CN110317061A - 一种制备Al4O4C纳米纤维的方法 - Google Patents
一种制备Al4O4C纳米纤维的方法 Download PDFInfo
- Publication number
- CN110317061A CN110317061A CN201810267103.2A CN201810267103A CN110317061A CN 110317061 A CN110317061 A CN 110317061A CN 201810267103 A CN201810267103 A CN 201810267103A CN 110317061 A CN110317061 A CN 110317061A
- Authority
- CN
- China
- Prior art keywords
- nano fiber
- powder
- furnace
- phase
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5603—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62272—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
- C04B35/62277—Fibres based on carbides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Fibers (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明提供一种Al4O4C纳米纤维的制备方法,属于纳米材料制备技术领域。其特征在于:以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比(1~5):1:1:(1~3)将四者混合均匀,然后将混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以2~20℃/min的加热速度升温至1000~1600℃,保持温度0.5~5小时;然后冷却至室温即可得到超长Al4O4C纳米纤维。本发明制备的Al4O4C纳米纤维为单晶相,单根纤维中不含第二相,纳米纤维的直径分布在100‑500 nm之间,以300 nm为主,长度可达到毫米数量级,长径比>300,本发明制备工艺简单,周期短,操作安全,不造成污染。
Description
技术领域
本发明涉及一种Al4O4C纳米纤维的制备工艺,属于纳米材料制备技术领域。
背景技术
Al4O4C材料自身具有密度低、高熔点、高温稳定性优异(1890℃下能稳定存在),同时具有良好的抗氧化性和抗水化能力。因此Al4O4C是一种潜在的高性能耐火材料添加剂,应用在钢铁行业。此外,经计算Al4O4C晶体的禁带宽度为3. 8eV,被认为是一种宽带隙半导体材料。可作为高频,大功率,耐高温,抗辐射照的半导体器件及光子器件候选材料,应用在石油钻探、航空、航天等恶劣环境中。
此外,Al4O4C纳米材料处在纳米尺度;因此量子尺寸效应,小尺寸效应,表面效应等会发挥作用,使其具备以上特性外,显示新的物理性能;如Al4O4C纳米纤维在室温和低温下可以观察到光致蓝光现象;当在其晶格中掺杂约0.1 at.%的Si原子后,即可观察到从红外到紫外全色发射光谱特性,因此Al4O4C纳米纤维在白光LED的全色显示屏、场发射材料、太阳能电池、高速器件和空间器件等领域有潜在的应用。
然而,目前关于对Al4O4C纳米纤维的研究极少,关于其制备方法有以下报道:孙永的论文“One-dimensional Al4O4C ceramics: a new type of blue light emitter”采用汽-液-固法,以Al片为原料,放置在管式炉中并通入CH4和H2混合气体,加热至1310 ℃并保温2h,冷却至室温后制备出具有针状的Al4O4C纳米纤维,纤维一端连接金属Al液滴(第二相),纳米纤维长度几十微米。缺点是在高温制备过程需引入易燃易爆气体,操作危险,成本高昂;所制备的Al4O4C纳米纤维的长径比小且一端连接金属颗粒(不纯)。因此,为了解决上述缺点,制备出高长径比的Al4O4C纳米纤维,且单根纤维中不存在第二相(高纯)已至关重要。有鉴于此,特提出本发明。本发明所制备纳米纤维为Al4O4C单相材料,直径分布均匀且长度可达到毫米级。
发明内容
本发明的目的是解决原有Al4O4C材料制备难、制备工艺复杂、制备温度高、采用危险性气体、纳米纤维长度最长只能达到几微米等问题,提供一种工艺简单、操作安全、不造成污染的Al4O4C纳米纤维制备工艺,其技术方案为:以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比(1~5):1:1:(1~3)将四者混合均匀,然后将混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以2~20℃/min的加热速度升温至1000~1600℃,保持温度0.5~5小时;冷却至室温后即可得到超长Al4O4C纳米纤维。
本发明的工作原理是:Al2O3-Al-C-Ta混合粉体所形成的坯体在高温加热过程中会发生以下气相-液相-固相反应:
4 Al2O3(s)+4Al(l,s)+3C(s)=3Al4O4C(s)
其中l代表液态,s代表固态和g代表气态;理论上当热处理温度高于660℃时,铝粉即发生熔化形成液相;但加入钽粉后,会形成Al-Ta合金,熔点升高;进而抑制熔融Al-Ta合金中Al的挥发。另一方面,在加热过程中会形成Al2O、AlO和CO等气相;熔融的Al-Ta合金可以通过表面吸附的形式聚集以上各种气相集团,经反应Al4O4C相在液相Al-Ta合金表面形核、长大并最终形成稳定的超长的Al4O4C纳米纤维。
本发明具有如下优点:
(1)本发明制备的Al4O4C纳米纤维,操作简单,安全可靠,不对环境造成污染;(2)本发明合成的Al4O4C纳米纤维为单晶相,纯度高(单根纤维不含第二相);纳米纤维的直径分布在100-500 nm之间,以300 nm为主,长度达到毫米数量级,具有高长径比(>300)。
附图说明
图1是实施例1中制备的Al4O4C纳米纤维的XRD谱图。
图2是实施例1中制备的Al4O4C纳米纤维线的SEM照片。
具体实施方式
实施例1:
以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比1.6:1:1:2将四者混合均匀,然后将混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以5℃/min的加热速度升温至1500℃,保温1小时;然后冷却至室温即可得到超长Al4O4C纳米纤维;将制备得到的Al4O4C纳米纤维毛层揭下并对其进行X-射线衍射物相分析(XRD),测试得到的XRD谱图如图1所示。通过与Al4O4C粉末衍射卡片(PDF-01-072-1682)进行直接比对,所有的XRD峰均对应于Al4O4C相晶面,说明制备的Al4O4C纳米纤维为单相、高纯、几乎无杂质相的存在。此外,基于XRD测试结果,Al4O4C属于斜方晶系;XRD衍射峰中三强峰所对应的晶面分别对应(220)、(111)和(210)晶面族;对Al4O4C纳米纤维毛层进行扫描电子显微镜(SEM)测试,其微观形貌如图2所示。产物纯净、纳米纤维相互交织,分布均匀。平直的Al4O4C纳米纤维直径约为300 nm;长度至少为100 µm,长径比>300。
实施例2:
以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比1:1:1:1将四者混合均匀,然后将Al2O3-Al-C-Ta混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以2℃/min的加热速度升温至1000℃,保持温度5小时;然后冷却至室温即可得到Al4O4C纳米纤维。
实施例3:
以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比5:1:1:3将四者混合均匀,然后将Al2O3-Al-C-Ta混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以20℃/min的加热速度升温至1600℃,保持温度0.5小时;然后冷却至室温即可得到Al4O4C纳米纤维。
Claims (1)
1.一种制备Al4O4C纳米纤维的方法,其特征在于:以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比(1~5):1:1:(1~3)将四者混合均匀,然后将混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以2~20℃/min的加热速度升温至1000~1600℃,保持温度0.5~5小时;然后冷却至室温即可得到超长Al4O4C纳米纤维。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810267103.2A CN110317061B (zh) | 2018-03-28 | 2018-03-28 | 一种制备Al4O4C纳米纤维的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810267103.2A CN110317061B (zh) | 2018-03-28 | 2018-03-28 | 一种制备Al4O4C纳米纤维的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110317061A true CN110317061A (zh) | 2019-10-11 |
CN110317061B CN110317061B (zh) | 2021-06-15 |
Family
ID=68110397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810267103.2A Active CN110317061B (zh) | 2018-03-28 | 2018-03-28 | 一种制备Al4O4C纳米纤维的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110317061B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102361836A (zh) * | 2009-03-30 | 2012-02-22 | 黑崎播磨株式会社 | 铝氧碳化物组合物及其制造方法 |
CN103274701A (zh) * | 2013-05-19 | 2013-09-04 | 北京工业大学 | 一种含碳耐火材料抗氧化剂Al4O4C的制备方法 |
CN103896315A (zh) * | 2014-03-25 | 2014-07-02 | 中国科学院金属研究所 | 一种Al2OC纳米线材料及其制备方法 |
WO2016114311A1 (ja) * | 2015-01-15 | 2016-07-21 | 国立研究開発法人物質・材料研究機構 | 抵抗変化型素子およびその製造方法 |
CN106631026A (zh) * | 2017-01-09 | 2017-05-10 | 武汉科技大学 | 一种Al4SiC4‑Al4O4C复合材料及其制备方法 |
CN107687025A (zh) * | 2017-09-06 | 2018-02-13 | 武汉科技大学 | 一种Al4O4C晶须/碳纳米管复合材料的合成方法 |
-
2018
- 2018-03-28 CN CN201810267103.2A patent/CN110317061B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102361836A (zh) * | 2009-03-30 | 2012-02-22 | 黑崎播磨株式会社 | 铝氧碳化物组合物及其制造方法 |
CN103274701A (zh) * | 2013-05-19 | 2013-09-04 | 北京工业大学 | 一种含碳耐火材料抗氧化剂Al4O4C的制备方法 |
CN103896315A (zh) * | 2014-03-25 | 2014-07-02 | 中国科学院金属研究所 | 一种Al2OC纳米线材料及其制备方法 |
WO2016114311A1 (ja) * | 2015-01-15 | 2016-07-21 | 国立研究開発法人物質・材料研究機構 | 抵抗変化型素子およびその製造方法 |
CN106631026A (zh) * | 2017-01-09 | 2017-05-10 | 武汉科技大学 | 一种Al4SiC4‑Al4O4C复合材料及其制备方法 |
CN107687025A (zh) * | 2017-09-06 | 2018-02-13 | 武汉科技大学 | 一种Al4O4C晶须/碳纳米管复合材料的合成方法 |
Non-Patent Citations (7)
Title |
---|
CHAO YU ET AL.: ""Synthesis and characterisation of Al4O4C nanorod/CNT composites"", 《CERAMICS INTERNATIONAL》 * |
CHAO YU ET AL.: ""Synthesis of monophase Al4O4C and the effect of Al4O4C addition to MgO–C refractory"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
SUN Y ET AL.: ""Step-edge induced ordered growth: targeting to assemble super long horizontal nanowire alignment in large-scale"", 《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》 * |
Y SUN ET AL.: ""Si-Doped Ceramic Al4O4C Nanowires: Full-Color Emission and Optical Waveguide Behavior"", 《SCIENTIFIC REPORTS》 * |
YONG SUN ET AL.: ""One-Dimensional Al4O4C Ceramics: A New Type of Blue Light Emitter"", 《SCIENTIFIC REPORTS》 * |
赵建立 等: ""A1404C的合成及特性"", 《耐火材料-第五届国际耐火材料学术会议论文集》 * |
赵建立 等: ""Al4O4C 的碳热还原合成及其反应动力学"", 《硅酸盐学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN110317061B (zh) | 2021-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Growth of SiC nanorods at low temperature | |
Dong et al. | Synthesis and pyrolysis behavior of a soluble polymer precursor for ultra-fine zirconium carbide powders | |
Xu et al. | A carbon-free sol–gel method for preparation of Lu3Al5O12: Ce3+ phosphors for potential applications in laser scintillators and LEDs | |
Chen et al. | Synthesis of blue-green photoluminescent β-SiC nanowires via a simple catalyst-free CVD technique | |
Qin et al. | Ultra-long Sialon nanobelts: large-scale synthesis via a pressure enhanced CVD process and photoluminescence characteristics | |
Tan et al. | Low temperature synthesis of 2H-SiC powders via molten-salt-mediated magnesiothermic reduction | |
CN109112616A (zh) | 一种毫米级长方形单层单晶石墨烯的制备方法 | |
Li et al. | Growth phase diagram and upconversion luminescence properties of NaLuF 4: Yb 3+/Tm 3+/Gd 3+ nanocrystals | |
Cui et al. | Template-and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC | |
Zou et al. | Single-crystalline alpha silicon–nitride nanowires: Large-scale synthesis, characterization, and optic properties | |
Xu et al. | Preparation of ZrO2 whiskers through high pressure and high temperature method | |
Guo et al. | Preparation of SiC nanowires with fins by chemical vapor deposition | |
Xie et al. | Synthesis and growth mechanism of SiC/SiO2 nanochains by catalyst-free thermal evaporation method in Ar/CO atmosphere | |
CN101348253B (zh) | 热蒸发法制备孪晶结构碳化硅纳米线的方法 | |
Wang et al. | Large-scale synthesis of Al4B2O9/Al18B4O33 whiskers via a novel method | |
CN100415951C (zh) | 一种适合SiC晶须生长的方法 | |
CN110317061A (zh) | 一种制备Al4O4C纳米纤维的方法 | |
Yang et al. | Growth of platelike and branched single-crystalline Si3N4 whiskers | |
Fu et al. | One-step synthesis and characterization of tree-like branched α-Si3N4 nano/submicron-structures by pyrolysis of a polymer precursor | |
CN105019058B (zh) | 一种高纯度SiCN(O)中空介孔纳米纤维的制备方法 | |
CN109650896B (zh) | LiAlON透明陶瓷粉体的合成方法 | |
Li et al. | Fabrication and characterization of SiO 2@ SiC shell–core nanowire prepared by laser sintering | |
Zhu et al. | Effect of Ce3+ doping and calcination on the photoluminescence of ZrO2 (3% Y2O3) fibers | |
Zhu et al. | Preparation and characterization of bundled one-dimensional Si3N4 single-crystalline nanowires by catalytic pyrolysis of a polymer precursor | |
JP2008100863A (ja) | 炭化ケイ素ナノ構造物とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |