CN110304917A - 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 - Google Patents
用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 Download PDFInfo
- Publication number
- CN110304917A CN110304917A CN201910670959.9A CN201910670959A CN110304917A CN 110304917 A CN110304917 A CN 110304917A CN 201910670959 A CN201910670959 A CN 201910670959A CN 110304917 A CN110304917 A CN 110304917A
- Authority
- CN
- China
- Prior art keywords
- barium titanate
- bracket
- bone tissue
- piezoelectric ceramics
- tissue engineer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/10—Ceramics or glasses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0038—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
- C04B38/0041—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/36—Glass starting materials for making ceramics, e.g. silica glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明提供了一种用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,包括:将60‑80wt%的包覆生物活性玻璃的钛酸钡粉末、10‑20wt%乙醇、5‑15wt%的粘结剂聚乙烯吡咯烷酮混合,搅拌,得到打印墨水;使用三维建模软件设计50%‑90%孔隙率的多孔模型,进行三维打印,得到多孔支架素坯;将多孔支架素坯置于管式炉中烧结,得到用于骨组织工程的钛酸钡压电陶瓷支架。本发明以包覆生物活性玻璃的钛酸钡为原料,采用三维打印技术制备出多孔复合陶瓷支架,具有很好的生物活性和压电性,能够精确控制支架的内部结构,成型过程简单。
Description
技术领域
本发明属于材料学领域,具体来说是一种用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法。
背景技术
骨组织工程作为骨缺损修复领域最具有前景的方法得到了广泛的认可,它的提出和发展改变了传统的骨缺损修复治疗模式。骨组织工程包括三个基本要素—细胞、支架材料和信号分子,其中支架材料作为构建骨组织工程最基本的载体材料,在骨组织工程中扮演着非常重要的角色。除此以外,研究表明物理刺激如超声刺激、脉冲电刺激、直流电刺激等也具有促进骨缺损的修复,它们的作用机理是促进了与成骨相关基因的表达,增加了局部血流量、营养物质、生长因子的运输以及代谢废物的转移等。钛酸钡压电陶瓷作为支架材料已经证明具有很好的促成骨作用,而生物玻璃具有极佳的生物活性,并且其降解产物也是骨修复过程中所必须的。因此钛酸钡压电陶瓷支架因人体机械运动产生的压电效应协同生物玻璃优秀的生物活性具有很好的促成骨作用,加速骨缺损的修复。
传统制备陶瓷支架的方法主要为造孔剂法,冷冻干燥法和有机泡沫浸渍法。但是这些方法都不能精确调控支架的内部结构和孔的连通性。研究发现,支架的内部结构包括孔的大小、形状和连通性等都会影响支架的降解、离子释放、营养物质输送、细胞粘附及生长等情况,对细胞行为产生重要影响。
三维打印技术作为一种新型快速成型技术能够精确控制支架的外观以及内部孔的形状、大小和连通性,制备出有利于细胞生长和成骨的骨组织工程支架。此外,三维打印技术操作便捷、重复性强,对材料本身性质影响较小。
发明内容
本发明的目的是提供一种基于3D打印的骨组织工程的钛酸钡压电陶瓷支架的制备方法。
为了达到上述目的,本发明提供了一种用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,包括:
步骤1:将钛酸钡纳米颗粒分散在乙醇中,加入乙酸活化,搅拌,超声处理后,边搅拌边加入正硅酸四乙酯,加入氨水调节pH值为8-9.5,搅拌,再加入四水硝酸钙,35-45℃搅拌,离心收集所得固体并洗涤至中性,烘干,得到包覆生物活性玻璃的钛酸钡粉末(BTO@BG);
步骤2:将60-80wt%的包覆生物活性玻璃的钛酸钡粉末、10-20wt%乙醇、5-15wt%的粘结剂聚乙烯吡咯烷酮混合,搅拌,得到打印墨水;
步骤3:使用三维建模软件设计50%-90%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中;启动三维打印程序,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架干燥,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以0.8-1.2℃/min的速度加热到300-500℃,保温1-2小时,然后以2.5-3.5℃/min的速度加热到1150-1250℃,保温1-3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架。
优选地,所述的3D打印机的针头直径为400-1000μm,三维打印的条件包括:气压为1-5bar,打印速度为1.0-12.0mm/s,墨水相邻两层走向夹角为45-90°。
优选地,所述的步骤1中的包覆生物活性玻璃的钛酸钡粉末用溶胶凝胶法制得。
优选地,所述的步骤1中的包覆生物活性玻璃的钛酸钡粉末中生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃的质量比为100:5-20。
优选地,所述的钛酸钡纳米颗粒的粒径尺寸≤1微米。
优选地,所述的三维建模软件是Soild edge、SolidWorks、C4D或AUTOCAD。
优选地,所述的3D打印机是第四代3-D BioplotterTM(EnvisionTEC GmbH,Germany)打印机。
优选地,所述的钛酸钡纳米颗粒、正硅酸四乙酯以及四水硝酸钙的质量比为1:2.4-8:8.7-25。
与现有技术相比,本发明的有益效果是:
1、本发明以包覆生物活性玻璃的钛酸钡为原料,采用三维打印技术制备出多孔复合陶瓷支架,具有很好的生物活性和压电性,能够精确控制支架的内部结构,成型过程简单。
2、本发明的方法提高了支架的生物学性能并且实现电刺激促进成骨作用。
3、对所述多孔支架的理化性能和生物学性能检测得知,支架具有三维连通的大孔结构,孔径为50-1000微米,孔隙率在50-90%可调,力学性能良好(2-10MPa),并且对人体骨髓间质干细胞的增殖、分化和成骨起促进作用。本发明的多孔支架制备方法为骨组织工程陶瓷支架的制备提供了新的技术,有望为骨组织工程支架制备及骨缺损修复治疗带来新的策略。
4、本发明解决了目前3D打印钛酸钡过程中,打印过程复杂,不能精确调控支架的内部结构和孔的连通性的技术问题。
附图说明
图1是本发明实施例1所制备的多孔BTO@BG陶瓷支架的光学照片。
图2是本发明实施例1所制备的多孔BTO@BG陶瓷支架的SEM图。
图3是本发明实施例1所制备的多孔BTO@BG粉体的TEM图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
以下实施例中所用的3D打印机是第四代3-D BioplotterTM(EnvisionTEC GmbH,Germany)打印机。
以下实施例中所用到的各原料均为市售产品。
实施例1
一种用于骨组织工程的钛酸钡压电陶瓷支架,具体步骤为:
步骤1:将20g粒径尺寸≤1微米的钛酸钡纳米颗粒分散在100mL乙醇中,加入5mL摩尔浓度为17.5mol/L的乙酸活化,搅拌30min,超声处理30min后,边搅拌边加入8g正硅酸四乙酯,加入摩尔浓度为14.8mol/L的氨水调节pH值为9,搅拌,再加入2g四水硝酸钙,40℃搅拌4h,离心收集所得固体并洗涤至中性,60℃烘干,得到包覆生物活性玻璃的钛酸钡粉末(BTO@BG),生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃质量比为100:15。
步骤2:将70wt%的包覆生物活性玻璃的钛酸钡粉末、20wt%乙醇、10wt%的粘结剂聚乙烯吡咯烷酮(K60)混合,迅速搅拌均匀,得到打印墨水;
步骤3:使用CAD三维建模软件设计多孔结构,得到50%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,调整参数对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中,针头直径为400μm;启动三维打印程序,调节气压为2bar,打印速度为6.0mm/s,墨水相邻两层走向夹角为90°,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架在37℃烘箱中干燥24小时,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以1℃/min的速度加热到300℃,保温2小时,然后以3℃/min的速度加热到1150℃,保温3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架,如图1-3所示。
将得到的钛酸钡支架进行极化,将支架放在极化装置中,温度设定为100℃,计划电压为3kV,极化时间为10min,极化后将支架清洗干净,烘干消毒后,分别进行CCK-8和碱性磷酸酶(ALP)检测,以此来判断支架的生物相容性和成骨分化情况,结果显示支架材料都具有很好的细胞相容性,并且具有生物玻璃包覆的支架比纯钛酸钡支架具有更好地促进干细胞成骨分化的作用。
实施例2
一种用于骨组织工程的钛酸钡压电陶瓷支架,具体步骤为:
步骤1:将20g粒径尺寸≤1微米的钛酸钡纳米颗粒分散在100mL乙醇中,加入5mL摩尔浓度为17.5mol/L的乙酸活化,搅拌30min,超声处理30min后,边搅拌边加入5g正硅酸四乙酯,加入摩尔浓度为14.8mol/L氨水调节pH值为9.5,搅拌,再加入1.5g四水硝酸钙,40℃搅拌4h,离心收集所得固体并洗涤至中性,60℃烘干,得到包覆生物活性玻璃的钛酸钡粉末(BTO@BG),生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃质量比为100:10。
步骤2:将75wt%的包覆生物活性玻璃的钛酸钡粉末、10wt%乙醇、15wt%的粘结剂聚乙烯吡咯烷酮(K60)混合,迅速搅拌均匀,得到打印墨水;
步骤3:使用CAD三维建模软件设计多孔结构,得到60%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,调整参数对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中,针头直径为600μm;启动三维打印程序,调节气压为2bar,打印速度为10mm/s,墨水相邻两层走向夹角为90°,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架在37℃烘箱中干燥12小时,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以1℃/min的速度加热到300℃,保温2小时,然后以3℃/min的速度加热到1200℃,保温3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架。
将得到的钛酸钡支架进行极化,将支架放在极化装置中,温度设定为100℃,计划电压为3kV,极化时间为10min,极化后将支架清洗干净,烘干消毒后,分别进行CCK-8和碱性磷酸酶(ALP)检测,以此来判断支架的生物相容性和成骨分化情况,结果显示支架材料都具有很好的细胞相容性,并且具有生物玻璃包覆的支架比纯钛酸钡支架具有更好地促进干细胞成骨分化的作用。
实施例3
一种用于骨组织工程的钛酸钡压电陶瓷支架,具体步骤为:
步骤1:将20g粒径尺寸≤1微米的钛酸钡纳米颗粒分散在100mL乙醇中,加入5mL摩尔浓度为17.5mol/L的乙酸活化,搅拌30min,超声处理30min后,边搅拌边加入3g正硅酸四乙酯,加入摩尔浓度为14.8mol/L氨水调节pH值为8.5,搅拌,再加入0.8g四水硝酸钙,40℃搅拌4h,离心收集所得固体并洗涤至中性,60℃烘干,得到包覆生物活性玻璃的钛酸钡粉末(BTO@BG),生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃质量比为100:20。
步骤2:将60wt%的包覆生物活性玻璃的钛酸钡粉末、15wt%乙醇、25wt%的粘结剂聚乙烯吡咯烷酮(K30)混合,迅速搅拌均匀,得到打印墨水;
步骤3:使用CAD三维建模软件设计多孔结构,得到70%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,调整参数对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中,针头直径为400μm;启动三维打印程序,调节气压为1.5bar,打印速度为12.0mm/s,墨水相邻两层走向夹角为90°,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架在37℃烘箱中干燥12小时,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以1℃/min的速度加热到300℃,保温2小时,然后以3℃/min的速度加热到1250℃,保温3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架。
将得到的钛酸钡支架进行极化,将支架放在极化装置中,温度设定为100℃,计划电压为3kV,极化时间为10min,极化后将支架清洗干净,烘干消毒后,分别进行CCK-8和碱性磷酸酶(ALP)检测,以此来判断支架的生物相容性和成骨分化情况,结果显示支架材料都具有很好的细胞相容性,并且具有生物玻璃包覆的支架比纯钛酸钡支架具有更好地促进干细胞成骨分化的作用。
上述内容详细描述了本发明较佳具体实例。应当理解,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (6)
1.一种用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,包括:
步骤1:将钛酸钡纳米颗粒分散在乙醇中,加入乙酸活化,搅拌,超声处理后,边搅拌边加入正硅酸四乙酯,加入氨水调节pH值为8-9.5,搅拌,再加入四水硝酸钙,35-45℃搅拌,离心收集所得固体并洗涤至中性,烘干,得到包覆生物活性玻璃的钛酸钡粉末;
步骤2:将60-80wt%的包覆生物活性玻璃的钛酸钡粉末、10-20wt%乙醇、5-15wt%的粘结剂聚乙烯吡咯烷酮混合,搅拌,得到打印墨水;
步骤3:使用三维建模软件设计50%-90%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中;启动三维打印程序,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架干燥,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以0.8-1.2℃/min的速度加热到300-500℃,保温1-2小时,然后以2.5-3.5℃/min的速度加热到1150-1250℃,保温1-3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架。
2.如权利要求1所述的用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,所述的3D打印机的针头直径为400-1000μm,三维打印的条件包括:气压为1-5bar,打印速度为1.0-12.0mm/s,墨水相邻两层走向夹角为45-90°。
3.如权利要求1所述的用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,所述的步骤1中的包覆生物活性玻璃的钛酸钡粉末中生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃的质量比为100:5-20。
4.如权利要求1所述的用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,所述的钛酸钡纳米颗粒的粒径尺寸≤1微米。
5.如权利要求1所述的用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,所述的三维建模软件是Soild edge、SolidWorks、C4D或AUTOCAD。
6.如权利要求1所述的用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,所述的3D打印机是第四代3-D BioplotterTM打印机。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910670959.9A CN110304917B (zh) | 2019-07-24 | 2019-07-24 | 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910670959.9A CN110304917B (zh) | 2019-07-24 | 2019-07-24 | 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110304917A true CN110304917A (zh) | 2019-10-08 |
CN110304917B CN110304917B (zh) | 2021-11-26 |
Family
ID=68080481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910670959.9A Active CN110304917B (zh) | 2019-07-24 | 2019-07-24 | 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110304917B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112773939A (zh) * | 2020-12-24 | 2021-05-11 | 广州医科大学附属口腔医院(广州医科大学羊城医院) | 一种低钛酸钡含量骨修复3d打印材料及其制备方法和应用 |
CN113845700A (zh) * | 2021-09-28 | 2021-12-28 | 四川大学 | 一种钛酸钡基体复合材料及其diw打印成型方法和应用 |
CN115074314A (zh) * | 2022-03-28 | 2022-09-20 | 北京大学口腔医学院 | 一种调控干细胞成骨分化的材料及其制备方法和应用 |
CN115295717A (zh) * | 2022-01-24 | 2022-11-04 | 青岛大学 | 一种3d打印压电钛酸钡复合材料的制备方法及压电器件 |
WO2024055997A1 (zh) * | 2022-09-14 | 2024-03-21 | 华东理工大学 | 一种具有高效促成骨作用的压电多孔支架及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090198345A1 (en) * | 2008-02-04 | 2009-08-06 | Chung Shan Medical University | Calcium silicate-based composite cement and manufacturing method thereof |
CN102793949A (zh) * | 2012-08-23 | 2012-11-28 | 东华大学 | 一种具有生物活性的CaO-SiO2/PAA复合膜材料的制备方法 |
CN106178101A (zh) * | 2016-07-20 | 2016-12-07 | 上海理工大学 | 一种多孔生物活性玻璃陶瓷支架的制备方法 |
CN106237392A (zh) * | 2016-08-26 | 2016-12-21 | 华南理工大学 | 一种仿骨压电性的三维陶瓷支架材料及其制备方法与应用 |
CN109453426A (zh) * | 2018-09-03 | 2019-03-12 | 北京化工大学 | 一种骨修复用生物活性陶瓷纤维复合支架及其制备方法 |
-
2019
- 2019-07-24 CN CN201910670959.9A patent/CN110304917B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090198345A1 (en) * | 2008-02-04 | 2009-08-06 | Chung Shan Medical University | Calcium silicate-based composite cement and manufacturing method thereof |
CN102793949A (zh) * | 2012-08-23 | 2012-11-28 | 东华大学 | 一种具有生物活性的CaO-SiO2/PAA复合膜材料的制备方法 |
CN106178101A (zh) * | 2016-07-20 | 2016-12-07 | 上海理工大学 | 一种多孔生物活性玻璃陶瓷支架的制备方法 |
CN106237392A (zh) * | 2016-08-26 | 2016-12-21 | 华南理工大学 | 一种仿骨压电性的三维陶瓷支架材料及其制备方法与应用 |
CN109453426A (zh) * | 2018-09-03 | 2019-03-12 | 北京化工大学 | 一种骨修复用生物活性陶瓷纤维复合支架及其制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112773939A (zh) * | 2020-12-24 | 2021-05-11 | 广州医科大学附属口腔医院(广州医科大学羊城医院) | 一种低钛酸钡含量骨修复3d打印材料及其制备方法和应用 |
CN113845700A (zh) * | 2021-09-28 | 2021-12-28 | 四川大学 | 一种钛酸钡基体复合材料及其diw打印成型方法和应用 |
CN113845700B (zh) * | 2021-09-28 | 2022-10-14 | 四川大学 | 一种钛酸钡基体复合材料及其diw打印成型方法和应用 |
CN115295717A (zh) * | 2022-01-24 | 2022-11-04 | 青岛大学 | 一种3d打印压电钛酸钡复合材料的制备方法及压电器件 |
CN115074314A (zh) * | 2022-03-28 | 2022-09-20 | 北京大学口腔医学院 | 一种调控干细胞成骨分化的材料及其制备方法和应用 |
WO2024055997A1 (zh) * | 2022-09-14 | 2024-03-21 | 华东理工大学 | 一种具有高效促成骨作用的压电多孔支架及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110304917B (zh) | 2021-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110304917A (zh) | 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 | |
CN111070376B (zh) | 一种3d打印仿生多孔生物陶瓷人工骨及其制备方法 | |
WO2022252526A1 (zh) | 一种无机非金属纳米颗粒组装的水凝胶材料及其在增材制造技术中的应用 | |
CN109381749B (zh) | 骨组织修复墨水、组合物、支架及制备方法以及试剂盒 | |
Luo et al. | Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering | |
CN105311673B (zh) | 3d打印介孔生物活性玻璃改性的生物陶瓷支架及其制备方法和用途 | |
CN104826171B (zh) | 一种多尺度仿生人工骨支架的增材制造方法 | |
CN106178101A (zh) | 一种多孔生物活性玻璃陶瓷支架的制备方法 | |
CN106139242A (zh) | 石墨烯修饰的生物陶瓷支架材料及其制备方法和应用 | |
Zhang et al. | 3D-printed composite, calcium silicate ceramic doped with CaSO4· 2H2O: degradation performance and biocompatibility | |
Liu | Fabrication of bioceramic bone scaffolds for tissue engineering | |
CN114560691A (zh) | 抗菌型的光固化3d打印生物陶瓷材料及其制备方法与应用 | |
CN108144113A (zh) | 一种生物活性玻璃多孔骨修复体材料及其制备方法 | |
CN113101410A (zh) | 一种具有均匀中孔的三维连通多级孔结构的磷酸三钙支架及其制备方法和应用 | |
Thangavel et al. | Review of physical, mechanical, and biological characteristics of 3D-printed bioceramic scaffolds for bone tissue engineering applications | |
Li et al. | Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting | |
CN114014647B (zh) | 一种硅酸锌复合磷酸三钙陶瓷支架及其制备方法与应用 | |
CN103598919A (zh) | 一种牙种植体表面生物梯度涂层的制备方法 | |
WO2015167045A1 (ko) | 기능성 인자를 함유하는 나노 스캐폴드 및 이의 제조방법 | |
Qin et al. | Preparation and characterization of different micro/nano structures on the surface of bredigite scaffolds | |
CN109133972A (zh) | 一种多孔生物陶瓷支架及其制备方法 | |
CN107596442A (zh) | Pet材料表面的梯度生物涂层的制备方法及其产品和应用 | |
Gao et al. | Preparation of micro/nanometer-sized porous surface structure of calcium phosphate scaffolds and the influence on biocompatibility | |
CN112408968B (zh) | 一种生物活性3d打印陶瓷及其制备方法 | |
CN109745581A (zh) | 一种含多级孔的生物活性玻璃/聚乳酸-羟基乙酸共聚物复合支架及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |