CN110309576B - 基于排队论的视线角速度随机扰动建模方法 - Google Patents
基于排队论的视线角速度随机扰动建模方法 Download PDFInfo
- Publication number
- CN110309576B CN110309576B CN201910561402.1A CN201910561402A CN110309576B CN 110309576 B CN110309576 B CN 110309576B CN 201910561402 A CN201910561402 A CN 201910561402A CN 110309576 B CN110309576 B CN 110309576B
- Authority
- CN
- China
- Prior art keywords
- bait
- jump
- regression
- angular velocity
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于排队论的视线角速度随机扰动建模方法,用于解决现有制导方法制导精度低的技术问题。技术方案是针对诱饵干扰下导引头视线角速度随机变化特征,建立基于跳变时刻的视线角速度随机扰动模型,包括建立包含9个参量的影响因子集;考虑到降低模型的复杂度及通用性,采用修正Morris灵敏度分析方法筛选对跳变时刻及跳变强度起主要作用的影响因子,进而简化视线角速度的随机扰动模型;针对建模问题引入多元回归分析方法,针对各参量求取其回归系数,进而求解跳变时刻及跳变强度。通过仿真验证所建立的随机扰动模型能准确地估计视线角速度跳变特性,降低诱饵弹的干扰作用,增强了拦截器的抗干扰能力,提高了制导精度。
Description
技术领域
本发明涉及一种视线角速度随机扰动建模方法,特别涉及一种基于排队论的视线角速度随机扰动建模方法。
背景技术
红外干扰技术呈现从被动到主动、从消极的遮蔽干扰到积极的诱骗压制、从单一到智能组合的发展方向。目前所研发的红外诱饵干扰更是从能量、光谱、运动及外形特征方面不断逼近目标飞机,结合灵活的投掷策略其干扰性能被大幅提升。为了抵抗诱饵干扰,提高拦截器抗干扰性能,红外诱饵干扰下的导引头控制问题已成为红外制导武器亟待解决的难题。目前先进的图像识别技术得以应用,使得导引头可在诱饵与目标分离后的几帧内快速识别目标。当识别出目标后,导引头指向会发生瞬间跳变使得制导指令产生阶跃变化,干扰导引头指向,迫使弹体发生摆动而降低制导精度。
发明内容
为了克服现有制导方法制导精度低的不足,本发明提供一种基于排队论的视线角速度随机扰动建模方法。该方法针对诱饵干扰下导引头视线角速度随机变化特征,建立基于跳变时刻的视线角速度随机扰动模型,包括建立包含9个参量的影响因子集;考虑到降低模型的复杂度及通用性,采用修正Morris灵敏度分析方法筛选对跳变时刻及跳变强度起主要作用的影响因子,进而简化视线角速度的随机扰动模型;针对建模问题引入多元回归分析方法,通过利用仿真生成的大量数据分析哪些变量的组合起主要作用,并针对各参量求取其回归系数,进而求解跳变时刻及跳变强度。通过仿真验证所建立的随机扰动模型能准确地估计视线角速度跳变特性,降低诱饵弹的干扰作用,增强了拦截器的抗干扰能力,提高了制导精度。
本发明解决其技术问题所采用的技术方案:一种基于排队论的视线角速度随机扰动建模方法,其特点是包括以下步骤:
根据传感器获取的干扰信息,判断视线角速度跳变时刻以及跳变强度。引入排队论理论对干扰过程进行建模。
其中视线角速度发生跳变的时间点为Ti d,并且有
式(1)中,Ti a及Ti d分别为第i枚诱饵的投掷时刻及干扰作用彻底消失时刻,即第i次视线角速度跳变时刻;为第i枚诱饵在无后续诱饵牵连作用干扰情况下的干扰时长;为第i枚诱饵因后续诱饵牵连作用辅助下额外增加的干扰时长;为第i枚诱饵表示导引头的标准识别窗口长度;表示用于识别目标的窗口数。
其中跳变次数i大部分情况下等于飞机投掷诱饵数量,但当存在如下情况时,诱饵的跳变数量将会减少:
除上述两种情况外,跳变个数则与诱饵投掷数量相等。
因不同窗口下识别出目标的概率向量可表示为:
当K→∞时有
假设导引头的识别效率在一段距离内是相等的,各诱饵的自身干扰时间是相等的,即有
为方便起见,后续中,同一场景下用tN和tJ表示每枚诱饵的一般干扰时长和牵连作用下增加的时长。因两者受众多因素的影响,为此假设
其中,Rl表示拦截器发射距离,Rd为诱饵的投掷距离,αc及θc分别表示载机水平及高低方向进入角,Δt表示诱饵投掷间隔,vm、vt及vf分别表示拦截器速度、目标速度以及诱饵相对于飞机的投掷速度;αf表示诱饵相对于飞机纵轴的水平方向投掷角,此处假设诱饵高低方向的投掷角度垂直于飞机纵轴向下。
得到诱饵的跳变时刻的期望和方差分别为
假设各点跳变强度的期望为
自此,完成关于跳变数量、跳变时刻及跳变幅度三个跳变特征量的建模。
建立基于多因子的实现角速度随机跳变模型其解决过程需要先将其进行约简以降低模型复杂度,增高模型的普适性。所述针对多变量输入多变量输出的修正Morris灵敏度分析方法具体为:
根据Morris灵敏度分析方法,建立如下轨迹矩阵:
B*=(Jm,1x*+(△/2)[(2B-Jm,k)D*+Jm,k])P* (13)
式(13)中,Jm,k是一个(m*k)全1矩阵,其中m=k+1;x*是从可选变量集x中随机选择的变量,其值介于[0,1]之间,其中x={0,1/(p-1),2/(p-1),3/(p-1),...,(p-2)/(p-1)};B是一个(m*k)采样矩阵,其下三角单位矩阵中仅包含0和1;D*是一个k维对角矩阵,并且对角元素以等概率取+1或者-1;P*为一个k维矩阵,且每一行及每一列只有一个1,其余元素都为0.由此生成的轨迹矩阵,每一列各元素的取值都在规定区间内,且每列之间只变化一个元素。
为了保证采样策略对采样值的等概率采样,选取修正Morris方法,对其进行筛选,其中选用如下距离公式来衡量两个轨迹m和l之间的距离
式(14)中,表示第z个坐标系下第i个点的第M个Morris轨迹;通过生成大量的不同的Morris轨迹,M~100-500.从中选择r个具有最高传播度的轨迹。其中r个轨迹的选取是通过最大化距离dml。由此选择的r个轨迹保证其对各采样点采样的概率近似相等。
评价标准为:
仅针对首个跳变点的跳变强度进行分析。
其中通过上述分析得到约简后的各函数表达式为
为求解公式(16)-(19)的具体表达式,将灵敏度分析结果与逐步回归相结合,进而求解跳变模型的回归方程。
结合多元回归分析求解回归模型,从实验所得的大数据中发现变量间的关系,其具体求解步骤如下。
(a)获取输入输出数据。
对不同(vt,vf)下的tN进行N0组独立观测,获取样本i=1,2,…,N0;同时对不同(vt,△t)组合下的tJ进行N1组独立观测,取得样本j=1,2,…,N1以及不同(Rd,vf,vt,αm,△t,)组合下的E(I1)及E(I2)分别进行N2组独立测量。其中为保证样本的覆盖性,本文选用遍历法生成样本数据。
(b)建立跳变模型回归方程。
以输出量tN为例,根据训练数据建立如下模型
公式(20)中, z·j为vf与vt的非线性函数,其具体形式需依据变量所起的作用进行设置后经逐步回归分析加以调整;Q为tN的自变量个数;Z称为回归矩阵,需满足rank(Z)=Q+1<N0;为回归系数;为服从高斯分布回归误差。
针对公式(20)建立如下回归方程
(c)求解回归系数。
当(Z'Z)-1存在时,利用最小二乘估计所得的偏回归系数为
当(Z'Z)-1不存在时,利用岭回归估计的回归参数为
其中k称为岭参数。
(d)利用回归方程预测tN。
将式(22)或(23)带入式(16)估计标准干扰时长tN,进而估计出跳变特征。
本发明的有益效果是:该方法针对诱饵干扰下导引头视线角速度随机变化特征,建立基于跳变时刻的视线角速度随机扰动模型,包括建立包含9个参量的影响因子集;考虑到降低模型的复杂度及通用性,采用修正Morris灵敏度分析方法筛选对跳变时刻及跳变强度起主要作用的影响因子,进而简化视线角速度的随机扰动模型;针对建模问题引入多元回归分析方法,通过利用仿真生成的大量数据分析哪些变量的组合起主要作用,并针对各参量求取其回归系数,进而求解跳变时刻及跳变强度。通过仿真验证所建立的随机扰动模型能准确地估计视线角速度跳变特性,降低诱饵弹的干扰作用,增强了拦截器的抗干扰能力,提高了制导精度。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1为视线角速度变化趋势;
图2为有限时间多通道排队模型
图3为tN灵敏度分析;
图4为tJ灵敏度分析;
图11为tN的估计值;
图12为tJ的估计值;
图13为E(I1)的估计值;
图14为E(I2)的估计值。
具体实施方式
参照图1-14。本发明基于排队论的视线角速度随机扰动建模方法具体步骤如下:
根据传感器获取的干扰信息,判断视线角速度跳变时刻以及跳变强度。引入排队论理论对干扰过程进行建模,如图2所示。
通过利用如上所述的有限时间多通道排队系统可以有效地将红外诱饵的整个干扰过程描述出来,其中视线角速度发生跳变的时间点为Ti d,并且有
式(1)中,Ti a及Ti d分别为第i枚诱饵的投掷时刻及干扰作用彻底消失时刻,即第i次视线角速度跳变时刻;为不考虑诱饵牵连作用时干扰作用消失时刻;为第i枚诱饵在无后续诱饵牵连作用干扰情况下的干扰时长;为第i枚诱饵因后续诱饵牵连作用辅助下额外增加的干扰时长;为第i枚诱饵表示导引头的标准识别窗口长度;表示用于识别目标的窗口数。
其中跳变次数i大部分情况下等于飞机投掷诱饵数量,但当存在如下情况时,诱饵的跳变数量将会减少:
除上述两种情况外,跳变个数则与诱饵投掷数量相等。
因不同窗口下识别出目标的概率向量可表示为:
当K→∞时有
假设导引头的识别效率在一段距离内是相等的,所以一般情况下各诱饵的自身干扰时间是相等的,即有
为方便起见,后续中,同一场景下用tN和tJ表示每枚诱饵的一般干扰时长和牵连作用下增加的时长。因两者受众多因素的影响,为此假设
其中各参数表示意义如表1所示:
表1跳变特性影响因子集
其中,Rl表示拦截器发射距离,Rd为诱饵的投掷距离,αc及θc分别表示载机水平及高低方向进入角,Δt表示诱饵投掷间隔,vm、vt及vf分别表示拦截器速度、目标速度以及诱饵相对于飞机的投掷速度;αf表示诱饵相对于飞机纵轴的水平方向投掷角,此处假设诱饵高低方向的投掷角度垂直于飞机纵轴向下。
至此可得诱饵的跳变时刻的期望和方差分别为
采用表1中的变量作为影响因子,可假设各点跳变强度的期望为
E(Ii)=fIi(Rl,Rd,αc,θc,△t,vm,vt,vf,αf) (12)
由此,对于跳变数量、跳变时刻及跳变幅度三个跳变特征量的建模即已完成,然而为了进一步简化函数表达式,下面引用灵敏度分析方法从表1中筛选出对各个输出量影响程度较大的量作为自变量,这样既简化了建模工作量,也使得在获得上述信息时更加方便容易。
建立基于多因子的实现角速度随机跳变模型其解决过程需要先将其进行约简以降低模型复杂度,增高模型的普适性。所述针对多变量输入多变量输出的修正Morris灵敏度分析方法具体为:
选取影响因子集并确定其取值区间范围,如表1。
根据Morris灵敏度分析方法,建立如下轨迹矩阵:
B*=(Jm,1x*+(△/2)[(2B-Jm,k)D*+Jm,k])P* (13)
式(13)中,Jm,k是一个(m*k)全1矩阵,其中m=k+1;x*是从可选变量集x中随机选择的变量,其值介于[0,1]之间,其中x={0,1/(p-1),2/(p-1),3/(p-1),...,(p-2)/(p-1)};B是一个(m*k)采样矩阵,其下三角单位矩阵中仅包含0和1;D*是一个k维对角矩阵,并且对角元素以等概率取+1或者-1;P*为一个k维矩阵,且每一行及每一列只有一个1,其余元素都为0.由此生成的轨迹矩阵,每一列各元素的取值都在规定区间内,且每列之间只变化一个元素。由此我们便可分析由该变化元素所引起的变化。
为了保证采样策略对采样值的等概率采样,选取修正Morris方法,对其进行筛选,其中我们选用如下距离公式来衡量两个轨迹m和l之间的距离
式(14)中,表示第z个坐标系下第i个点的第M个Morris轨迹;通过生成大量的不同的Morris轨迹,M~100-500.可从中选择r个具有最高传播度的轨迹。其中r个轨迹的选取是通过最大化距离dml。由此选择的r个轨迹可保证其对各采样点采样的概率近似相等。
评价标准为:
由此可得对视线角速度跳变特性影响因子集的灵敏度分布步骤如表2所示。
表2视线角速度跳变特性影响因子筛选步骤
因对各跳变点跳变强度的分析方法是相同的,故下文暂且仅针对首个跳变点的跳变强度进行分析。
其中通过上述分析可得约简后的各函数表达式为
为求解公式(16)-(19)的具体表达式,下文将灵敏度分析结果与逐步回归相结合,进而求解跳变模型的回归方程。
结合多元回归分析求解回归模型,从实验所得的大数据中发现变量间的关系,其具体求解步骤如下。
(a)获取输入输出数据。
对不同(vt,vf)下的tN进行N0组独立观测,获取样本i=1,2,…,N0;同时对不同(vt,△t)组合下的tJ进行N1组独立观测,取得样本j=1,2,…,N1以及不同(Rd,vf,vt,αm,△t,)组合下的E(I1)及E(I2)分别进行N2组独立测量。其中为保证样本的覆盖性,本文选用遍历法生成样本数据。
(b)建立跳变模型回归方程。
以输出量tN为例,根据训练数据建立如下模型
公式(20)中, z·j为vf与vt的非线性函数,其具体形式需依据变量所起的作用进行设置后经逐步回归分析加以调整;Q为tN的自变量个数;Z称为回归矩阵,需满足rank(Z)=Q+1<N0;为回归系数;为服从高斯分布回归误差。
针对公式(20)建立如下回归方程
(c)求解回归系数。
当(Z'Z)-1存在时,利用最小二乘估计所得的偏回归系数为
当(Z'Z)-1不存在时,利用岭回归估计的回归参数为
其中k称为岭参数。
(d)利用回归方程预测tN。
将式(22)或(23)带入式(16)可估计标准干扰时长tN。对于其他输出量,该方法同样适用,为此便可估计出跳变特征。
为了理解本发明,以下详细描述。其中初始参数值设置情况如下所示。
拦截器、目标及诱饵的初始参数如表3所示。
表3初始参数设置
实施例1:求解tN的回归方程。
利用遍历法对vt和vf进行随机组合,其中vt的间隔可为20m/s,vf的选取间隔为2m/s,然后抽取其中147组数据进行回归训练,最终所得的回归方程如下所示
为了检验回归方程的有效性,引入F检验和t检验,最后该模型的确定系数R2=0.9957,修正确定系数F检验下的p值为4.7828e-88。并且回归方程中各系数均通过t检验。并且对于残差分布的检测如图7所示,满足零均值高斯分布,故对回归方程的假设成立。
实施例2:求解tJ的回归方程。
为了求解tJ的回归方程,选取159组数据进行回归建模,其最终所得回归方程为
最终由F及t检验的结果为p=3.3971e-44,确定系数R2=0.8631,修正确定系数 且各回归系数通过t检验。其中针对残差的分布形式的分析如图8所示。由图8可知其残差分布满足零均值高斯分布,说明对于的回归模型是有效的。
实施例3:求解E(I1)的回归方程。
同理,分别对E(I1)的影响因子进行遍历取样并随机组合,之后采用420组数据对E(I1)进行回归分析,其最终表达式如下所示
实施例4:求解E(I2)的回归方程。
同样对于E(I2)的分析方法与上面相同,最终所得的回归方程形式为
其中F检测下的p=3.05e-31,确定系数R2=0.723,修正确定系数并且回归系数都通过了t检验。其残差分布如图10所示。有图10可知,对于残差服从零均值高斯分布发的假设是成立的。由此也说明了该回归方程的有效性。
实施例5:测试回归方程有效性。
根据上面所建立的回归方程,利用测试数据对其进行测试,其结果如图11-图14,通过对比结果可知,该模型对于跳变时刻的估计精度很高,看达到10-2s级精度,而对于跳变幅度的估计精度只可到达100°/s,甚至101°/s。但是,对于跳变时间点的掌控才是最为关键,这样就可以避免导引头的瞬间突变,从而提高了弹体的稳定程度。为此这也说明了本文模型的有效性。
通过上述分析可知,跳变模型具有较好的泛化能力,无论是在精确已知诱饵干扰参数情况下还是估计存在偏差情况下,对跳变特性的预测精度都较高,这为红外诱饵干扰条件下在线补偿视线角速度提供了强有力的理论支撑。
Claims (1)
1.一种基于排队论的视线角速度随机扰动建模方法,其特征在于包括以下步骤:
根据传感器获取的干扰信息,判断视线角速度跳变时刻以及跳变强度;引入排队论理论对干扰过程进行建模;
其中视线角速度发生跳变的时间点为Ti d,并且有
式(1)中,Ti a及Ti d分别为第i枚诱饵的投掷时刻及干扰作用彻底消失时刻,即第i次视线角速度跳变时刻;为第i枚诱饵在无后续诱饵牵连作用干扰情况下的干扰时长;为第i枚诱饵因后续诱饵牵连作用辅助下额外增加的干扰时长;为第i枚诱饵表示导引头的标准识别窗口长度;表示用于识别目标的窗口数;
其中跳变次数i大部分情况下等于飞机投掷诱饵数量,但当存在如下情况时,诱饵的跳变数量将会减少:
除上述两种情况外,跳变个数则与诱饵投掷数量相等;
因不同窗口下识别出目标的概率向量可表示为:
当K→∞时有
假设导引头的识别效率在一段距离内是相等的,各诱饵的自身干扰时间是相等的,即有
为方便起见,后续中,同一场景下用tN和tJ表示每枚诱饵的一般干扰时长和牵连作用下增加的时长;因两者受众多因素的影响,为此假设
其中,Rl表示拦截器发射距离,Rd为诱饵的投掷距离,αc及θc分别表示载机水平及高低方向进入角,Δt表示诱饵投掷间隔,vm、vt及vf分别表示拦截器速度、目标速度以及诱饵相对于飞机的投掷速度;αf表示诱饵相对于飞机纵轴的水平方向投掷角,此处假设诱饵高低方向的投掷角度垂直于飞机纵轴向下;
得到诱饵的跳变时刻的期望和方差分别为
假设各点跳变强度的期望为
自此,完成关于跳变数量、跳变时刻及跳变幅度三个跳变特征量的建模;
建立基于多因子的实现角速度随机跳变模型其解决过程需要先将其进行约简以降低模型复杂度,增高模型的普适性;针对多变量输入多变量输出的修正Morris灵敏度分析方法具体为:
根据Morris灵敏度分析方法,建立如下轨迹矩阵:
B*=(Jm,1x*+(△/2)[(2B-Jm,k)D*+Jm,k])P* (13)
式(13)中,Jm,k是一个(m*k)全1矩阵,其中m=k+1;x*是从可选变量集x中随机选择的变量,其值介于[0,1]之间,其中x={0,1/(p-1),2/(p-1),3/(p-1),...,(p-2)/(p-1)};B是一个(m*k)采样矩阵,其下三角单位矩阵中仅包含0和1;D*是一个k维对角矩阵,并且对角元素以等概率取+1或者-1;P*为一个k维矩阵,且每一行及每一列只有一个1,其余元素都为0.由此生成的轨迹矩阵,每一列各元素的取值都在规定区间内,且每列之间只变化一个元素;
为了保证采样策略对采样值的等概率采样,选取修正Morris方法,对其进行筛选,其中选用如下距离公式来衡量两个轨迹m和l之间的距离
式(14)中,表示第z个坐标系下第i个点的第M个Morris轨迹;通过生成大量的不同的Morris轨迹,M~100-500.从中选择r个具有最高传播度的轨迹;其中r个轨迹的选取是通过最大化距离dml;
评价标准为:
仅针对首个跳变点的跳变强度进行分析;
其中通过上述分析得到约简后的各函数表达式为
为求解公式(16)-(19)的具体表达式,将灵敏度分析结果与逐步回归相结合,进而求解跳变模型的回归方程;
结合多元回归分析求解回归模型,从实验所得的大数据中发现变量间的关系,其具体求解步骤如下;
(a)获取输入输出数据;
对不同(vt,vf)下的tN进行N0组独立观测,获取样本同时对不同(vt,△t)组合下的tJ进行N1组独立观测,取得样本以及不同(Rd,vf,vt,αm,△t,)组合下的E(I1)及E(I2)分别进行N2组独立测量;其中为保证样本的覆盖性,本文选用遍历法生成样本数据;
(b)建立跳变模型回归方程;
以输出量tN为例,根据训练数据建立如下模型
公式(20)中, z·j为vf与vt的非线性函数,其具体形式需依据变量所起的作用进行设置后经逐步回归分析加以调整;Q为tN的自变量个数;Z称为回归矩阵,需满足rank(Z)=Q+1<N0;为回归系数;为服从高斯分布回归误差;
针对公式(20)建立如下回归方程
(c)求解回归系数;
当(Z'Z)-1存在时,利用最小二乘估计所得的偏回归系数为
当(Z'Z)-1不存在时,利用岭回归估计的回归参数为
其中k称为岭参数;
(d)利用回归方程预测tN;
将式(22)或(23)带入式(16)估计标准干扰时长tN,进而估计出跳变特征。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910561402.1A CN110309576B (zh) | 2019-06-26 | 2019-06-26 | 基于排队论的视线角速度随机扰动建模方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910561402.1A CN110309576B (zh) | 2019-06-26 | 2019-06-26 | 基于排队论的视线角速度随机扰动建模方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110309576A CN110309576A (zh) | 2019-10-08 |
CN110309576B true CN110309576B (zh) | 2022-04-29 |
Family
ID=68076222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910561402.1A Active CN110309576B (zh) | 2019-06-26 | 2019-06-26 | 基于排队论的视线角速度随机扰动建模方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110309576B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111174643B (zh) * | 2020-01-16 | 2022-03-29 | 中国人民解放军火箭军工程大学 | 一种诱饵干扰情况下的飞行器拦截方法及系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5748508A (en) * | 1992-12-23 | 1998-05-05 | Baleanu; Michael-Alin | Method and device for signal analysis, process identification and monitoring of a technical process |
CN107529366B (zh) * | 2009-10-22 | 2014-02-26 | 中国航天空气动力技术研究院 | 带弹道角约束的制导方法 |
CN104063623A (zh) * | 2014-07-09 | 2014-09-24 | 北京航空航天大学 | 一种基于量子成像的飞行器预测制导方案 |
CN106370059A (zh) * | 2016-08-26 | 2017-02-01 | 方洋旺 | 一种随机快速光滑二阶滑模末制导方法 |
CN106485035A (zh) * | 2016-11-23 | 2017-03-08 | 长春理工大学 | 基于随机有限元分析的红外诱饵弹气动特性建模方法 |
CN108287476A (zh) * | 2018-02-06 | 2018-07-17 | 哈尔滨工业大学 | 基于高阶滑模控制和扰动观测器的空间翻滚非合作目标自主交会制导方法 |
CN108416098A (zh) * | 2018-02-02 | 2018-08-17 | 北京航空航天大学 | 一种拦截机动目标的攻击时间约束制导律设计方法 |
CN108958278A (zh) * | 2018-08-14 | 2018-12-07 | 北京航空航天大学 | 一种空天飞行器巡航段快速抗干扰制导方法 |
CN109670203A (zh) * | 2018-11-15 | 2019-04-23 | 中国人民解放军空军工程大学 | 一种诱饵干扰下视线角速度跳变模型的构建方法及其应用 |
-
2019
- 2019-06-26 CN CN201910561402.1A patent/CN110309576B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5748508A (en) * | 1992-12-23 | 1998-05-05 | Baleanu; Michael-Alin | Method and device for signal analysis, process identification and monitoring of a technical process |
CN107529366B (zh) * | 2009-10-22 | 2014-02-26 | 中国航天空气动力技术研究院 | 带弹道角约束的制导方法 |
CN104063623A (zh) * | 2014-07-09 | 2014-09-24 | 北京航空航天大学 | 一种基于量子成像的飞行器预测制导方案 |
CN106370059A (zh) * | 2016-08-26 | 2017-02-01 | 方洋旺 | 一种随机快速光滑二阶滑模末制导方法 |
CN106485035A (zh) * | 2016-11-23 | 2017-03-08 | 长春理工大学 | 基于随机有限元分析的红外诱饵弹气动特性建模方法 |
CN108416098A (zh) * | 2018-02-02 | 2018-08-17 | 北京航空航天大学 | 一种拦截机动目标的攻击时间约束制导律设计方法 |
CN108287476A (zh) * | 2018-02-06 | 2018-07-17 | 哈尔滨工业大学 | 基于高阶滑模控制和扰动观测器的空间翻滚非合作目标自主交会制导方法 |
CN108958278A (zh) * | 2018-08-14 | 2018-12-07 | 北京航空航天大学 | 一种空天飞行器巡航段快速抗干扰制导方法 |
CN109670203A (zh) * | 2018-11-15 | 2019-04-23 | 中国人民解放军空军工程大学 | 一种诱饵干扰下视线角速度跳变模型的构建方法及其应用 |
Non-Patent Citations (2)
Title |
---|
A new guidance law based on information fusion and optimal control of structure stochastic jump system;Zeng, XW;Fang, YW;Wu, YL;Wang, HQ;Zhou, XB;Xie, ZH;《2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS》;IEEE;20071008;第1-11页 * |
红外诱饵干扰下导引头视线角速度跳变特征建模;徐洋,方洋旺,伍友利,肖冰松,张丹旭,刘欢;《红外与激光工程》;20181227;第624-627页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110309576A (zh) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11669110B2 (en) | Control system based on multi-unmanned aerial vehicle cooperative strategic confrontation | |
CN112904290B (zh) | 一种雷达智能认知抗干扰策略的生成方法 | |
CN107818219B (zh) | 一种面向突防的多导弹协同弹道规划方法 | |
CN112642161B (zh) | 射击游戏的作弊检测、模型训练方法、设备及存储介质 | |
CN109188443B (zh) | 一种基于交互多模型的被动目标跟踪方法 | |
CN114740497B (zh) | 基于ukf多源融合探测的无人机欺骗方法 | |
CN104050318A (zh) | 一种战术导弹武器系统精度仿真及校验方法 | |
CN110309576B (zh) | 基于排队论的视线角速度随机扰动建模方法 | |
CN109670203B (zh) | 一种诱饵干扰下视线角速度跳变模型的构建方法及其应用 | |
JP6495905B2 (ja) | Tofデータ取得のための強度補正 | |
CN114935738A (zh) | 时域离散类主瓣干扰下基于样本识别的雷达和差测角方法 | |
CN102830394B (zh) | 基于多谱线积累的弱目标探测方法 | |
CN114282363A (zh) | 基于数字域的雷达告警设备仿真系统 | |
CN116929143B (zh) | 基于数字孪生的防空装备射击边界试验系统及方法 | |
CN116680860A (zh) | 一种基于场景驱动的雷达航迹模拟方法 | |
CN115586496A (zh) | 一种基于mab模型的far抗有源压制干扰策略生成方法 | |
CN114662392A (zh) | 基于深度学习的雷达防空侦察效能评估方法 | |
CN113835360A (zh) | 一种基于误差分析的复合引信定高精度仿真评估方法 | |
CN110161866A (zh) | 红外诱饵干扰下的视线角速度扰动建模方法 | |
CN113075652B (zh) | 一种高超声速飞行器三维跟踪方法 | |
Vora et al. | Radio frequency seeker modelling and seeker filter design | |
Haoyu et al. | Simulation and effectiveness analysis on one versus one beyond visual range air combat | |
US20230334351A1 (en) | Normalized techniques for threat effect pairing | |
Han et al. | Information fusion algorithm for target tracking of composite seeker | |
Klausen et al. | Battlefield Strategy from Deep Reinforcement Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |