CN110316770B - 一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用 - Google Patents

一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用 Download PDF

Info

Publication number
CN110316770B
CN110316770B CN201910685965.1A CN201910685965A CN110316770B CN 110316770 B CN110316770 B CN 110316770B CN 201910685965 A CN201910685965 A CN 201910685965A CN 110316770 B CN110316770 B CN 110316770B
Authority
CN
China
Prior art keywords
hydrotalcite
metal salt
preparation
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910685965.1A
Other languages
English (en)
Other versions
CN110316770A (zh
Inventor
蒋柱武
颜丽红
周天华
武江南
刘欣汝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN201910685965.1A priority Critical patent/CN110316770B/zh
Publication of CN110316770A publication Critical patent/CN110316770A/zh
Application granted granted Critical
Publication of CN110316770B publication Critical patent/CN110316770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用。所述水滑石材料为典型的介孔材料,纳米尺度(10‑30 nm)及较大的比表面积,使其发挥出纳米材料的尺寸效应,提高了碳酸根插层水滑石的吸附性能和电催化OER性能。本发明制备的水滑石,原材料易得、价格低廉,制备简单、高效、低耗、快捷,可实现宏量制备,并且水稳定性和化学稳定性好。将其作为吸附剂时,对50 mg L‑1的甲基橙溶液的吸附率高达92%;将其作为电催化剂时,在强碱性环境中还具有优异的电催化水氧化性能,20 mA cm‑2对应的过电势仅为270 mV。

Description

一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用
技术领域
本发明涉及电化学能源技术和污水处理领域,公开了一种小尺寸、大比表面积的碳酸根插层水滑石材料制备方法及其应用。
背景技术
随着工业社会的快速发展,能源和环境问题成为全球性关注的两大焦点问题。为了解决能源危机和缓解环境污染的压力,寻求可持续、清洁高效、环境友好的能源与环境材料迫在眉睫。
水滑石作为典型的二维层状材料,其介观形貌和尺寸可控、孔隙率高、传质扩散效率良好、表面功能基团丰富且层间阴离子易交换,在水环境治理领域作为吸附剂方面显示出巨大的优势;水滑石结构可调控(包括主体层板、客体阴离子、主-客体、金属元素等可调控)赋予其独特的物化性能,特别是在电化学领域作为电催化产氧(oxygen evolutionreaction, OER)催化剂展现优异的性能。然而,至今报道的水滑石材料,在未经煅烧、改性、复合、剥离等处理的情况下,尺寸大(几百纳米到几十微米不等)、比表面积较小(20-250 m2g-1不等)、暴露出的吸附位点及电催化活性位点少,使其作为吸附剂的性能及作为OER电催化剂的性能均不佳。并且,碳酸根插层水滑石虽然合成极为简单,但难以通过层间离子交换实现对低价态阴离子的吸附,从而使其未能得到有效利用。
产生这种困境的关键原因在于制备纳米量级水滑石存在制备程序复杂、成本高、不能批量合成、难以可控制备等,导致未能发挥纳米尺度(1-100 nm)水滑石材料的优势。
发明内容
本发明针对常规方法合成的水滑石尺寸较大、比表面积较小等特性,致使其吸附性能和电催化性能不佳的问题,提出了一种简单、高效、低耗、快捷、且可宏量制备小尺寸、大比表面积碳酸根插层水滑石材料的方法。通过本发明方法所获得水滑石材料为一种低结晶度的介孔材料,并通过一系列材料测试与结构性能表征显示该材料尺寸小、比表面积大,这些结构特征增加了材料的表面活性位点数量,使该材料表现出优异的吸附性能和电催化OER性能。
本发明制备的水滑石吸附剂和电催化剂,其化学通式为[M2+ 1-xM3+ x(OH)2]x+(An-)x/ n .mH2O,作为吸附剂时M2+可以是Mg2+,Ni2+,Zn2+等,作为电催化剂时M2+可以是Ni2+,Co2+等,M3+可以是Al3+,Fe3+等;0.15≤x≤0.45;层间阴离子An-为CO3 2-,n为2;m为每个LDH分子中层间结晶水分子的个数。
小尺寸、大比表面积碳酸根插层水滑石材料的制备方法,包括如下步骤:
1)配制浓度为0.3-0.6 mol L-1的M2+和M3+的金属盐溶液20 mL,无水碳酸钠(Na2CO3)浓度为0.625-1.25 mol L-1和氢氧化钠(NaOH)浓度0.625-1.25 mol L-1的混合碱溶液20 mL;金属盐和混合碱通过双滴法进行均匀共沉淀,随后将所得沉淀物在-4-30 ℃下陈化4-24 h;
2)陈化完成后,产物与溶剂通过离心分离,随后用去离子水和无水乙醇分别离心洗涤3-6次,产物于60-100 ℃烘箱干燥8-12 h;
优选的,步骤1)中所使用金属盐为六水合硝酸镍(Ni(NO3)2 .6H2O)、六水合硝酸镁(Mg(NO3)2 .6H2O)、六水合硝酸锌(Zn(NO3)2 .6H2O)、六水合硝酸钴(Co(NO3)2 .6H2O)、九水合硝酸铁(Fe(NO3)3 .9H2O)、九水合硝酸铝(Al(NO3)3 .9H2O),M2+和M3+的摩尔比为1:1-6:1;
优选的,在步骤1)中,可采用滴定管进行双滴,或者采用注射器进行双滴,亦或是采用胶头滴管进行双滴。金属盐溶液的滴速保持在2 mL min-1,混合碱的滴速保持在1 mLmin-1
优选的,在步骤1)中,进行均匀共沉淀的过程中需要连续不断地搅拌,并严格控制pH恒定不变,pH为8.5-10,优选10,可将校正后的pH计插入进行共沉淀的容器中作为简单的在线监控。
优选的,在步骤1)中,陈化时可搅拌也可以不搅拌,所述陈化温度优选为常低温条件下。
优选的,在步骤2)中,离心洗涤的过程中,要将产物充分分散均匀,可在每轮洗涤过程超声分散1-5 min。
本发明还公开了该种水滑石材料的两项应用,一项是水滑石材料作为吸附剂使用,其中水滑石材料中的二价金属盐采用镁盐、镍盐或锌盐。
另一项为水滑石材料作碱性溶液中的电催化剂使用,其中水滑石材料中的二价金属盐采用镍盐或钴盐。
本发明的优点在于:
1. 本发明制备的水滑石,原材料易得、价格低廉,制备简单、高效、低耗、快捷,可实现宏量制备,并且水稳定性和化学稳定性好。
2. 本发明制备的水滑石尺寸小、比表面积大,所制得的水滑石具有优越的吸附性能,在碱性环境中还具有优异的电催化水氧化性能。
附图说明
图1:实施例1制备的水滑石的粉末衍射图。
图2:实施例1制备的水滑石的红外光谱图。
图3:实施例1制备的水滑石的的扫描电镜图和透射电镜图。
图4:实施例1制备的水滑石的的氮气等温吸附曲线分布图。
图5:实施例1制备的水滑石吸附甲基橙图。
图6:实施例2制备的水滑石的电催化产氧LSV图。
图7:实施例2制备的水滑石的电催化产氧EIS图。
具体实施方式
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当理解下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
仪器和设备:
下述实施例制备的水滑石的粉末衍射图是通过MiniFlex II型粉末衍射仪进行表征;下述实施例制备的水滑石的红外图是通过Lambda 950型红外光谱仪进行表征;下述实施例制备的水滑石纳米纤维的扫描电镜图是用JSM-6700型扫描电镜进行表征;下述实施例制备的水滑石纳米纤维的透射电镜图是用Tecnai G2 F20型透射电镜进行表征;下述实施例制备的水滑石氮气等温吸附曲线分析是通过Autosorb IQ吸附仪进行表征;下述实施例制备的水滑石的电催化产氧数据是通过辰华CHI 760E测试系统收集。
实施例1
将去离子水放入冰箱中保存待用。准确称取8 mmol Ni(NO3)2 .6H2O(分子量:290.79)和4 mmol Fe(NO3)3 .9H2O(分子量:404)溶解在20 mL去离水中形成均相溶液A。将25mmol Na2CO3(分子量:106)和30 mmol NaOH(分子量:40)溶解到20 mL去离水中形成均相溶液B。溶液A和B分别倒入两根25 mL的滴定管中,进行共沉淀的烧杯中事先加入20 mL的去离水,并向烧杯中滴加少许B溶液使烧杯中去离子水的pH为10±0.1。均匀共沉淀时,金属盐溶液的滴速保持在2 mL min-1,混合碱的滴速保持在1 mL min-1,并且在共沉淀的过程中通过磁力搅拌器连续不地剧烈搅拌(磁力搅拌器转速为1600 r min-1),共沉淀过程中及滴定终点pH保持在10±0.1。pH计使用前分别用pH=6.86和pH=9.18的缓冲溶液进行校准,均匀沉淀过程中工作电极伸入烧杯中,避开滴下来的碱溶液和盐溶液以及磁子,作为一个简单的在线监测仪器。最终混合碱的用量大概为金属盐的一半。均匀共沉淀完成后,用保鲜膜封住烧杯口防止杂质进入,将沉淀物分别在-4 ℃、常温、100 ℃条件下晶化24 h。晶化完成后对得到的产物进行洗涤,用去离子水和无水乙醇各离心洗涤4次(离心转速3000 r min-1),每轮洗涤过程中超声2 min使产物充分分散均匀。洗涤处理后的样品于100 ℃干燥8 h即可得目标水滑石产物。
图1为实施例1制备样品的粉末XRD(PXRD)图。三个样品均显示出(003)、(006)、(009)、(110)等衍射峰,这些峰为典型的NiFe-LDH晶像。在-4 ℃和常温条件下合成的镍铁水滑石粉末衍射峰(分别见图1 a)和b))峰强低、半峰宽宽,而在100 ℃条件合成的材料(见图1 c))其峰强高、半峰宽小。
图2为实施例1制备样品的FTIR图。3400 cm-1左右的宽吸收峰为水滑石层板上的O-H及层间水分子的O-H伸缩振动峰,1625 cm-1附近的吸收峰归属于水分子的弯曲振动特征峰,1350 cm-1附近的强吸收峰应归因于CO3 2-的C-O非对称伸缩振动,表明合成了碳酸根插层的水滑石,400-900 cm-1波数段出现的弱吸收峰主要为层板中金属-氧键(Ni-O、Fe-O)和金属-氧-金属键(Ni-O-Ni、Ni-O-Fe,Fe-O-Fe)的振动所致。
图3为实施例1制备样品的扫描电镜图(图3a)和透射电镜图(图3b)。从扫描电镜图可以看到,实施例1制备的水滑石材料由大量LDH纳米片层堆积在一起,片层的堆积形成了孔洞。透射电镜图表明实施例1制备的水滑石材料为六边形的纳米片,尺寸较小,分布在10-30 nm之间。
图4为实施例1制备的水滑石的的氮气等温吸附曲线分布图。由图可知,实施例1三种条件下制备的水滑石材料的吸附等温线存在明显差异,且在-4 ℃条件下制备的水滑石材料的比表面积最大,高达426.918 cm2 g-1
测试例1
考察三种条件下制备的水滑石对甲基橙(MO)的吸附行为。准确称取上述制备的0.02 g水滑石加入到盛有50 mL去离子水的100 mL烧杯中,将其超声5 min使得水滑石分散均匀。向烧杯中加入磁子,用磁力搅拌器(转速200 r min-1)进行搅拌,当加入浓度为100 mgL-1甲基橙溶液的体积为50 mL后开始计时。在不同的时间间隔取样5 mL,离心取上清液,研究吸附率随时间的变化曲线。测试结果见图5,常温和低温条件下合成的样品对甲基橙吸附率明显高于100 ℃条件下合成的样品。其中-4 ℃下制备的样品对甲基橙(50 mg L-1)的吸附率最高,吸附率达92 %;常温下制备的样品亦能实现高效吸附,与-4 ℃下制备的样品差异不大;而100 ℃下制备的样品仅能吸附42 %左右的甲基橙分子。
实施例2
将去离子水放入冰箱中保存待用。准确称取4.5 mmol的 Ni(NO3)2 .6H2O(分子量:290.79)和1.5 mmol 的Fe(NO3)3 .9H2O(分子量:404)溶解在20 mL去离水中形成均相溶液A。将12.5 mmol 的Na2CO3(分子量:106)和15 mmol 的NaOH(分子量:40)溶解到20 mL去离水中形成均相溶液B。溶液A和B分别倒入两根25 mL的滴定管中,并向事先加入20 mL去离水的烧杯中滴加少许B溶液使烧杯中去离子水的pH为10±0.1。均匀共沉淀时,金属盐溶液的滴加速度保持在2 mL min-1,混合碱的滴加速度保持在1 mL min-1,并且在共沉淀的过程中保持磁力搅拌器连续不地剧烈搅拌(磁力搅拌器转速为1600 r min-1),在共沉淀过程中及滴定终点保持pH在10±0.1。pH计使用前分别用pH=6.86和pH=9.18的缓冲溶液进行校准,均匀沉淀过程中工作电极伸入烧杯中,避开滴下来的碱溶液和盐溶液以及磁子,作为一个简单的在线监测仪器。最终混合碱的用量大概为金属盐的一半。均匀共沉淀完成后,用保鲜膜封住烧杯口防止杂质进入,将沉淀物在常温不搅拌的情况下晶化24 h。晶化完成后对得到的产物进行洗涤,用去离子水和无水乙醇各离心洗涤4次(离心转速3000 r min-1),每轮洗涤过程中超声2 min使产物均匀分散。洗涤处理后的样品于80 ℃干燥10 h即可得目标水滑石。
测试例2
将实施例2制备的材料,制成电催化剂浆料待用。具体步骤为:准确称取5 mg催化剂于样品管中,向其中加入625 μL的去离子水,625 μL的无水乙醇和15 μL Nafion溶液,用封口膜密封好样品管后,连续超声(超声机中水为流动水)1 h,即得到目标催化剂浆料。采用上海辰华电化学工作站(CHI 760E)进行电化学性能测试。所有的电化学性能测试均采用经典的三电极体系,以Ag/AgCl为参比电极,Pt片(面积1 cm2 ,厚度1 mm)为对电极,用微量进样器取3.6 μL分散好的催化剂浆料滴涂在Botany电极(直径 3 mm,几何面积0.071 cm2)上,空气中自然晾干后作为工作电极。工作电极的负载量约为0.2 mg cm-2。电解液为1 molL-1的氢氧化钾溶液(KOH, pH=14)。测试结果见图6-7。
图6为实施例2制备样品的电催化水氧化的LSV图。从图中可知,20 mA cm-2对应的过电势为270 mV。
图7为实施例2制备样品的电催化水氧化的EIS图。从图中可知,电荷传递电阻较小。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种小尺寸、高比表面积碳酸根插层水滑石的制备方法,其特征在于,包括如下步骤:
步骤1)称取构成水滑石的二价金属盐和三价金属盐混溶于水中,得到金属盐溶液,其中二价金属盐和三价金属盐的摩尔比为1:1-6:1;再将无水碳酸钠和氢氧化钠溶于水中制成混合碱液;金属盐溶液和混合碱液通过双滴法进行均匀共沉淀的过程,期间控制pH为8.5-10恒定不变,并且以1600 r /min的速度不断搅拌,反应结束后将沉淀物在-4℃下陈化24h;
步骤2)陈化完成后,将沉淀与溶剂分离、洗涤,在于60-100℃下干燥8-12h。
2.根据权利要求1所述的一种小尺寸、高比表面积碳酸根插层水滑石的制备方法,其特征在于,步骤1)中所使用金属盐为六水合硝酸镍(Ni(NO3)2•6H2O)、六水合硝酸镁(Mg(NO3)2•6 H2O)、六水合硝酸锌(Zn(NO3)2•6 H2O)、九水合硝酸铁(Fe(NO3)3•9 H2O)、九水合硝酸铝(Al(NO3)3•9 H2O)。
3.根据权利要求1所述的一种小尺寸、高比表面积碳酸根插层水滑石的制备方法,其特征在于,步骤1)中,金属盐溶液中二价金属盐和三价金属盐的总浓度为0.3-0.6molL-1;混合碱液中无水碳酸钠(Na2CO3)浓度为0.625-1.25molL-1,氢氧化钠(NaOH)浓度0.625-1.25molL-1;滴定过程采用滴定管、注射器或胶头滴管进行双滴,金属盐溶液的滴速保持在2mLmin-1,混合碱的滴速保持在1mLmin-1
4.根据权利要求1所述的一种小尺寸、高比表面积碳酸根插层水滑石的制备方法,其特征在于,步骤1)中,均匀共沉淀时, pH为10,将校正后的pH计插入进行共沉淀的容器中作为简单的在线监控。
5.根据权利要求1所述的一种小尺寸、高比表面积碳酸根插层水滑石的制备方法,其特征在于,步骤1)中,陈化时进行搅拌。
6.根据权利要求1所述的一种小尺寸、高比表面积碳酸根插层水滑石的制备方法,其特征在于,步骤2)洗涤的过程中,超声分散1-5min将产物充分分散均匀。
7.一种如权利要求1所述的小尺寸、大比表面积碳酸根插层水滑石的制备方法制得的水滑石材料的应用,其特征在于,所述水滑石材料作为吸附剂使用,其中水滑石材料中的二价金属盐采用镁盐、镍盐或锌盐。
8.一种如权利要求1所述的小尺寸、大比表面积碳酸根插层水滑石的制备方法制得的水滑石材料的应用,其特征在于,所述水滑石材料作为碱性溶液中的电催化剂使用,其中水滑石材料中的二价金属盐采用镍盐或钴盐。
CN201910685965.1A 2019-07-28 2019-07-28 一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用 Active CN110316770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910685965.1A CN110316770B (zh) 2019-07-28 2019-07-28 一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910685965.1A CN110316770B (zh) 2019-07-28 2019-07-28 一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用

Publications (2)

Publication Number Publication Date
CN110316770A CN110316770A (zh) 2019-10-11
CN110316770B true CN110316770B (zh) 2022-03-15

Family

ID=68124701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910685965.1A Active CN110316770B (zh) 2019-07-28 2019-07-28 一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用

Country Status (1)

Country Link
CN (1) CN110316770B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699548A (zh) * 2021-08-25 2021-11-26 北京化工大学 弱酸盐层保护的析氧催化电极及其制备与用途、及提高析氧催化电极析氧反应稳定性的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663514A (zh) * 2012-09-07 2014-03-26 合肥师范学院 一种水滑石的制备方法
CN109999820A (zh) * 2019-05-09 2019-07-12 福州大学 一种用于氢化石油树脂制备的镍基催化剂及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663514A (zh) * 2012-09-07 2014-03-26 合肥师范学院 一种水滑石的制备方法
CN109999820A (zh) * 2019-05-09 2019-07-12 福州大学 一种用于氢化石油树脂制备的镍基催化剂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light";Kulamani Parida et al.;《Dalton Transactions》;20111124;第41卷;第1173页 *

Also Published As

Publication number Publication date
CN110316770A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
Pan et al. Scalable synthesis of urchin-and flowerlike hierarchical NiO microspheres and their electrochemical property for lithium storage
Gao et al. ZIF-67-derived cobalt/nitrogen-doped carbon composites for efficient electrocatalytic N2 reduction
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
Liang et al. Topochemical synthesis, anion exchange, and exfoliation of Co− Ni layered double hydroxides: a route to positively charged Co− Ni hydroxide nanosheets with tunable composition
Sahoo et al. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide
Hua et al. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3 (OH) 2 and their application as precursors for high-power cathode materials
CN101409341B (zh) 一种应用于锂离子电池的钛酸锂负极材料的制备方法
US10903495B2 (en) Electrode material for battery and method for manufacturing same
CN117154069A (zh) 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料
CN108993513B (zh) 一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法
CN110292939B (zh) 一种双碳限域的铱纳米团簇及其制备方法和应用
CN108609599A (zh) 氢氧化镍纳米片自组装磷酸镍钴棒状结构复合材料的制备方法
CN108435211A (zh) 一种Ce掺杂的Ni-Fe-Ce三元硫化物析氧催化剂的制备方法
CN110316770B (zh) 一种小尺寸、大比表面积碳酸根插层水滑石的制备及其应用
CN109354056A (zh) 一种具有丰富缺陷的铁掺杂硫化铜纳米片材料及其制备方法和应用
CN108394935A (zh) 一种空间限域法合成二硫化钼单层纳米片的方法
Peixoto et al. Hydrothermal synthesis as a versatile tool for the preparation of metal hexacyanoferrates: a review
Vo et al. Tuning selectivity and activity of the electrochemical glycerol oxidation reaction by manipulating morphology and exposed facet of spinel cobalt oxides
CN113023730B (zh) 一种含硅层状双金属氢氧化物的制备方法
Abid et al. Facile synthesis of scheelite-type NdOsO4 directly grown on carbon cloth for oxygen evolution reaction
CN101037231A (zh) 臭氧氧化制备α-FeOOH、β-MnO2和Co3O4纳米材料的简便方法
Yan et al. Preparation and capacitance of MnO2 pillared Co2+− Ni2+− Fe3+ layered double hydroxide porous material supercapacitor
CN114988498B (zh) 一种羟基氯化镍微米花及其制备方法
Wang et al. Fabrication of interface-engineered Ni/NiO/rGO nanobush for highly efficient and durable oxygen reduction
CN103920873B (zh) 包覆有惰性外壳的复合镍纳米颗粒的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant