CN110317061B - 一种制备Al4O4C纳米纤维的方法 - Google Patents

一种制备Al4O4C纳米纤维的方法 Download PDF

Info

Publication number
CN110317061B
CN110317061B CN201810267103.2A CN201810267103A CN110317061B CN 110317061 B CN110317061 B CN 110317061B CN 201810267103 A CN201810267103 A CN 201810267103A CN 110317061 B CN110317061 B CN 110317061B
Authority
CN
China
Prior art keywords
nano
fiber
powder
preparation
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810267103.2A
Other languages
English (en)
Other versions
CN110317061A (zh
Inventor
耿欣
温广武
肖博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201810267103.2A priority Critical patent/CN110317061B/zh
Publication of CN110317061A publication Critical patent/CN110317061A/zh
Application granted granted Critical
Publication of CN110317061B publication Critical patent/CN110317061B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62277Fibres based on carbides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种Al4O4C纳米纤维的制备方法,属于纳米材料制备技术领域。其特征在于:以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比(1~5):1:1:(1~3)将四者混合均匀,然后将混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以2~20℃/min的加热速度升温至1000~1600℃,保持温度0.5~5小时;然后冷却至室温即可得到超长Al4O4C纳米纤维。本发明制备的Al4O4C纳米纤维为单晶相,单根纤维中不含第二相,纳米纤维的直径分布在100‑500 nm之间,以300 nm为主,长度可达到毫米数量级,长径比>300,本发明制备工艺简单,周期短,操作安全,不造成污染。

Description

一种制备Al4O4C纳米纤维的方法
技术领域
本发明涉及一种Al4O4C纳米纤维的制备工艺,属于纳米材料制备技术领域。
背景技术
Al4O4C材料自身具有密度低、高熔点、高温稳定性优异(1890℃下能稳定存在),同时具有良好的抗氧化性和抗水化能力。因此Al4O4C是一种潜在的高性能耐火材料添加剂,应用在钢铁行业。此外,经计算Al4O4C晶体的禁带宽度为3. 8eV,被认为是一种宽带隙半导体材料。可作为高频,大功率,耐高温,抗辐射照的半导体器件及光子器件候选材料,应用在石油钻探、航空、航天等恶劣环境中。
此外,Al4O4C纳米材料处在纳米尺度;因此量子尺寸效应,小尺寸效应,表面效应等会发挥作用,使其具备以上特性外,显示新的物理性能;如Al4O4C纳米纤维在室温和低温下可以观察到光致蓝光现象;当在其晶格中掺杂约0.1 at.%的Si原子后,即可观察到从红外到紫外全色发射光谱特性,因此Al4O4C纳米纤维在白光LED的全色显示屏、场发射材料、太阳能电池、高速器件和空间器件等领域有潜在的应用。
然而,目前关于对Al4O4C纳米纤维的研究极少,关于其制备方法有以下报道:孙永的论文“One-dimensional Al4O4C ceramics: a new type of blue light emitter”采用汽-液-固法,以Al片为原料,放置在管式炉中并通入CH4和H2混合气体,加热至1310 ℃并保温2h,冷却至室温后制备出具有针状的Al4O4C纳米纤维,纤维一端连接金属Al液滴(第二相),纳米纤维长度几十微米。缺点是在高温制备过程需引入易燃易爆气体,操作危险,成本高昂;所制备的Al4O4C纳米纤维的长径比小且一端连接金属颗粒(不纯)。因此,为了解决上述缺点,制备出高长径比的Al4O4C纳米纤维,且单根纤维中不存在第二相(高纯)已至关重要。有鉴于此,特提出本发明。本发明所制备纳米纤维为Al4O4C单相材料,直径分布均匀且长度可达到毫米级。
发明内容
本发明的目的是解决原有Al4O4C材料制备难、制备工艺复杂、制备温度高、采用危险性气体、纳米纤维长度最长只能达到几微米等问题,提供一种工艺简单、操作安全、不造成污染的Al4O4C纳米纤维制备工艺,其技术方案为:以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比(1~5):1:1:(1~3)将四者混合均匀,然后将混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以2~20℃/min的加热速度升温至1000~1600℃,保持温度0.5~5小时;冷却至室温后即可得到超长Al4O4C纳米纤维。
本发明的工作原理是:Al2O3-Al-C-Ta混合粉体所形成的坯体在高温加热过程中会发生以下气相-液相-固相反应:
4 Al2O3(s)+4Al(l,s)+3C(s)=3Al4O4C(s)
其中l代表液态,s代表固态和g代表气态;理论上当热处理温度高于660℃时,铝粉即发生熔化形成液相;但加入钽粉后,会形成Al-Ta合金,熔点升高;进而抑制熔融Al-Ta合金中Al的挥发。另一方面,在加热过程中会形成Al2O、AlO和CO等气相;熔融的Al-Ta合金可以通过表面吸附的形式聚集以上各种气相集团,经反应Al4O4C相在液相Al-Ta合金表面形核、长大并最终形成稳定的超长的Al4O4C纳米纤维。
本发明具有如下优点:
(1)本发明制备的Al4O4C纳米纤维,操作简单,安全可靠,不对环境造成污染;(2)本发明合成的Al4O4C纳米纤维为单晶相,纯度高(单根纤维不含第二相);纳米纤维的直径分布在100-500 nm之间,以300 nm为主,长度达到毫米数量级,具有高长径比(>300)。
附图说明
图1是实施例1中制备的Al4O4C纳米纤维的XRD谱图。
图2是实施例1中制备的Al4O4C纳米纤维线的SEM照片。
具体实施方式
实施例1:
以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比1.6:1:1:2将四者混合均匀,然后将混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以5℃/min的加热速度升温至1500℃,保温1小时;然后冷却至室温即可得到超长Al4O4C纳米纤维;将制备得到的Al4O4C纳米纤维毛层揭下并对其进行X-射线衍射物相分析(XRD),测试得到的XRD谱图如图1所示。通过与Al4O4C粉末衍射卡片(PDF-01-072-1682)进行直接比对,所有的XRD峰均对应于Al4O4C相晶面,说明制备的Al4O4C纳米纤维为单相、高纯、几乎无杂质相的存在。此外,基于XRD测试结果,Al4O4C属于斜方晶系;XRD衍射峰中三强峰所对应的晶面分别对应(220)、(111)和(210)晶面族;对Al4O4C纳米纤维毛层进行扫描电子显微镜(SEM)测试,其微观形貌如图2所示。产物纯净、纳米纤维相互交织,分布均匀。平直的Al4O4C纳米纤维直径约为300 nm;长度至少为100 µm,长径比>300。
实施例2:
以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比1:1:1:1将四者混合均匀,然后将Al2O3-Al-C-Ta混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以2℃/min的加热速度升温至1000℃,保持温度5小时;然后冷却至室温即可得到Al4O4C纳米纤维。
实施例3:
以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比5:1:1:3将四者混合均匀,然后将Al2O3-Al-C-Ta混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以20℃/min的加热速度升温至1600℃,保持温度0.5小时;然后冷却至室温即可得到Al4O4C纳米纤维。

Claims (1)

1.一种制备Al4O4C纳米纤维的方法,其特征在于:以铝粉、氧化铝粉、石墨和钽粉为原料,按照摩尔比(1~5):1:1:(1~3)将四者混合均匀,然后将混合粉体预制成型并将预制的坯体放置于惰性气氛炉中,向炉中通入氩气,然后以2~20℃/min的加热速度升温至1000~1600℃,保持温度0.5~5小时;然后冷却至室温即可得到超长Al4O4C纳米纤维。
CN201810267103.2A 2018-03-28 2018-03-28 一种制备Al4O4C纳米纤维的方法 Active CN110317061B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810267103.2A CN110317061B (zh) 2018-03-28 2018-03-28 一种制备Al4O4C纳米纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810267103.2A CN110317061B (zh) 2018-03-28 2018-03-28 一种制备Al4O4C纳米纤维的方法

Publications (2)

Publication Number Publication Date
CN110317061A CN110317061A (zh) 2019-10-11
CN110317061B true CN110317061B (zh) 2021-06-15

Family

ID=68110397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810267103.2A Active CN110317061B (zh) 2018-03-28 2018-03-28 一种制备Al4O4C纳米纤维的方法

Country Status (1)

Country Link
CN (1) CN110317061B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361836A (zh) * 2009-03-30 2012-02-22 黑崎播磨株式会社 铝氧碳化物组合物及其制造方法
CN103274701A (zh) * 2013-05-19 2013-09-04 北京工业大学 一种含碳耐火材料抗氧化剂Al4O4C的制备方法
CN103896315A (zh) * 2014-03-25 2014-07-02 中国科学院金属研究所 一种Al2OC纳米线材料及其制备方法
WO2016114311A1 (ja) * 2015-01-15 2016-07-21 国立研究開発法人物質・材料研究機構 抵抗変化型素子およびその製造方法
CN106631026A (zh) * 2017-01-09 2017-05-10 武汉科技大学 一种Al4SiC4‑Al4O4C复合材料及其制备方法
CN107687025A (zh) * 2017-09-06 2018-02-13 武汉科技大学 一种Al4O4C晶须/碳纳米管复合材料的合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361836A (zh) * 2009-03-30 2012-02-22 黑崎播磨株式会社 铝氧碳化物组合物及其制造方法
CN103274701A (zh) * 2013-05-19 2013-09-04 北京工业大学 一种含碳耐火材料抗氧化剂Al4O4C的制备方法
CN103896315A (zh) * 2014-03-25 2014-07-02 中国科学院金属研究所 一种Al2OC纳米线材料及其制备方法
WO2016114311A1 (ja) * 2015-01-15 2016-07-21 国立研究開発法人物質・材料研究機構 抵抗変化型素子およびその製造方法
CN106631026A (zh) * 2017-01-09 2017-05-10 武汉科技大学 一种Al4SiC4‑Al4O4C复合材料及其制备方法
CN107687025A (zh) * 2017-09-06 2018-02-13 武汉科技大学 一种Al4O4C晶须/碳纳米管复合材料的合成方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"A1404C的合成及特性";赵建立 等;《耐火材料-第五届国际耐火材料学术会议论文集》;20070613;第311-314页 *
"Al4O4C 的碳热还原合成及其反应动力学";赵建立 等;《硅酸盐学报》;20100731;第38卷(第7期);第1292-1302页 *
"One-Dimensional Al4O4C Ceramics: A New Type of Blue Light Emitter";Yong Sun et al.;《SCIENTIFIC REPORTS》;20130429;第3卷;第1-6页 *
"Si-Doped Ceramic Al4O4C Nanowires: Full-Color Emission and Optical Waveguide Behavior";Y Sun et al.;《SCIENTIFIC REPORTS》;20141030;第4卷;第1-6页 *
"Step-edge induced ordered growth: targeting to assemble super long horizontal nanowire alignment in large-scale";Sun Y et al.;《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》;20130515;第15卷(第28期);第11808-11813页 *
"Synthesis and characterisation of Al4O4C nanorod/CNT composites";Chao Yu et al.;《Ceramics International》;20170601;第43卷;第11415-11420页 *
"Synthesis of monophase Al4O4C and the effect of Al4O4C addition to MgO–C refractory";Chao Yu et al.;《Journal of Alloys and Compounds》;20130622;第579卷;第348-354页 *

Also Published As

Publication number Publication date
CN110317061A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
Yin et al. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si 3 N 4) single-crystalline nanobelts
Cheng et al. Controlled growth and properties of one‐dimensional ZnO nanostructures with Ce as activator/dopant
Caceres et al. Morphology and crystallography of aluminum nitride whiskers
Li et al. Large-scale synthesis of crystalline β-SiC nanowires
Wang et al. Synthesis of aluminium borate nanowires by sol–gel method
Cui et al. Template-and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC
Li et al. Growth phase diagram and upconversion luminescence properties of NaLuF 4: Yb 3+/Tm 3+/Gd 3+ nanocrystals
Lv et al. Growth mechanism and synchronous synthesis of 1D β-sialon nanostructures and β-sialon-Si3N4 composite powders by a process of reduction nitridation
Tan et al. Low temperature synthesis of 2H-SiC powders via molten-salt-mediated magnesiothermic reduction
CN112794330B (zh) 一种碳化硼纳米线的制备方法
Elssfah et al. Synthesis of aluminum borate nanowires via a novel flux method
Wang et al. Large-scale synthesis of Al4B2O9/Al18B4O33 whiskers via a novel method
CN110317061B (zh) 一种制备Al4O4C纳米纤维的方法
CN100415951C (zh) 一种适合SiC晶须生长的方法
CN105019058B (zh) 一种高纯度SiCN(O)中空介孔纳米纤维的制备方法
Fu et al. One-step synthesis and characterization of tree-like branched α-Si3N4 nano/submicron-structures by pyrolysis of a polymer precursor
Denholme et al. Growth and characterisation of titanium sulphide nanostructures by surface–assisted vapour transport methods; from trisulphide ribbons to disulphide nanosheets
K Brantov Perspective methods for producing composite materials based on carbon, silicon and silicon carbide: Progress and challenges
Hu et al. Simultaneous in situ and ex situ growth of ultra-long Si 3 N 4 nanobelts with different optical properties
Elssfah et al. Low-temperature performance of Al4B2O9 nanowires
Hu et al. Creation of novel ZnO nanostructures: self-assembled nanoribbon/nanoneedle junction networks and faceted nanoneedles on hexagonal microcrystals
Fengqiu et al. Mechanosynthesis of boron nitride nanotubes
JP2008100863A (ja) 炭化ケイ素ナノ構造物とその製造方法
Yan et al. One-step catalytic combustion synthesis of SiC/MgAl2O4 composite powders containing SiC nanowires
Kumari Phase analysis, FTIR/Raman, and optical properties of Fe3BO6 nanocrystallites prepared by glass route at moderate temperature in ambient air

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant