CN110302812B - 一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用 - Google Patents

一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN110302812B
CN110302812B CN201910486953.6A CN201910486953A CN110302812B CN 110302812 B CN110302812 B CN 110302812B CN 201910486953 A CN201910486953 A CN 201910486953A CN 110302812 B CN110302812 B CN 110302812B
Authority
CN
China
Prior art keywords
bio
composite material
roasting
iodine
vacancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910486953.6A
Other languages
English (en)
Other versions
CN110302812A (zh
Inventor
王少莽
关媛
曾瑞恒
安文
付洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201910486953.6A priority Critical patent/CN110302812B/zh
Publication of CN110302812A publication Critical patent/CN110302812A/zh
Application granted granted Critical
Publication of CN110302812B publication Critical patent/CN110302812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于光催化环境污染物净化技术领域,具体涉及一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用。以球磨后的碘空位BiO1.2I0.6和WO3均匀粉体作为前驱体,在马弗炉中升温加热至350‑550℃,焙烧2‑6h,获得可见光驱动深度分解VOCs光催化复合材料BiO1.2I0.6/WO3。将其应用于VOCs处理中,40wt%BiO1.2I0.6/WO3光催化分解典型VOCs甲苯的效率分别为BiO1.2I0.6和WO3的1.2和1.4倍。瞬态光电流测试结果显示,40wt%BiO1.2I0.6/WO3中光生电子和空穴分离效率明显高于WO3和BiO1.2I0.6

Description

一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用
技术领域
本发明属于光催化环境污染物净化技术领域,尤其涉及一种碘空位 BiO1.2I0.6/WO3复合材料及其制备方法和应用。
背景技术
光催化技术净化环境污染物,因具有可望利用太阳能,反应条件温和,所需设备简单、高效,而被认为是一种理想的实用技术。然而,该技术在实际应用中却面临着高效能可见光驱动的催化材料缺乏的关键问题。
近年来,研究人员发现利用氧化钨(WO3)作为光催化材料降解有机污染物具有较高的催化活性。WO3是一种可见光吸收良好的催化材料,其能隙约为 2.6eV,最大吸收波长可达480nm。此外,WO3的价带电位约为3.3V,价带能级深,氧化能力强,能够将众多有机污染物氧化分解。虽然WO3的光吸收范围较宽,但是其量子效率较低,这主要是由于WO3的光生电子和空穴分离效率较低所致。
发明内容
为了解决WO3光生电子和空穴分离效率低,导致其降解有机污染物效率低的问题,本发明采用碘空位BiO1.2I0.6修饰WO3复合材料,并提供一种可见光驱动高效分解VOCs催化复合材料BiO1.2I0.6/WO3的制备方法。
本发明提供的碘空位BiO1.2I0.6/WO3复合材料为采用碘空位BiO1.2I0.6修饰WO3复合材料,其中,碘空位BiO1.2I0.6在复合材料中的质量含量为10wt%-50wt%。
本发明还提供了一种碘空位BiO1.2I0.6/WO3复合材料的制备方法,其制备方法包括以下步骤:
(1)、将碘化钾的乙二醇溶液滴入硝酸铋的乙二醇溶液中,避光磁搅拌反
应0.5-1h后,将混合液转入高压反应釜,140-180℃反应8-12h,自然冷却至室温,过滤、洗涤、80℃干燥后获得BiOI;其中,碘化钾和硝酸铋摩尔比为1:1。
(2)、称取适量BiOI放入坩埚,并将其置于马弗炉中,以5-10℃/min的升温速率加热至350-550℃,焙烧2-6h,自然冷却至室温,获得碘空位BiO1.2I0.6
(3)、称取适量钨酸放入坩埚,并将其置于马弗炉中,以5-10℃/min的升温速率加热至450-600℃,焙烧2-4h,自然冷却至室温,获得WO3
(4)、以球磨后的碘空位BiO1.2I0.6和WO3的混合粉体作为前驱体,在马弗炉中,以5-10℃/min的升温速率加热至350-550℃,焙烧2-6h,自然冷却至室温称重,获得高效分解VOCs可见光复合材料BiO1.2I0.6/WO3。其中,球磨转速 300-800r/min,球磨时间1-5h。
进一步的,所述步骤1)的反应温度是160℃,反应时间是12h。
进一步的,所述步骤2)中升温速率5℃/min,焙烧温度400℃,焙烧时间 5h。
进一步的,所述步骤3)中升温速率10℃/min,焙烧温度500℃,焙烧时间 3h。
进一步的,所述步骤4)中球磨转速500r/min、时间2h,焙烧温度400℃,焙烧时间5h,升温速率5℃/min。
有益效果
以球磨后的BiOI和WO3的均匀粉体煅烧,其中40wt%碘空位BiO1.2I0.6与WO3复合,在带边电位差驱动下,复合材料光生载流子的分离效率显著提高,光催化分解有机污染物的能力得到明显增强。将本发明所得的40wt%BiO1.2I0.6/WO3应用于典型VOCs甲苯净化中,其光催化分解甲苯的效率分别为BiO1.2I0.6和WO3的 1.2和1.4倍。
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
附图说明
图1为BiO1.2I0.6、WO3、BiO1.2I0.6/WO3的X射线衍射图;
图2是BiO1.2I0.6、WO3、BiO1.2I0.6/WO3的紫外-可见漫反射光谱;
图3为(a、b)BiO1.2I0.6、(c、d)WO3、(e、f)40wt%BiO1.2I0.6/WO3的扫描电镜;
图4是BiO1.2I0.6、WO3、BiO1.2I0.6/WO3光催化分解甲苯的结果;
图5是BiO1.2I0.6、WO3、40wt%BiO1.2I0.6/WO3的瞬态光电流。
具体实施方式
本发明下面结合实施例作进一步详述:
实施例1
按照对比例1的方法制备碘空位BiO1.2I0.6
按照对比例2的方法制备WO3
称取0.46g碘空位BiO1.2I0.6和0.6gWO3,放入球磨机,以500r/min的速度球磨2h后,置于马弗炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得40wt%BiO1.2I0.6/WO3
实施例2
按照对比例1的方法制备碘空位BiO1.2I0.6
按照对比例2的方法制备WO3
称取0.12g碘空位BiO1.2I0.6和0.9gWO3,放入球磨机,以500r/min的速度球磨2h后,置于马弗炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得10wt%BiO1.2I0.6/WO3
实施例3
按照对比例1的方法制备碘空位BiO1.2I0.6
按照对比例2的方法制备WO3
称取0.23g碘空位BiO1.2I0.6和0.8gWO3,放入球磨机,以500r/min速度球磨 2h后,置于马弗炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得20wt%BiO1.2I0.6/WO3
实施例4
按照对比例1的方法制备碘空位BiO1.2I0.6
按照对比例2的方法制备WO3
称取0.35g碘空位BiO1.2I0.6和0.7gWO3,放入球磨机,以500r/min速度球磨 2h后,置于马弗炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得30wt%BiO1.2I0.6/WO3
实施例5
按照对比例1的方法制备碘空位BiO1.2I0.6
按照对比例2的方法制备WO3
称取0.58g碘空位BiO1.2I0.6和0.5gWO3,放入球磨机,以500r/min速度球磨 2h后,置于马弗炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得50wt%BiO1.2I0.6/WO3
比较例1
将40mL含1.9gKI的乙二醇溶液滴入40mL含5.5gBi(NO3)3·5H2O乙二醇溶液中,避光磁搅拌反应0.5h。将混合液转入100mL高压反应釜并置于烘箱中, 160℃反应12h。自然冷却至室温,样品经过滤、洗涤、80℃干燥后获得BiOI。称取1gBiOI放入坩埚,在马弗炉中,以5℃/min的升温速率加热至400℃,焙烧5h,自然冷却至室温,获得碘空位BiO1.2I0.6
比较例2
称取1g钨酸放入坩埚,在马弗炉中,以10℃/min的升温速率加热至500℃,焙烧3h,自然冷却至室温,获得WO3
图1为BiO1.2I0.6、WO3、BiO1.2I0.6/WO3的X射线衍射图。从图1可知,四方相的BiOI经过煅烧后,逐渐向正交相Bi5O7I转变(PDF#40-0548),但是并没有变为Bi5O7I和Bi2O3。WO3为正交晶体结构(PDF#20-1324)。在BiO1.2I0.6/WO3复合材料存在BiO1.2I0.6和WO3的特征衍射峰,且随着BiO1.2I0.6含量增加,BiO1.2I0.6的特征峰逐渐变强,而WO3的特征峰逐渐减弱。XRD测试结果显示,BiO1.2I0.6、WO3、 BiO1.2I0.6/WO3被成功地制备。
图2为BiO1.2I0.6、WO3、BiO1.2I0.6/WO3的紫外-可见漫反射光谱。由图2可知碘空位BiO1.2I0.6光吸收范围较宽,其最大吸收波长为500nm,WO3也是一种光吸收范围良好的材料,能够吸收波长小于480nm的光。BiO1.2I0.6/WO3最大光吸收范围在480-500nm之间,证实BiO1.2I0.6/WO3是一种具有良好可见光吸收的复合材料。
图3为(a、b)BiO1.2I0.6、(c、d)WO3、(e、f)40wt%BiO1.2I0.6/WO3的扫描电镜。由图3可以看出BiO1.2I0.6呈花球状,微球平均直径约为2μm,WO3为板块状外型,长度约10-350nm,厚度约50nm。从40wt%BiO1.2I0.6/WO3电镜图可以清楚看出,WO3固载在BiO1.2I0.6表面,且分散较好。扫描电镜结果进一步证实 BiO1.2I0.6/WO3被成功地合成,且BiO1.2I0.6和WO3结合紧密。
图4为BiO1.2I0.6、WO3、BiO1.2I0.6/WO3的光催化分解甲苯的活性。石英反应器容积为250mL、300W氙灯作为光源、每次催化剂用量0.1g、甲苯初始浓度2800mg m-3、H2O 50μL。由图4可以看出,BiO1.2I0.6/WO3的光催化分解甲苯活性高于BiO1.2I0.6和WO3,其中40wt%BiO1.2I0.6/WO3显示出最高的光催化活性。经过8h照射,BiO1.2I0.6将82.3%的甲苯降解,WO3降解了73.8%的甲苯,而在同样的条件下,10wt%、20wt%、30wt%、40wt%和50wt%BiO1.2I0.6/WO3分别将96.2%、95.5%、96.4%、99%和96.9%的甲苯降解。
图5为BiO1.2I0.6、WO3、40wt%BiO1.2I0.6/WO3的瞬态光电流的结果。由图5可知,瞬态光电流的大小为WO3<BiO1.2I0.6<40wt%BiO1.2I0.6/WO3,这表明BiO1.2I0.6、WO3、 40wt%BiO1.2I0.6/WO3中光生电子和空穴的分离效率为 WO3<BiO1.2I0.6<40wt%BiO1.2I0.6/WO3,从而证实40wt%BiO1.2I0.6与WO3后能显著提高复合材料的分离效率。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种用于可见光驱动催化VOCs降解碘空位BiO1.2I0.6/WO3复合材料,其特征在于,所述复合材料为采用碘空位BiO1.2I0.6修饰WO3复合材料,其中,碘空位BiO1.2I0.6在复合材料中的质量含量为10wt%-50wt%;
所述的碘空位BiO1.2I0.6/WO3复合材料的制备方法步骤如下:
(1)、将碘化钾的乙二醇溶液滴入硝酸铋的乙二醇溶液中得到混合液,避光磁搅拌反应0.5-1h后,将混合液转入高压反应釜反应,自然冷却至室温,过滤、洗涤、80℃干燥后获得BiOI;
(2)、称取BiOI放入坩埚,并将其置于马弗炉中,升温加热至焙烧温度进行焙烧,然后自然冷却至室温,获得碘空位BiO1.2I0.6
(3)、称取钨酸放入坩埚,并将其置于马弗炉中,升温加热至焙烧温度进行焙烧,自然冷却至室温,获得WO3
(4)、以球磨后的碘空位BiO1.2I0.6和WO3均匀粉体作为前驱体,在马弗炉中,升温加热至焙烧温度进行焙烧,自然冷却至室温称重,获得碘空位BiO1.2I0.6/WO3复合材料;
所述球磨转速300-800r/min、时间1-5h,升温速率为5-10℃/min,焙烧温度为350-550℃,焙烧时间2-6h。
2.如权利要求1所述的碘空位BiO1.2I0.6/WO3复合材料,其特征在于,步骤(1)所述碘化钾和硝酸铋的摩尔比为1:1,高压反应釜中反应温度:140-180℃,反应时间8-12h。
3.如权利要求1所述的碘空位BiO1.2I0.6/WO3复合材料,其特征在于,步骤(2)所述升温速率5-10℃/min,焙烧温度350-550℃,焙烧时间2-6h。
4.如权利要求1所述的碘空位BiO1.2I0.6/WO3复合材料,其特征在于,步骤(3)所述的升温速率为5-10℃/min,焙烧温度为450-600℃,焙烧时间2-4h。
CN201910486953.6A 2019-06-05 2019-06-05 一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用 Active CN110302812B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910486953.6A CN110302812B (zh) 2019-06-05 2019-06-05 一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910486953.6A CN110302812B (zh) 2019-06-05 2019-06-05 一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110302812A CN110302812A (zh) 2019-10-08
CN110302812B true CN110302812B (zh) 2022-04-26

Family

ID=68075221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910486953.6A Active CN110302812B (zh) 2019-06-05 2019-06-05 一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110302812B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254461B (zh) * 2020-01-19 2021-08-27 安徽大学 一种光还原二氧化碳的氧化钨/碘氧铋异质结材料及其制备方法和应用
CN114849742B (zh) * 2022-06-21 2024-02-20 常州大学 用于深度净化VOCs的Bi5O7I/WO3/Ni foam光催化膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790389A (zh) * 2007-05-17 2010-07-28 加菲尔德工业公司 使用其上涂覆有光催化剂颗粒粉末的衬底进行光催化氧化空气过滤的系统及方法
CN103373750A (zh) * 2012-04-20 2013-10-30 苏州晶能科技有限公司 一种可见光去除有机物和重金属离子的光源装置及其制备方法
CN105688953A (zh) * 2015-12-31 2016-06-22 江苏大学 一种制备BiOI/WO3异质结复合光催化剂的方法
CN108479816A (zh) * 2018-04-02 2018-09-04 常州大学 一种高效能碘空位铋氧碘光催化材料的制备方法及在毒害有机废水处理中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790389A (zh) * 2007-05-17 2010-07-28 加菲尔德工业公司 使用其上涂覆有光催化剂颗粒粉末的衬底进行光催化氧化空气过滤的系统及方法
CN103373750A (zh) * 2012-04-20 2013-10-30 苏州晶能科技有限公司 一种可见光去除有机物和重金属离子的光源装置及其制备方法
CN105688953A (zh) * 2015-12-31 2016-06-22 江苏大学 一种制备BiOI/WO3异质结复合光催化剂的方法
CN108479816A (zh) * 2018-04-02 2018-09-04 常州大学 一种高效能碘空位铋氧碘光催化材料的制备方法及在毒害有机废水处理中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Solvothermal method coupled with thermal decomposition for synthesis of non-stoichiometric BiO1.18I0.64 with excellent photocatalytic activity";Yuan Guan等;《RSC Adv.》;20151222;第6卷;第2641-2650页 *
"WO3/BiOCl异质结光催化剂的制备及光催化性能研究";陈建钗;《第八届全国催化剂制备科学与技术研讨会》;20130828;第180-182页 *
"新型铋基可见光光催化材料的改性及其可见光光催化降解活性深蓝K-R的性能研究";聂煜瑶;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140715;B015-147 *

Also Published As

Publication number Publication date
CN110302812A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
Li et al. Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light
US7763149B2 (en) Solar photocatalysis using transition-metal oxides combining d0 and d6 electron configurations
Zaleska Doped-TiO2: a review
Zhang et al. Development of modified N doped TiO 2 photocatalyst with metals, nonmetals and metal oxides
Li et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation
Xie et al. Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti (IV)− O− Fe (II) formed in Fe-doped SrTiO3
Yuan Synthesis, characterization and photocatalyticactivity of ZnFe2O4/TiO2 nanocomposite
Song et al. Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+ 1 (A= Li, Na and K)
Zhang et al. Synthesis of BiOCl/TiO2–zeolite composite with enhanced visible light photoactivity
Pany et al. Facile fabrication of mesoporosity driven N–TiO 2@ CS nanocomposites with enhanced visible light photocatalytic activity
CN102824921A (zh) 一种Ag2S/Ag3PO4复合光催化剂的制备方法
CN112023938B (zh) 一种双金属离子掺杂的纳米复合光催化剂及其制备方法
Du et al. Black lead molybdate nanoparticles: facile synthesis and photocatalytic properties responding to visible light
CN110302812B (zh) 一种碘空位BiO1.2I0.6/WO3复合材料及其制备方法和应用
CN110090652A (zh) 一种制备氯四氧化三铋/锶铁氧体复合磁性光催化材料的方法
CN112473712A (zh) 采用不同气氛处理的CeO2/g-C3N4异质结材料及其制备方法和应用
Mohd Yatim et al. Vanadium and nitrogen Co-doped titanium dioxide (TiO2) with enhanced photocatalytic performance: potential in wastewater treatment
An et al. The multiple roles of rare earth elements in the field of photocatalysis
Ayekoe et al. Facile synthesis of TiO2/Bi2O3 heterojunctions for the photocatalytic degradation of water contaminants
Sun et al. Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type II junction structure for overall water splitting
CN110280278B (zh) 一种碘空位BiO1.2I0.6/Bi2O3光催化复合材料及其制备方法
Vhangutte et al. Influence of synthesis methods on physical and photocatalytic properties of Bi2WO6 for decomposition of organic dyes and Cr (VI) reduction
CN110116014A (zh) 一种具有空心结构的N-TiO2光催化剂制备方法
CN114308034A (zh) 一种(ⅲ)、(ⅴ)价双过渡金属离子共掺杂的钛酸锶半导体催化剂及其制备方法
Shao-you et al. Solid-phase synthesis and photocatalytic property of sulfur and nickel doped tin oxide powder materials by isomeric surfactant as template

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant