CN110343934B - 掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法 - Google Patents

掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法 Download PDF

Info

Publication number
CN110343934B
CN110343934B CN201910671219.7A CN201910671219A CN110343934B CN 110343934 B CN110343934 B CN 110343934B CN 201910671219 A CN201910671219 A CN 201910671219A CN 110343934 B CN110343934 B CN 110343934B
Authority
CN
China
Prior art keywords
sample
magnetic refrigeration
ball milling
ball
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910671219.7A
Other languages
English (en)
Other versions
CN110343934A (zh
Inventor
缪雪飞
钟高力
徐锋
胡述圆
张玉晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910671219.7A priority Critical patent/CN110343934B/zh
Publication of CN110343934A publication Critical patent/CN110343934A/zh
Application granted granted Critical
Publication of CN110343934B publication Critical patent/CN110343934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种掺杂Zn的Mn‑Fe‑P‑Si基磁制冷材料及其制备方法,属于磁制冷材料技术领域,该材料成分为(Mn,Fe)1.95‑x(P,Si)Znx,式中x的取值为0.05~0.1。该材料的制备步骤为:将锰片、铁粉、磷块、硅块、锌粉按化学式中各元素的摩尔比称重,在氩气保护下,进行球磨;将球磨后的粉末压制成试样;将试样真空中退火处理,之后快速淬入冷水中制得样品。本发明通过向MnFePSi材料中掺入适量的Zn,可使MnFePSi磁致冷材料相变温度调节至室温附近,减小热滞,同时保持较大磁熵变,有利于材料在室温磁制冷中的应用。

Description

掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法
技术领域
本发明涉及磁制冷材料制备领域,具体涉及一种掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法。
背景技术
制冷技术在我们现代社会生活中无处不在,随着世界上的能源危机,环境不断恶化,传统的压缩制冷技术由于其噪音大、效率低、高污染等不和避免的缺点,传统制冷剂氟利昂由于温室效应且破坏臭氧层,将逐步被淘汰。随着绿色环保概念的提出,为了保护我们赖以生存的大气环境,联合国环境规划署签订了一项禁止使用含氟制冷剂的协议,这就是为什么我们必须开发新的冷却技术。作为一种新型环保冷却技术,磁制冷技术是以磁性材料为工质,利用自旋系统磁熵的变化来实现制冷的一种全新的制冷技术。通过重复循环磁化和去磁过程可以实现固态冷却目的,具有无污染,噪声小,循环效率高等有点。有望改变工业,商业,汽车和空调国家的传统压缩冷却方法,磁制冷技术是一种具有革命性质的技术,目前是各国研究能源领域的研究热点。
MnFePSi系列合金因其大熵变,原料丰富且成本低被认为是最具前景的磁制冷材料。相对于其它的制冷材料,MnFePSi体系材料来源广泛,材料成本低,具有工业化生产前景。 MnFePSi体系制冷材料具有巨磁热效应(GMCE),能量交换效率高;制冷材料理论上尺寸、形状不受限制,这将使得如冰箱、空调制冷器等的尺寸、形状大大改善。 可以使用使用水等无害液体作为传热介质,这就避免了氟利昂、氨基碳氢化合物等制冷剂带来的环境的破坏。目前,研究发现,MnFePSi合金实现室温磁致冷,可通过调节相变温度得到。前期研究发现,通过改变Mn/Fe比和P/Si比可以调节该材料的居里温度Tc和热滞大小,但这会减弱材料的混磁性,对磁热效应产生不利影响。
发明内容
本发明的目的在于提供一种掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法,该磁制冷材料工作温度在室温附近,居里温度连续可调;热滞小,在永磁体可以提供的磁场范围内有大的磁熵变。
实现本发明目的的技术方案是:本发明所涉及的掺杂Zn的Mn-Fe-P-Si基磁制冷材料的化学通式为:(Mn,Fe)1.95-x(P,Si)Znx,式中x的取值范围0.05~0.1, x的取值范围优选0.1。
本发明还提供了上述掺杂Zn的Mn-Fe-P-Si基磁制冷材料的制备方法,包括如下步骤:
(1)在氩气气氛保护下,将锰片、铁粉、磷块、硅块、锌粉按化学式中各元素的摩尔比进行球磨;
(2)将球磨后的粉末压制成试样;
(3)将试样封入充有氩气保护的石英管中,在1100℃下烧结20小时后冷水淬火处理,制得样品。
进一步的,球磨工艺条件为:钢球与原料的质量比(即球料比)为6:1,球磨时间10小时,频率30赫兹。
进一步的,将球磨后的粉末装入直径为10mm的模具中,在750MPa压力下压制成 φ10*5mm的圆片状试样,压制时间为5min。
与现有技术相比,本发明具有以下优点:
1)本发明通过在MnFePSi基合金的Fe位掺杂微量的Zn,进而有效的优化磁性材料的居里温度和磁热效应,可将材料的居里温度调节至室温;且合金的热滞明显减小,减少超过100%,提高制冷效率。
2)本发明制备方法采用商业上常用的机械合金化球磨法,烧结退火后即可合成(Mn,Fe)1.95-x(P,Si)Znx化合物,工艺简单,成本低廉,适用于工业化生产。
附图说明
图1为本发明的磁制冷材(Mn,Fe)1.95-x(P,Si)Znx(x=0.05,0.1,0.2)与不含Zn成分材料的室温XRD衍射图。
图2为本发明的磁制冷材料(Mn,Fe)1.95-x(P,Si)Znx(x=0.05,0.1,0.2)与不含Zn成分材料在外场1.5T时M-T曲线。
图3为本发明的磁制冷材料(Mn,Fe)1.95-x(P,Si)Znx(x=0.1)的扫描电镜(SEM)图和元素分布(EDS)图。
图4为本发明的磁制冷材料(Mn,Fe)1.95-x(P,Si)Znx(x=0.05,0.1,0.2)与不含Zn成分材料分别在1.5T磁场变化下的等温熵变曲线。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。
在本申请中,发明人发现,利用Zn元素的掺杂来部分取代Fe元素,可以将居里温度Tc在室温附近连续可调,同时、减少热滞且保持较大的磁熵变,可用于室温磁制冷技术中。
实施例1
(1) 将锰片、铁粉、磷块、硅块、锌粉按MnFe0.90P0.6Si0.4Zn0.05(x=0.05)化学式中各元素的摩尔比称重,在氩气气氛保护下,放入不锈钢球磨罐中进行球磨。球磨工艺条件为:钢球与原料的质量比为6:1,球磨时间10小时,频率30赫兹。
(2) 将球磨后的粉末装入直径为10mm的模具中,在750MPa压力下压制成φ10*5mm的圆片状试样,压制时间为5min。
(3) 将压好的试样封入充有氩气保护的石英管中,在1100℃下烧结20小时后冷水淬火处理,制得样品。
实施例2
采用与实施例1类似的方法制备,除了Mn、Fe、P、Si、Zn之间的摩尔比变为1:0.85:0.6:0.4:0.1即x=0.1外,其余均相同。
实施例3
采用与实施例1类似的方法制备,除了Mn、Fe、P、Si、Zn之间的摩尔比变为1:0.75:0.6:0.4:0.2即x=0.2外,其余均相同。
对上述实施例1-3以及未添加Zn的原始样品进行性能分析测试:
图1为(Mn,Fe)1.95-x(P,Si)Znx合金的室温XRD衍射图。样品分析采用的是粉末X射线衍射法,由图可见,所有样品结晶度良好。掺杂Zn不影响主峰,随着Zn掺杂量增大,峰位有所偏移。x=0.1的样品呈明显的铁磁和顺磁两相,说明其相变温度在室温附近。
图2为(Mn,Fe)1.95-x(P,Si)Znx合金在1.5T外磁场下的磁化强度(M)与温度(T)的变化关系曲线,简称M-T曲线。降温至150K后先稳定300s再施加磁场进行升降温测试。由图可见,随着Zn掺杂量的增大,合金的相变温度升高,当x=0.1,相变温度达到了285K左右,合金的相变温度被调控到了室温附近。所有样品的升温M-T曲线和降温M-T曲线均不重合,说明合金存在热滞。随着Zn含量增加,合金热滞明显降低,从x=0(即不含Zn成分)时的26.2K降低到了x=0.1时的2.4K,热滞减少超过100%。但当掺杂Zn含量x增加到0.2时,热滞反而增加。居里温度Tc随着Zn含量的增加而升高,从x=0时的195K升高到了x=0.2时的324.8K,这主要是因为由于Zn的加入使Fe2P相的晶胞参数c减小,增强了Mn-Fe原子层之间的铁磁相互作用。
图3为磁制冷材料(Mn,Fe)1.95-x(P,Si)Znx(x=0.1)采用FEI场发射扫描电子显微镜分析得出的(SEM)图以及各元素分布的(EDS)图。由两图结合分析可以看出Zn进入了主相的晶粒中,而并非在晶界处聚集堆积,可以证明本发明Zn元素的掺杂成功取代了部分Fe元素,产生一定的掺杂效应,增强了Mn-Fe原子层之间的铁磁相互作用,使合金居里温度升高,同时降低了合金热滞。
图4为合金样品在1.5T磁场变化时的磁熵变-温度曲线。显然x=0的合金磁熵变较大,最大磁熵变分别为13.9 Jkg-1K-1。且随着Zn含量增加,最大磁熵变略有减少,但半高宽增加,整体制冷能力增强。

Claims (5)

1.一种掺杂Zn的Mn-Fe-P-Si基磁制冷材料,其特征在于,其化学通式为:(Mn,Fe)1.95-x(P,Si)Znx,x的取值为0.1。
2.如权利要求1所述的Mn-Fe-P-Si基磁制冷材料的制备方法,其特征在于,包括如下步骤:
(1)在氩气气氛保护下,将锰片、铁粉、磷块、硅块、锌粉按化学式中各元素的摩尔比进行球磨;
(2)将球磨后的粉末压制成试样;
(3)氩气保护下,烧结后冷水淬火处理,制得样品。
3.如权利要求2所述的方法,其特征在于,球磨工艺条件为:钢球与原料的质量比为6:1,球磨时间10小时,频率30赫兹。
4.如权利要求2所述的方法,其特征在于,将球磨后的粉末装入直径为10mm的模具中,在750MPa压力下压制成 φ10*5mm的圆片状试样,压制时间为5min。
5.如权利要求2所述的方法,其特征在于,将试样封入充有氩气保护的石英管中,在1100℃下烧结20小时,冷水淬火处理。
CN201910671219.7A 2019-07-24 2019-07-24 掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法 Active CN110343934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910671219.7A CN110343934B (zh) 2019-07-24 2019-07-24 掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910671219.7A CN110343934B (zh) 2019-07-24 2019-07-24 掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110343934A CN110343934A (zh) 2019-10-18
CN110343934B true CN110343934B (zh) 2021-06-11

Family

ID=68180051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910671219.7A Active CN110343934B (zh) 2019-07-24 2019-07-24 掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110343934B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214733A (ja) * 2007-03-08 2008-09-18 Toshiba Corp 磁気冷凍材料、及び磁気冷凍装置
CN102618741A (zh) * 2012-04-01 2012-08-01 北京工业大学 一种锰铁磷硅磁致冷合金的制备方法
CN102881393A (zh) * 2012-09-11 2013-01-16 华南理工大学 一种MnFePSi基室温磁制冷材料及其制备方法
CN102965562A (zh) * 2012-11-05 2013-03-13 北京工业大学 一种具有巨磁热效应的磁制冷材料及其制备工艺
WO2016104739A1 (ja) * 2014-12-26 2016-06-30 大電株式会社 磁気冷凍用材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214733A (ja) * 2007-03-08 2008-09-18 Toshiba Corp 磁気冷凍材料、及び磁気冷凍装置
CN102618741A (zh) * 2012-04-01 2012-08-01 北京工业大学 一种锰铁磷硅磁致冷合金的制备方法
CN102881393A (zh) * 2012-09-11 2013-01-16 华南理工大学 一种MnFePSi基室温磁制冷材料及其制备方法
CN102965562A (zh) * 2012-11-05 2013-03-13 北京工业大学 一种具有巨磁热效应的磁制冷材料及其制备工艺
WO2016104739A1 (ja) * 2014-12-26 2016-06-30 大電株式会社 磁気冷凍用材料の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds;N.H.Dung et al.;《Applied Physics Letters》;20111231;第99卷;第1页摘要 *
N.H.Dung et al..From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds.《Applied Physics Letters》.2011,第99卷第1页摘要. *

Also Published As

Publication number Publication date
CN110343934A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN101477864B (zh) 具有大磁热效应的稀土磁制冷材料及其制备工艺
US20130200293A1 (en) La(fe,si)13-based multi-interstitial atom hydride magnetic refrigeration material with high temperature stability and large magnetic entropy change and preparation method thereof
CN108735411B (zh) 一种镧铁硅/钆复合磁制冷材料及其制备工艺
CN104694813A (zh) LaFeSi基磁制冷材料及其制备方法与应用
CN105957672B (zh) 镧铁硅基氢化物磁工质及其制备方法、磁制冷机
Zhang et al. Effects of interstitial H and/or C atoms on the magnetic and magnetocaloric properties of La (Fe, Si) 13-based compounds
US9633769B2 (en) Magnetic refrigeration material
CN110605386B (zh) Mo掺杂的Mn-Fe-P-Si基磁制冷材料及其制备方法
CN101105996A (zh) 一种高温低磁场大磁熵材料化合物及其制备方法
Bouzidi et al. Second-Order Magnetic Transition and Low Field Magnetocaloric Effect in Nanocrystalline Pr _ 5 Co _ 19 Pr 5 Co 19 Compound
CN110343934B (zh) 掺杂Zn的Mn-Fe-P-Si基磁制冷材料及其制备方法
JP7245474B2 (ja) 磁気冷凍用途に有用な磁気熱量合金
CN110364324B (zh) 低热滞的Mn-Fe-P-Si基磁制冷材料及其制备方法
CN110880391B (zh) 一种具有低热滞的锰铁基磁制冷材料及其制备方法和应用
EP2730673B1 (en) Magnetic refrigeration material and magnetic refrigeration device
CN110634638B (zh) 一种(Pr,Gd)Co永磁材料及其制备方法
CN102513536A (zh) 一种磁制冷材料的制备工艺
CN102517488A (zh) 一种磁制冷材料及其制备工艺
CN108642355B (zh) 一种锰铁基室温磁制冷材料及其制备方法
KR102589531B1 (ko) 자기열량합금 및 이의 제조방법
CN108486469B (zh) 一种纳米晶La1-xRxFeySiz磁热效应材料的制造方法
CN109801767A (zh) 一种具有旋转磁热效应的钕钴基磁制冷材料及其制备方法
RU2804024C1 (ru) Магнитокалорический материал для магнитной тепловой машины
CN103205590A (zh) 磁制冷材料的一种制备工艺
Jianqiu et al. Effect of gallium doping on the magnetocaloric effect of LaFe11. 2Co0. 7Si1. 1

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant