在一些实施例中,psub保护环709可以形成在psub 703上并且可以围绕深n阱结构705。在一些实施例中,psub保护环709可以在电接地处被偏置。然而,在其它实施例中,psub保护环709可以在正电压或负电压处被偏置。
图8A-B图示了常规NMOS高侧功率级输出驱动器700的示例性横截面。如图8A中所示,常规NMOS高侧功率级输出驱动器700的横截面包括psub 703和形成在psub 703内的深n阱结构705。高侧NMOS电子器件704D形成在p阱结构712上。NMOS电子器件704D包括连接到源极端子n+植入805d的源极704S和连接到p阱保护环714的体704B。p阱结构712包括漏极端子n+植入804d、源极端子n+植入805d、栅极控制端子806d和p阱保护环714。在一些实施例中,深n阱保护环707形成在深n阱结构705上并且被偏置到Pvdd。在其它实施例中,深n阱保护环707被偏置到小于Pvdd的电压。Psub保护环709形成在psub 703上并且被偏置到接地。在其它实施例中,psub保护环709被偏置到小于或等于PVdd的电压。
现在参考图8B,当高侧NMOS功率器件704D被“接通”并且导电时,源极端子n+植入805d向电感负载(例如,例如图1A的电感扬声器负载135)提供电流811A。在高侧和低侧功率器件二者均是“关断”时的转换循环期间,如本文中所讨论的那样,电流811A流过p阱保护环714。电流811A流入寄生PNP器件817,并且被划分成电流I4和I5,如图8B中所示。寄生PNP器件817在图8B中示出为具有连接到psub保护环709的集电极817A、连接到深n阱保护环707的基极817B以及连接到p阱保护环714的发射极817C。在这点上,电流I4流到深n阱保护环707,并且电流I5流到psub保护环709。在“关断”循环期间由于psub 703中的电流811A而引起的总功率耗散由等式1.3给出。
等式1.3中的项0.7是寄生PNP器件817发射极到基极电压,并且等式1.3中的项12.7是寄生PNP器件817发射极到集电极电压。在一些实施例中,寄生PNP器件817发射极到基极电压可以大于或小于近似0.7伏,发射极到基极电压基于寄生PNP器件817的物理属性和电属性。在一些实施例中,寄生PNP器件817发射极到集电极电压可以大于或小于近似12.7伏,所述电压基于寄生PNP器件817的物理属性和电属性以及深n阱保护环707的电压偏置,如本文中所讨论的那样。如所示出的那样,大部分功率耗散是由于电流I5,并且热耗散(例如,以及psub 703中的温度升高)可能主要由电流I5引起。在这点上,假设针对寄生PNP器件817的一个或两个的β,则在发射极到集电极处消耗的功率近似是发射极到基极处消耗的功率的十二到二十四倍。在常规NMOS高侧功率级输出驱动器700的局部区域中的高功率消耗创建了对于热相关的骤回或击穿风险的重要关注。因此,减小电流I5是减小常规NMOS高侧功率级输出驱动器700的热耗散以及效率和可靠性的后续损耗的关键。
图9图示了根据本公开的一个或多个实施例的P+保护环增强型NMOS高侧功率级输出驱动器900的示例性布局。P+保护环增强型NMOS高侧功率级输出驱动器900包括功率器件(例如,MOS)结构。P+保护环增强型NMOS高侧功率级输出驱动器900类似于并且包括常规NMOS高侧功率级输出驱动器700的布局、构造和电压偏置的所有特征,如本文中所述。另外,P+保护环增强型NMOS高侧功率级输出驱动器900包括形成在深n阱结构705上并且配置成围绕深n阱保护环707的p+保护环920。在一些实施例中,p+保护环920完全围绕深n阱保护环707。在其它实施例中,p+保护环920部分地围绕深n阱保护环707,从而在p+保护环920内形成间隙921。应当理解,在一些实施例中不包括间隙921,诸如当p+保护环920完全围绕深n阱保护环707时。在一些实施例中,p+保护环920在深n阱结构705的相同电压处被设定。在其它实施例中,p+保护环920在n阱结构305的较低电压处被设定。
图10图示了根据本公开的一个或多个实施例的P+保护环增强型NMOS高侧功率级输出驱动器900的示例性横截面。如所示出的那样,P+保护环增强型NMOS高侧功率级输出驱动器900的横截面包括psub 703和形成在psub 703上的深n阱结构705。p阱结构712形成在深n阱结构705内并且包括NMOS电子器件804D结构。在这点上,p阱结构712包括漏极端子n+植入804d、源极端子n+植入805d、栅极控制端子806d和p阱保护环714。
在高侧和低侧功率器件二者均是“关断”时的转换循环期间,如本文中所讨论的,电流811A流过p阱保护环714。电流811A流入寄生PNP器件817和寄生PNP器件1019。寄生PNP器件1019由于p+保护环920的并入而被添加,以进一步划分电流811A并且减小电流I5以显著降低功率和热耗散。在这点上,电流811A被划分成电流I4a、I4b、I5和I6,并且如图10中示出的那样在寄生PNP器件817与寄生PNP器件1019之间共享。寄生PNP器件1019被示出为具有连接到p+保护环920的集电极1019A、连接到深n阱保护环707的基极1019B和连接到p阱保护环714的发射极1019C。寄生PNP器件817被示出为具有连接到psub保护环709的集电极817A、连接到深n阱保护环707的基极817B和连接到p阱保护环714的发射极817C。在这点上,电流I4a和I4b流到深n阱保护环707,电流I5流到psub保护环709,并且电流I6流到p+保护环920。在“关断”循环期间由于psub 703中的电流811A而引起的总功率耗散由等式1.4给出。
等式1.4中与I4a和I4b一起使用的项0.7是寄生PNP器件817和寄生PNP器件1019发射极到基极电压。等式1.4中与I6一起使用的项0.7是寄生PNP器件1019集电极到基极电压。等式1.4中的项12.7是寄生PNP器件817发射极到集电极电压。在一些实施例中,寄生PNP器件817和寄生PNP器件1019发射极到基极电压以及寄生PNP器件1019集电极到基极电压可以大于或小于近似0.7伏,该电压基于寄生PNP器件817和寄生PNP器件1019的物理属性和电属性。在一些实施例中,寄生PNP器件817集电极到发射极电压可大于或小于近似12.7伏,发射极到集电极电压基于寄生PNP器件817的物理属性和电属性,以及深n阱保护环707的电压偏置,如本文中所讨论的那样。
如本文中所讨论的那样,大部分功率耗散是由于电流I5引起的,并且热耗散(例如,以及psub 703中的温度升高)可主要由电流I5引起。通过添加p+保护环920形成的并联寄生PNP器件1019保证附加的电流路径I6以使电流811A转向,以及由此减小电流I5。添加的并联寄生PNP器件1019的β大于寄生PNP器件817的β。并联寄生PNP器件1019的电压降近似为0.7 v,其显著小于Pvdd,以引起功率损耗的减小并且改进可靠性和效率。
在适用的情况下,由本公开提供的各种实施例可以使用硬件、软件或硬件和软件的组合来实现。而且,在适用的情况下,在不脱离本公开的精神的情况下,本文中所阐述的各种硬件部件和/或软件部件可以被组合成包括软件、硬件和/或二者的复合部件。在适用的情况下,在不脱离本公开的范围的情况下,本文中所阐述的各种硬件部件和/或软件部件可以被分成包括软件、硬件或二者的子部件。另外,在适用的情况下,设想的是,软件部件可以被实现为硬件。
根据本公开的软件(诸如程序代码和/或数据)可被存储在一个或多个计算机可读介质上。还设想的是,本文中所标识的软件可以使用一个或多个通用或专用计算机和/或计算机系统、联网的和/或以其它方式来实现。在适用的情况下,本文中所描述的各种步骤的顺序可被改变、组合成复合步骤和/或分成子步骤以提供本文中所描述的特征。
前述公开不旨在将本公开限制于所公开的精确形式或特定使用领域。因此,设想的是,根据本公开,本公开的各种可替换实施例和/或修改(无论在本文中明确描述还是暗示)是可能的。取得了本公开的这样描述的实施例,本领域普通技术人员将认识到的是,在不脱离本公开的范围的情况下,可以在形式和细节上做出改变。因此,本公开仅受权利要求限制。

Claims (20)

1.一种系统,包括:
功率MOS结构,其包括:
n阱结构,其形成在半导体衬底内;
一个或多个PMOS电子功率器件,其形成在所述n阱结构上;
n阱保护环,其形成在围绕所述一个或多个PMOS电子功率器件的所述n阱结构上;以及
p+保护环,其形成在所述n阱结构上并且围绕所述n阱保护环。
2.根据权利要求1所述的系统,其中所述p+保护环被配置成完全围绕所述n阱保护环,并且其中所述n阱保护环被配置成完全围绕所述一个或多个PMOS电子功率器件中的至少一个。
3.根据权利要求1所述的系统,其中所述p+保护环被配置成部分地围绕所述n阱保护环,从而在所述p+保护环的至少一侧上形成间隙。
4.根据权利要求1所述的系统,其中所述p+保护环的电压与所述n阱结构的电压相同。
5.根据权利要求1所述的系统,其中所述p+保护环的电压低于所述n阱结构的电压。
6.根据权利要求1所述的系统,还包括p衬底保护环,所述p衬底保护环形成在所述半导体衬底上并且配置成围绕所述n阱结构。
7.一种系统,包括:
功率器件结构,其包括:
n阱结构,其形成在半导体p衬底内;
p阱结构,其形成在所述n阱结构内;
一个或多个NMOS电子功率器件,其形成在所述p阱结构上;
p阱保护环,其形成在所述p阱结构上;
n阱保护环,其形成在所述n阱结构上;以及
p+保护环,其形成在所述n阱结构上,基本上围绕所述n阱保护环。
8.根据权利要求7所述的系统,其中所述p+保护环被配置成完全围绕所述n阱保护环,所述n阱保护环被配置成完全围绕所述p阱保护环,并且其中所述p阱保护环被配置成完全围绕所述一个或多个NMOS电子功率器件中的至少一个。
9.根据权利要求7所述的系统,其中所述p+保护环被配置成部分地围绕所述n阱保护环。
10.根据权利要求7所述的系统,其中所述p+保护环的电压与所述n阱结构的电压相同。
11.根据权利要求7所述的系统,其中所述p+保护环的电压低于所述n阱结构的电压。
12.根据权利要求7所述的系统,还包括形成在所述衬底上并且配置成围绕所述n阱结构的psub保护环。
13.一种形成衬底的方法,包括:
在所述衬底内形成n阱结构;
在所述n阱结构上形成一个或多个MOS电子功率器件;
在围绕所述一个或多个MOS电子功率器件的所述n阱结构上形成n阱保护环;以及
在围绕所述n阱保护环的所述n阱结构上形成p+保护环。
14.根据权利要求13所述的方法,还包括:
经由所述p+保护环完全围绕所述n阱保护环;以及
经由所述p+保护环完全围绕所述一个或多个MOS电子功率器件中的至少一个,其中所述MOS电子功率器件包括PMOS电子功率器件。
15.根据权利要求13所述的方法,还包括:
经由所述p+保护环部分地围绕所述n阱保护环。
16.根据权利要求13所述的方法,其中所述p+保护环包括不大于所述n阱结构的电压的电压,所述方法还包括在所述衬底上并且围绕所述n阱结构形成p衬底保护环。
17.根据权利要求13所述的方法,还包括:
在所述n阱结构内形成p阱结构;
在所述p阱结构上形成一个或多个NMOS电子功率器件;
在围绕所述一个或多个NMOS电子功率器件的所述p阱结构上形成p阱保护环;
在围绕所述p阱结构的所述n阱结构上形成n阱保护环;以及
在围绕所述n阱保护环的所述n阱结构上形成所述p+保护环。
18.根据权利要求17所述的方法,还包括:
经由所述p+保护环完全围绕所述n阱保护环;以及
经由所述p+保护环完全围绕所述一个或多个NMOS电子功率器件中的至少一个。
19.根据权利要求17所述的方法,还包括:
经由所述p+保护环部分地围绕所述n阱保护环。
20.根据权利要求17所述的方法,其中所述p+保护环包括不大于所述n阱结构的电压的电压,所述方法还包括在所述衬底上并且围绕所述n阱结构形成psub保护环。
CN201910272960.6A 2018-04-05 2019-04-04 具有改进的可靠性和效率的功率器件结构 Pending CN110349914A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/946,688 US10833083B2 (en) 2018-04-05 2018-04-05 Power device structure with improved reliability and efficiency
US15/946688 2018-04-05

Publications (1)

Publication Number Publication Date
CN110349914A true CN110349914A (zh) 2019-10-18

Family

ID=68097414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910272960.6A Pending CN110349914A (zh) 2018-04-05 2019-04-04 具有改进的可靠性和效率的功率器件结构

Country Status (2)

Country Link
US (1) US10833083B2 (zh)
CN (1) CN110349914A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127473A1 (en) * 2003-11-06 2005-06-16 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
CN1953203A (zh) * 2005-10-20 2007-04-25 松下电器产业株式会社 高耐压半导体开关元件及使用其的开关电源装置
US20090020811A1 (en) * 2007-07-16 2009-01-22 Steven Howard Voldman Guard ring structures for high voltage cmos/low voltage cmos technology using ldmos (lateral double-diffused metal oxide semiconductor) device fabrication
KR20090097687A (ko) * 2008-03-12 2009-09-16 삼성전자주식회사 반도체 소자 및 그 형성 방법
US20130265086A1 (en) * 2012-04-06 2013-10-10 Hoon Chang Semiconductor Devices Including a Guard Ring and Related Semiconductor Systems
CN105934818A (zh) * 2014-01-21 2016-09-07 梅鲁斯音频有限公司 用于驱动高侧功率晶体管的集成高侧栅极驱动器结构和电路
US20170012040A1 (en) * 2015-07-09 2017-01-12 O2Micro, Inc. Integrated device having multiple transistors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005708B2 (en) 2001-06-14 2006-02-28 Sarnoff Corporation Minimum-dimension, fully-silicided MOS driver and ESD protection design for optimized inter-finger coupling
US7838924B2 (en) 2008-04-23 2010-11-23 Texas Instruments Incorporated MOS device with substrate potential elevation
US8530298B2 (en) 2011-11-01 2013-09-10 Texas Instruments Incorporated Radiation hardened integrated circuit
US8981490B2 (en) 2013-03-14 2015-03-17 Texas Instruments Incorporated Transistor with deep Nwell implanted through the gate
US9502399B1 (en) 2015-06-26 2016-11-22 Silicon Laboratories Inc. Diode string circuit configurations with improved parasitic silicon-controlled rectifier (SCR) conduction during electrostatic discharge (ESD) events

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127473A1 (en) * 2003-11-06 2005-06-16 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
CN1953203A (zh) * 2005-10-20 2007-04-25 松下电器产业株式会社 高耐压半导体开关元件及使用其的开关电源装置
US20090020811A1 (en) * 2007-07-16 2009-01-22 Steven Howard Voldman Guard ring structures for high voltage cmos/low voltage cmos technology using ldmos (lateral double-diffused metal oxide semiconductor) device fabrication
KR20090097687A (ko) * 2008-03-12 2009-09-16 삼성전자주식회사 반도체 소자 및 그 형성 방법
US20130265086A1 (en) * 2012-04-06 2013-10-10 Hoon Chang Semiconductor Devices Including a Guard Ring and Related Semiconductor Systems
CN105934818A (zh) * 2014-01-21 2016-09-07 梅鲁斯音频有限公司 用于驱动高侧功率晶体管的集成高侧栅极驱动器结构和电路
US20170012040A1 (en) * 2015-07-09 2017-01-12 O2Micro, Inc. Integrated device having multiple transistors

Also Published As

Publication number Publication date
US20190312033A1 (en) 2019-10-10
US10833083B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
CN108111135B (zh) 功率放大电路
Lu et al. A wide input range dual-path CMOS rectifier for RF energy harvesting
TWI558080B (zh) 電壓轉換系統、旁路電路、具有旁路電路之無線器件及用於減小電壓轉換器中之鈴流之方法
US8106711B2 (en) Stacked pre-driver amplifier
Kim et al. A 0.15 V input energy harvesting charge pump with dynamic body biasing and adaptive dead-time for efficiency improvement
US9791480B2 (en) Current sensing of switching power regulators
US8237422B2 (en) Efficient switch cascode architecture for switching devices
KR101354232B1 (ko) 전력 변환기용 증폭기 시스템
JP2001284535A (ja) 半導体集積回路
CN103219979B (zh) 射频切换器及其辅助电压产生单元和产生辅助电压的方法
JP2008211957A (ja) チャージポンプ回路
TW201240294A (en) Converter including a bootstrap circuit and method
JP2016054586A (ja) 半導体装置
US20120161857A1 (en) Charge pump circuit
JP6300349B2 (ja) スイッチング素子、整流素子、および電荷蓄積素子を含む回路
CN103187955B (zh) 共栅共源驱动电路
CN110349914A (zh) 具有改进的可靠性和效率的功率器件结构
CN104967433A (zh) 高电压开关输出驱动器
JP2005123861A (ja) 高周波電力増幅回路および高周波電力増幅用電子部品
Saini Gallium nitride: Analysis of physical properties and performance in high-frequency power electronic circuits
CN202488340U (zh) 共栅共源驱动电路
JP2021184527A (ja) 電力増幅器
Yang et al. Low-Leakage SMARTMOS 10W Technology At 0.13 μm Node with Optimized Analog, Power and Logic Devices for SOC Design
US20230049723A1 (en) Integrated Circuit
TWI813374B (zh) 電壓追蹤電路以及電子電路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination