CN110302806A - 一种单层四元复合可见光催化材料及其制备方法 - Google Patents

一种单层四元复合可见光催化材料及其制备方法 Download PDF

Info

Publication number
CN110302806A
CN110302806A CN201910642145.4A CN201910642145A CN110302806A CN 110302806 A CN110302806 A CN 110302806A CN 201910642145 A CN201910642145 A CN 201910642145A CN 110302806 A CN110302806 A CN 110302806A
Authority
CN
China
Prior art keywords
mmol
visible light
catalytic material
light catalytic
single layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910642145.4A
Other languages
English (en)
Other versions
CN110302806B (zh
Inventor
杨金杯
叶银钕
陈文韬
余美琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201910642145.4A priority Critical patent/CN110302806B/zh
Publication of CN110302806A publication Critical patent/CN110302806A/zh
Application granted granted Critical
Publication of CN110302806B publication Critical patent/CN110302806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种单层四元复合可见光催化材料及其制备方法,所述复合可见光催化材料的化学式为BaxZn1‑xIn2S4,其中0<x<1。所述的光催化材料在可见光下具有较高的光催化产氢活性。

Description

一种单层四元复合可见光催化材料及其制备方法
技术领域
本发明属于光催化技术领域,具体涉及一种单层四元BaxZn1-xIn2S4复合可见光催化材料及其制备方法。
背景技术
煤炭燃烧为工业发展提供电能,同时为城市生活供暖。但是煤炭燃烧产生的废渣和废气严重污染环境,并造成了不可逆转的后果,如雾霾、水污染等。依赖传统化石能源不可避免的会造成环境污染,并且会导致能源危机。在现代科技发展过程中,清洁能源的发展日新月异,其中氢能是理想的清洁能源,氢气与氧气燃烧后释放能量并生成水,对环境是无污染的。
生产氢气的常用方法是电解水,但消耗的电能仍然需要用传统化石能源来提供,这违背了保护环境的初衷。近年来,利用太阳光将水分解生成氢气和氧气的研究受到广泛的关注。太阳光是取之不竭的巨大能源,水占地球面积的70%,因此利用太阳光将水分解为氢能具有巨大的科学价值。其中光催化剂的应用必不可少。
常用的光催化剂是TiO2,但TiO2只能响应紫外光,不能利用可见光,致使太阳光中大部分的光能不能被利用。国内外在开发可见光催化剂工作上进行了大量研究,但都没有达到令人满意的程度。
通过能级结构设计和大量实验,我们发现硫化物组成的复合半导体材料可以受可见光激发,使光催化剂发挥最大的催化效率。
发明内容
本发明的目的在于提供一种单层四元BaxZn1-xIn2S4复合可见光催化材料及其制备方法。
为实现上述目的,本发明采用如下技术方案:
一种单层四元复合可见光催化材料,其化学式为BaxZn1-xIn2S4,其中0<x<1。
一种单层四元BaxZn1-xIn2S4复合可见光催化材料的制备方法,包括以下步骤:
(1)称取硝酸钡x mmol(0<x<1),醋酸锌1-x mmol、氯化铟2 mmol、硫代乙酰胺4.5 mmol先后加入到250 mL三口烧瓶中,加入10-20 mL丙酮和10-20 mL去离子水,持续超声0.5-1.5h,得到均一的混合溶液,向溶液中加入20 mL以四氢呋喃和N’N-二甲基甲酰胺为混合溶剂溶解的0.5 mmol双嵌段聚合物聚苯乙烯-聚丙烯酸混合液,再在溶液中溶解1 mmol邻苯二甲酸或间苯二甲酸,超声分散0.5 h;
(2)将溶液转移到100 mL聚四氟乙烯反应釜中,在聚四氟乙烯反应釜外套上微波专用安全保护套,将反应釜放入微波水热反应器中,设置微波功率为300 W,微波反应时间为1-8h,微波反应温度为130-220℃;
(3)反应结束后,将反应物倒入离心管中,超声分散30 min,将沉淀用蒸馏水和无水乙醇分别洗涤3次,9000 r/min离心分离得到固体粉末,固体粉末转入到装有100 mL无水乙醇的烧杯中,在烧杯底部通入0.1-1Mpa高压氮气,放入超声波反应器中超声2-3 h,超声频率为20~40kHz,9000 r/min离心分离得到固体粉末,60-80 ℃烘干24 h、研磨成粉,形成一种单层四元BaxZn1-xIn2S4复合可见光催化材料。
本发明的优点在于:本发明在较温和条件下制备了产物,使用高压氮气使块状材料被剥离成层状材料,表面活性剂(双嵌段聚合物聚苯乙烯-聚丙烯酸)有效保护材料的表面形态,微波加热方式提供了内部均一的热源和磁场,有利于材料纯度的提高。
三元材料ZnIn2S4已经被证实具有可见光催化活性,但还需要提高。掺杂元素Ba后形成了晶格缺陷,产生了更多的反应活性位,较三元催化剂提高了光催化活性。此外,Ba对反应物和产物的吸附脱附作用也可以影响催化剂的活性。
Ba 与Zn的总量是1,催化剂活性与用量相关,随着Ba用量的增加,活性是先增大后降低的变化趋势。
附图说明
图1为Ba0.2Zn0.8In2S4复合可见光催化材料的XRD图;
图2为Ba0.2Zn0.8In2S4复合可见光催化材料的电镜图。
具体实施方式
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,作详细说明。本发明的方法如无特殊说明,均为本领域常规方法。
实施例1
一种单层四元Ba0.2Zn0.8In2S4复合可见光催化材料的制备方法,包括以下步骤:
(1)称取硝酸钡0.2 mmol,醋酸锌0.8 mmol、氯化铟2 mmol、硫代乙酰胺4.5 mmol先后加入到250 mL三口烧瓶中,加入10mL丙酮和10 mL去离子水,持续超声0.5h,得到均一的混合溶液,向溶液中加入20 mL以四氢呋喃和N’N-二甲基甲酰胺为混合溶剂溶解的0.5 mmol双嵌段聚合物聚苯乙烯-聚丙烯酸混合液,再在溶液中溶解1 mmol邻苯二甲酸,超声分散0.5 h;
(2)将溶液转移到100 mL聚四氟乙烯反应釜中,在聚四氟乙烯反应釜外套上微波专用安全保护套,将反应釜放入微波水热反应器中,设置微波功率为300 W,微波反应时间为3h,微波反应温度为150℃;
(3)反应结束后,将反应物倒入离心管中,超声分散30 min,将沉淀用蒸馏水和无水乙醇分别洗涤3次,9000 r/min离心分离得到固体粉末,固体粉末转入到装有100 mL无水乙醇的烧杯中,在烧杯底部通入1Mpa高压氮气,放入超声波反应器中超声2h,超声频率为40kHz,9000 r/min离心分离得到固体粉末,60℃烘干24 h、研磨成粉,形成一种单层四元Ba0.2Zn0.8In2S4复合可见光催化材料。
实施例2
一种单层四元Ba0.5Zn0.5In2S4复合可见光催化材料的制备方法,包括以下步骤:
(1)称取硝酸钡0.5 mmol,醋酸锌0.5 mmol、氯化铟2 mmol、硫代乙酰胺4.5 mmol先后加入到250 mL三口烧瓶中,加入15 mL丙酮和15 mL去离子水,持续超声1h,得到均一的混合溶液,向溶液中加入20 mL以四氢呋喃和N’N-二甲基甲酰胺为混合溶剂溶解的0.5 mmol双嵌段聚合物聚苯乙烯-聚丙烯酸混合液,再在溶液中溶解1 mmol邻苯二甲酸,超声分散0.5h;
(2)将溶液转移到100 mL聚四氟乙烯反应釜中,在聚四氟乙烯反应釜外套上微波专用安全保护套,将反应釜放入微波水热反应器中,设置微波功率为300 W,微波反应时间为5h,微波反应温度为200℃;
(3)反应结束后,将反应物倒入离心管中,超声分散30 min,将沉淀用蒸馏水和无水乙醇分别洗涤3次,9000 r/min离心分离得到固体粉末,固体粉末转入到装有100 mL无水乙醇的烧杯中,在烧杯底部通入0.5Mpa高压氮气,放入超声波反应器中超声3 h,超声频率为30kHz,9000 r/min离心分离得到固体粉末,70℃烘干24 h、研磨成粉,形成一种单层四元Ba0.5Zn0.5In2S4复合可见光催化材料。
实施例3
一种单层四元Ba0.9Zn0.1In2S4复合可见光催化材料的制备方法,包括以下步骤:
(1)称取硝酸钡0.9mmol,醋酸锌0.1mmol、氯化铟2 mmol、硫代乙酰胺4.5 mmol先后加入到250 mL三口烧瓶中,加入20 mL丙酮和20 mL去离子水,持续超声1.5 h,得到均一的混合溶液,向溶液中加入20 mL以四氢呋喃和N’N-二甲基甲酰胺为混合溶剂溶解的0.5 mmol双嵌段聚合物聚苯乙烯-聚丙烯酸混合液,再在溶液中溶解1 mmol间苯二甲酸,超声分散0.5 h;
(2)将溶液转移到100 mL聚四氟乙烯反应釜中,在聚四氟乙烯反应釜外套上微波专用安全保护套,将反应釜放入微波水热反应器中,设置微波功率为300 W,微波反应时间为8h,微波反应温度为220℃;
(3)反应结束后,将反应物倒入离心管中,超声分散30 min,将沉淀用蒸馏水和无水乙醇分别洗涤3次,9000 r/min离心分离得到固体粉末,固体粉末转入到装有100 mL无水乙醇的烧杯中,在烧杯底部通入0.1Mpa高压氮气,放入超声波反应器中超声3 h,超声频率为20kHz,9000 r/min离心分离得到固体粉末,80 ℃烘干24 h、研磨成粉,形成一种单层四元Ba0.9Zn0.1In2S4复合可见光催化材料。
在固定床反应器中,300W氙灯照射下,90毫升去离子水和10毫升甲醇组成混合液,加入0.1g实施例1中的催化剂,磁力搅拌,反应8小时停止。经气相色谱检测,氢气产量为(176 umol/g/h)。
图1是催化剂的XRD图,从图中峰的位置可以看出生成了目标产物,峰型尖锐,说明晶形完整。图2是样品的SEM图,从图中可以看出样品的微观形貌,样品为片状形貌。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种单层四元复合可见光催化材料,其特征在于,所述复合可见光催化材料的化学式为BaxZn1-xIn2S4,其中0<x<1。
2.根据权利要求1所述的单层四元复合可见光催化材料的制备方法,其特征在于,包括以下步骤:
(1)称取硝酸钡x mmol,醋酸锌1-x mmol、氯化铟2 mmol、硫代乙酰胺4.5 mmol先后加入到250 mL三口烧瓶中,加入10-20 mL丙酮和10-20 mL去离子水,持续超声0.5-1.5 h,得到均一的混合溶液,向溶液中加入20 mL以四氢呋喃和N’N-二甲基甲酰胺为混合溶剂溶解的0.5 mmol双嵌段聚合物聚苯乙烯-聚丙烯酸混合液,再在溶液中溶解1 mmol邻苯二甲酸或间苯二甲酸,超声分散0.5 h;
(2)将溶液转移到100 mL聚四氟乙烯反应釜中,在聚四氟乙烯反应釜外套上微波专用安全保护套,将反应釜放入微波水热反应器中,设置微波功率为300 W,微波反应时间为1-8h,微波反应温度为130-220℃;
(3)反应结束后,将反应物倒入离心管中,超声分散30 min,将沉淀用蒸馏水和无水乙醇分别洗涤3次,9000 r/min离心分离得到固体粉末,固体粉末转入到装有100 mL无水乙醇的烧杯中,在烧杯底部通入0.1-1Mpa高压氮气,放入超声波反应器中超声2-3 h,超声频率为20~40kHz,9000 r/min离心分离得到固体粉末,60-80 ℃烘干24 h、研磨成粉,得到单层四元BaxZn1-xIn2S4复合可见光催化材料,其中0<x<1。
CN201910642145.4A 2019-07-16 2019-07-16 一种单层四元复合可见光催化材料及其制备方法 Active CN110302806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910642145.4A CN110302806B (zh) 2019-07-16 2019-07-16 一种单层四元复合可见光催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910642145.4A CN110302806B (zh) 2019-07-16 2019-07-16 一种单层四元复合可见光催化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110302806A true CN110302806A (zh) 2019-10-08
CN110302806B CN110302806B (zh) 2022-07-15

Family

ID=68081443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910642145.4A Active CN110302806B (zh) 2019-07-16 2019-07-16 一种单层四元复合可见光催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110302806B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344350A (zh) * 2015-12-03 2016-02-24 江南大学 一种在可见光下具有高催化降解活性的钼掺杂TiO2纳米线/石墨烯复合物的制法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344350A (zh) * 2015-12-03 2016-02-24 江南大学 一种在可见光下具有高催化降解活性的钼掺杂TiO2纳米线/石墨烯复合物的制法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAOHUA SHEN等: "Improving visible-light photocatalytic activity for hydrogen evolution over ZnIn2S4: A case study of alkaline-earth metal doping", 《JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS》 *

Also Published As

Publication number Publication date
CN110302806B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN106040216B (zh) 一种双层ZnO空心球光催化材料及其制备方法
CN102285682B (zh) 一种具有可见光催化活性的纳米硫化锌镉的合成方法
CN110773213B (zh) 一维硫化镉/二维碳化钛复合光催化剂及其制备方法与应用
Cao et al. Visible-light-driven prompt and quantitative production of lactic acid from biomass sugars over a N-TiO 2 photothermal catalyst
CN109046424A (zh) 一种高效产氢的UiO-66-NH2/TiO2/Ti3C2复合光催化剂及其制备方法
CN114042471B (zh) 一种可见光响应型Zn2TiO4/g-C3N4异质结材料及其应用
CN113275041A (zh) 一种cof-316/cat-1复合材料的制备及光催化二氧化碳还原
CN113401876B (zh) 一种无牺牲剂的光催化产双氧水方法
CN106582888B (zh) 一种TiO2-Pd-PPy复合光催化剂及其制备方法和应用
CN111229205B (zh) WO3/Zn2GeO4非贵金属双金属氧化物光催化剂及其制备方法和应用
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN110227503A (zh) 一种常温一步制备卤化氧铋纳米片的方法
CN108786924B (zh) 一种Ni(OH)2/TpPa-2材料的制备方法及光解水制氢
CN114950402A (zh) TiO2/CeO2异质结光催化剂及其制备方法
CN113351226B (zh) 一种负载花瓣状ZnIn2S4的氧化铋复合可见光催化材料的制备方法及其制得的产品
CN110790307A (zh) 一种有色二氧化钛的制备方法及其产品和应用
CN104857975A (zh) CdIn2S4-石墨烯复合光催化剂的制备方法与应用
CN107597101A (zh) 简易水热法合成具有可见光响应的光催化剂Bi2WO6/SnO2纳米片的制备方法
CN109499597A (zh) 一种多孔二氧化钛/氮化碳纳米颗粒复合材料的制备方法
CN108479812A (zh) 一种AgInS2/Bi2WO6异质结纳米片的制备方法和应用
Li et al. Construction of ternary RuP 2/Ti 4 P 6 O 23@ TiO 2 photocatalysts for efficient photocatalytic biomass selective oxidation and water splitting
CN103521205A (zh) 一种制备高光催化活性核壳结构TiO2材料的方法
CN111644185A (zh) 一种利用细胞粉碎机剥离Bi3O4Cl的方法及在光催化还原CO2方面的应用
CN110302806A (zh) 一种单层四元复合可见光催化材料及其制备方法
CN110302805A (zh) 一种单层复合可见光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 350300 No.1, Xueyuan new village, Longjiang street, Fuqing City, Fuzhou City, Fujian Province

Applicant after: Fujian Normal University of Technology

Address before: 350300 No.1, Xueyuan new village, Longjiang street, Fuqing City, Fuzhou City, Fujian Province

Applicant before: FUQING BRANCH OF FUJIAN NORMAL University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant