CN110294857A - 一种协同增强电磁屏蔽薄膜及其制备方法 - Google Patents

一种协同增强电磁屏蔽薄膜及其制备方法 Download PDF

Info

Publication number
CN110294857A
CN110294857A CN201910381778.4A CN201910381778A CN110294857A CN 110294857 A CN110294857 A CN 110294857A CN 201910381778 A CN201910381778 A CN 201910381778A CN 110294857 A CN110294857 A CN 110294857A
Authority
CN
China
Prior art keywords
sodium alginate
film
preparation
functional layer
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910381778.4A
Other languages
English (en)
Other versions
CN110294857B (zh
Inventor
吴铛
景明辉
袁树明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN201910381778.4A priority Critical patent/CN110294857B/zh
Publication of CN110294857A publication Critical patent/CN110294857A/zh
Priority to US17/056,674 priority patent/US20210212243A1/en
Priority to PCT/CN2020/087708 priority patent/WO2020224496A1/zh
Application granted granted Critical
Publication of CN110294857B publication Critical patent/CN110294857B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • H01F1/0081Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及一种协同增强电磁屏蔽薄膜及其制备方法。该制备方法包括如下步骤:S1:将导电剂和海藻酸钠溶解、分散得导电屏蔽海藻酸钠功能性混合溶液,将磁性纳米材料和海藻酸钠溶解、分散得磁场屏蔽海藻酸钠功能性混合溶液;S2:分别将功能性混合溶液涂布于薄膜基底材料两侧,得到导电屏蔽功能层和磁场屏蔽功能层;S3:置于氯化钙溶液中进行交联固化,洗涤,干燥后即得所述协同增强电磁屏蔽薄膜。本发明制备的协同增强电磁屏蔽薄膜,表面的电场屏蔽功能层、磁场屏蔽功能层分布均匀,屏蔽效果协同增强性能优异;功能层黏附性好,不易龟裂、脱落,不易氧化,本发明从制备工艺、结构性能上满足了电磁屏蔽材料的发展趋势,具有广阔的发展前景。

Description

一种协同增强电磁屏蔽薄膜及其制备方法
技术领域
本发明属于电磁屏蔽涂料技术领域,具体涉及一种协同增强电磁屏蔽薄膜及其制备方法。
背景技术
随着社会的信息化,电力在社会生产和人类生活中的广泛应用和电子及通信技术的发展,导致电磁场、电磁波弥漫在人类的生存环境中,电磁干扰一般发生在频率为10KHz~10GHz的范围内,主要包括载频干扰(10KHz~300KHz)、射频、视频干扰(300KHz~300MHz)和部分微波干扰(30MHz~300GHz),电磁干扰主要造成影响影响各种电子设备的正常运行,造成电磁信息泄密以及影响人体与生物体的健康。
电磁屏蔽主要用于高频下,要求屏蔽体具有良好的导电连续性,利用导电材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。材料的屏蔽效果与其相对电导率、磁导率、材料的厚度及入射电磁波频率密切相关。对不同类型的干扰,须采用不同的屏蔽材料来构成屏蔽体。常用的屏蔽材料大致可分为两类:一类为高导电性(即具有较高的电导率)材料,主要用于电场屏蔽和电磁屏蔽的场合,屏蔽作用主要由内部多次反射损耗决定,吸收损耗不是主要的;另一类为高导磁率材料,主要用于磁场屏蔽的场合,衰减主要由吸收损耗决定,内部多次反射损耗不是主要的。为了在较宽的频率范围内都具有良好的电磁屏蔽效果,应使反射损耗尽可能大,所以电磁屏蔽材料应具有较高的电导率和一定的厚度。
目前市场上的电磁屏蔽膜不仅结构复杂,而且功能单一,现有的涂附型电磁屏蔽材料技术中,存在涂料中金属粉末易氧化,涂层黏附力差,容易发生龟裂、剥落等情况,而且机械性能较差,功能单一。
银纳米材料因其优异的催化性能、光学性能、电学性能,表现出高透明度、低雾度、高导电性、韧性好的优异特性,最主要具有优异的柔韧性的银纳米线成为当下研究热点。透明导电薄膜是一种既能导电又在可见光范围内具有高透明率的一种薄膜,所以对于导电膜要两者兼顾,然而导电膜的导电性与透明度负相关,即膜厚度越大,相应导电性越好,可是透光度差,反之亦然。
另外,在交变电磁场中,同一空间中会同时有电场的和磁场的出现,对于这种情况,必须同时考虑两者的屏蔽。随着频率的变化,交变电磁场中的电磁干扰效应也有所区别,实际情况中应加以区分。
因此,开发一种透明度好,雾度低,导电性强,且可同时屏蔽电场和磁场的电磁屏蔽膜具有重要的研究意义和应用价值。
发明内容
本发明的目的在于克服现有技术中电磁屏蔽薄膜透明度、雾度和导电性能无法兼顾且主要用于磁场屏蔽的缺陷和不足,提供一种协同增强电磁屏蔽薄膜的制备方法。本发明提供的制备方法通过涂布方式可在透明基底上获得导电屏蔽功能层与磁场屏蔽功能层,厚度可控,导电剂或磁性纳米粒子分布均匀,实现透明度、雾度和导电性的兼顾及低成本生产;导电屏蔽功能层与磁场屏蔽功能层协同增效,可大大提高薄膜的电磁屏蔽效能;另外,借助海藻酸钠在氯化钙中的凝胶化作用,可以使得海藻酸钠交联,发生体积收缩,从而对内部的导电剂、磁性纳米材料产生内应力作用,使得导电剂之间和磁性纳米材料之间相互作用更强,提高导电性和堆积密度,最终再次提高电磁屏蔽效能和黏附性能。
本发明提供的协同增强电磁屏蔽薄膜表面的电场屏蔽功能层、磁场屏蔽功能层分布均匀,屏蔽效果协同增强性能优异;功能层黏附性好,不易龟裂、脱落,不易氧化;本发明从制备工艺、结构性能上满足了电磁屏蔽材料的发展趋势,具有广阔的发展前景。
本发明的另一目的在于提供一种协同增强电磁屏蔽薄膜。
为实现上述发明目的,本发明采用如下技术方案:
一种协同增强电磁屏蔽薄膜的制备方法,包括如下步骤:
S1:将导电剂和海藻酸钠溶解、分散得导电屏蔽海藻酸钠功能性混合溶液,将磁性纳米材料和海藻酸钠溶解、分散得磁场屏蔽海藻酸钠功能性混合溶液;
S2:分别将导电屏蔽海藻酸钠功能性混合溶液和磁场屏蔽海藻酸钠功能性混合溶液涂布于薄膜基底材料两侧,得到导电屏蔽功能层和磁场屏蔽功能层,形成三明治结构电磁屏蔽薄膜;
S3:将三明治结构电磁屏蔽薄膜置于氯化钙溶液中进行交联固化,洗涤,干燥后即得所述协同增强电磁屏蔽薄膜。
以往制备电磁屏蔽薄膜,通常是采用以下几种方式制备:化学镀、真空镀、金属熔射和贴敷金属箔等。导电涂料涂布,此方式下涂料中树脂成分大多需要加热固化,有的还需添加固化剂,造成金属粉末发生氧化或其他化学反应,影响导电和屏蔽性能,另外在高温固化过程中容易造成涂层龟裂、剥落等情况;贴金属箔,此方式下如遇复杂外形施工困难;金属熔射,黏附力差且对人体有危害。随着对电磁屏蔽薄膜的性能要求越来越高,电磁屏蔽薄膜的制备的主要的难点在于:如何实现膜层的厚度可控,以及膜层中纳米材料的均匀性分布。以往磁控溅射等真空技术成本高昂,材料种类限制研究;而采用印刷涂布的方法,难以克服团聚、气泡等问题以及难以实现对纳米厚度的膜层的低成本生产。
为了应对这些问题,本发明提出了一种新的制备工艺。首先,将导电剂、磁性纳米材料均与海藻酸钠配制为混合溶液,由于海藻酸钠水溶液具有一定粘度,可促进导电剂和磁性纳米材料的均匀分散,然后以涂布的方式在透明基底上获得导电屏蔽功能层与磁场屏蔽功能层,厚度可控,导电剂或磁性纳米粒子分布均匀,实现透明度、雾度和导电性的兼顾及低成本生产;导电屏蔽功能层与磁场屏蔽功能层协同增效,可大大提高薄膜的电磁屏蔽效能。另外,在薄膜基底上下表面分别构建功能层后也可快捷地一次性交联成膜,提高生产效率。
另外,借助海藻酸钠在氯化钙中的凝胶化作用,可以使得海藻酸钠交联,且该交联过程可以在常温下反应,交联后发生体积收缩,从而对内部的导电剂、磁性纳米材料产生内应力作用,使得导电剂之间和磁性纳米材料之间相互作用更强,提高导电性和堆积密度,最终再次提高电磁屏蔽效能和黏附性能。海藻酸钠由于其生物友好和环保性,可扩展该类电磁屏蔽膜的应用场景。
本发明提供的协同增强电磁屏蔽薄膜,表面的电场屏蔽功能层、磁场屏蔽功能层分布均匀,屏蔽效果协同增强性能优异;功能层黏附性好,不易龟裂、脱落,不易氧化;本发明从制备工艺、结构性能上满足了电磁屏蔽材料的发展趋势,具有广阔的发展前景。
优选地,S1所述导电屏蔽海藻酸钠功能性混合溶液中导电剂和海藻酸钠的质量比为1:3~50。
导电剂的电磁性能和填充比例将直接影响所构建的涂层电磁屏蔽性能。采用一维纳米结构的导电材料在较低浓度下就能达到导电的“渗滤阈值”,由于采用电阻型损耗机制,电磁屏蔽效能与材料导电率有关的电阻性损耗,导电率越大,载流子引起的宏观电流就越大,越有利于将电磁能转化成为热能,从而提高所得屏蔽膜的电磁屏蔽效能。
优选地,S1中所述导电剂为碳纳米管、石墨烯、银纳米线、铜纳米线、聚噻吩导电聚合物或聚吡咯导电聚合物中的一种或几种。
更为优选地,S1中所述导电剂为碳纳米管、银纳米线、铜纳米线。
优选地,S1所述磁场屏蔽海藻酸钠功能性混合溶液中磁性纳米材料和海藻酸钠的质量比为1:1~50。
本领域常规的磁性纳米材料均可用于本发明中。
优选地,S1中所述磁性纳米材料为镍、钴、四氧化三铁中的一种或几种。
上述磁性纳米材料可通过磁损耗来达到电磁屏蔽作用。
优选地,S1中所述磁性纳米材料为金属或合金纳米线、纳米链、纳米颗粒、纳米棒或纳米片中的一种或几种。
例如:镍纳米线、钴纳米线、四氧化三铁纳米线、磁性合金(镍、钴四氧化三铁中的至少两种)纳米线等。
本领域常规的薄膜基底材料均可用于本发明中。
优选地,S2中所述薄膜基底材料为聚对苯二甲酸乙二醇酯PET、聚甲基丙烯酸甲酯PMMA、聚碳酸酯PC、聚乙烯PE、聚苯乙烯PS、聚酰亚胺PI或聚乙烯醇PVA。
优选地,S2中在涂覆前还包括对薄膜基底材料的表面进行清洗的步骤。
薄膜基底材料、导电屏蔽功能层和磁场屏蔽功能层的厚度可根据需要进行选取。
优选地,S2中所述薄膜基底材料的厚度为10~500μm。
优选地,S2中所述导电屏蔽功能层的厚度为0.02~1mm。
优选地,S2中所述磁场屏蔽功能层的厚度为0.02~1mm。
优选地,S3中所述氯化钙溶液的质量浓度为1~10%。
一种协同增强电磁屏蔽薄膜,通过上述制备方法制备得到。
与现有技术相比,本发明具有如下有益效果:
(1)本发明的电磁屏蔽薄膜具有导电屏蔽和磁场屏蔽的双效屏蔽机制,通过导电屏蔽功能层与磁场屏蔽功能层协同增效可大大提高薄膜的电磁屏蔽效能。
(2)本发明采用海藻酸钠配制导电屏蔽和磁场屏蔽混合液,由于海藻酸钠水溶液具有一定粘度,可促进导电剂和磁性纳米材料的均匀分散,通过后续步骤中氯化钙溶液交联,可在薄膜基底表面快速、大面积构建附着力强、透明性良好的导电屏蔽功能层和磁场屏蔽功能层,交联后所得的薄膜由于内应力可加强导电剂、磁性纳米材料间相互作用,从而提高导电性和堆积密度,最终再次提高电磁屏蔽效能。
(3)海藻酸钠由于其生物友好和环保性,可扩展该类电磁屏蔽膜的应用场景。
通过本发明工艺流程制备的协同增强电磁屏蔽薄膜,表面的电场屏蔽功能层、磁场屏蔽功能层分布均匀,屏蔽效果协同增强性能优异;涂层黏附性好,不易龟裂、脱落;涂层经特殊工艺处理后不易氧化,本发明从制备工艺、结构性能上满足了电磁屏蔽材料的发展趋势,具有广阔的发展前景。
具体实施方式
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
实施例1
本实施例提供一种协同增强电磁屏蔽薄膜,由薄膜基底材料、涂布在薄膜基底材料一侧的导电屏蔽功能层和涂布在薄膜基底材料另一侧的磁场屏蔽功能层组成。
具体制备方法如下。
(1)选择薄膜基底:厚度为50μm的聚对苯二甲酸乙二醇酯PET,对其表面进行去离子水清洗。
(2)将导电屏蔽海藻酸钠功能性混合溶液均匀涂布于薄膜基底材料的表面,获得叠加在薄膜基底材料表面的导电屏蔽功能层(50μm)。导电屏蔽海藻酸钠功能性混合溶液由导电剂碳纳米管、海藻酸钠、水按质量比3:10:1000组成。
(3)将磁场屏蔽海藻酸钠功能性混合溶液均匀涂布于步骤S2所得的薄膜另一侧,干燥获得叠加在所述薄膜基底材料表面的磁场屏蔽功能层(50μm)。磁场屏蔽海藻酸钠功能性混合溶液由磁性钴纳米线、海藻酸钠、水按质量比20:60:1000组成。
(4)将上述步骤所得的三明治结构电磁屏蔽膜浸泡于质量浓度为5%的氯化钙水溶液中,交联成膜后用去离子水洗涤并在50℃下干燥30分钟制得协同增强电磁屏蔽薄膜。
实施例2
本实施例提供一种协同增强电磁屏蔽薄膜,由薄膜基底材料、涂布在薄膜基底材料一侧的导电屏蔽功能层和涂布在薄膜基底材料另一侧的磁场屏蔽功能层组成。
具体制备方法如下。
(1)选择薄膜基底:厚度为60μm的聚酰亚胺薄膜PI,对其表面进行去离子水清洗。
(2)将导电屏蔽海藻酸钠功能性混合溶液均匀涂布于PI薄膜基底材料的表面,得到导电屏蔽功能层(50μm);导电屏蔽海藻酸钠功能性混合溶液由导电剂银纳米线、海藻酸钠、水按质量比3:10:1000组成。
(3)将磁场屏蔽海藻酸钠功能性混合溶液均匀涂布于PI薄膜另一侧,获得叠加在薄膜基底材料表面的磁场屏蔽功能层(100μm);磁场屏蔽海藻酸钠功能性混合溶液由磁性镍纳米线、海藻酸钠、水按质量比20:60:1000组成。
(4)将上述步骤所得的三明治结构电磁屏蔽膜浸泡于质量浓度为3%的氯化钙水溶液中,交联成膜后用去离子水洗涤并在80℃下干燥30分钟制得协同增强电磁屏蔽薄膜。
实施例3
本实施例提供一种协同增强电磁屏蔽薄膜,由薄膜基底材料、涂布在薄膜基底材料一侧的导电屏蔽功能层和涂布在薄膜基底材料另一侧的磁场屏蔽功能层组成。
具体制备方法如下。
(1)选择薄膜基底:厚度为30μm的聚乙烯薄膜PE,对其表面进行去离子水清洗。
(2)将导电屏蔽海藻酸钠功能性混合溶液均匀涂布于PE薄膜基底材料的表面,得到导电屏蔽功能层(100μm);导电屏蔽海藻酸钠功能性混合溶液由导电剂铜纳米线、海藻酸钠、水按质量比6:75:1000组成。
(3)将磁场屏蔽海藻酸钠功能性混合溶液均匀涂布于PE薄膜另一侧,获得叠加在所述薄膜基底材料表面的磁场屏蔽功能层(150μm);磁场屏蔽海藻酸钠功能性混合溶液由磁性四氧化三铁纳米线、海藻酸钠、水按质量比25:50:1000组成。
(4)将上述步骤所得的三明治结构电磁屏蔽膜浸泡于质量浓度为3%的氯化钙水溶液中,交联成膜后用去离子水洗涤并在80℃下干燥30分钟制得协同增强电磁屏蔽薄膜。
实施例4
本实施例提供一种协同增强电磁屏蔽薄膜,由薄膜基底材料、涂布在薄膜基底材料一侧的导电屏蔽功能层和涂布在薄膜基底材料另一侧的磁场屏蔽功能层组成。
具体制备方法如下。
(1)选择薄膜基底:厚度为50μm的聚对苯二甲酸乙二醇酯PET,对其表面进行去离子水清洗。
(2)将导电屏蔽海藻酸钠功能性混合溶液均匀涂布于薄膜基底材料的表面,获得叠加在薄膜基底材料表面的导电屏蔽功能层(100μm)。导电屏蔽海藻酸钠功能性混合溶液由导电剂碳纳米管、海藻酸钠、水按质量比6:75:1000组成。
(3)将磁场屏蔽海藻酸钠功能性混合溶液均匀涂布于步骤S2所得的薄膜另一侧,干燥获得叠加在所述薄膜基底材料表面的磁场屏蔽功能层(150μm)。磁场屏蔽海藻酸钠功能性混合溶液由磁性钴纳米线、海藻酸钠、水按质量比1:50:1000组成。
(4)将上述步骤所得的三明治结构电磁屏蔽膜浸泡于质量浓度为5%的氯化钙水溶液中,交联成膜后用去离子水洗涤并在50℃下干燥30分钟制得协同增强电磁屏蔽薄膜。
实施例5
本实施例提供一种协同增强电磁屏蔽薄膜,由薄膜基底材料、涂布在薄膜基底材料一侧的导电屏蔽功能层和涂布在薄膜基底材料另一侧的磁场屏蔽功能层组成。
具体制备方法如下。
(1)选择薄膜基底:厚度为50μm的聚对苯二甲酸乙二醇酯PET,对其表面进行去离子水清洗。
(2)将导电屏蔽海藻酸钠功能性混合溶液均匀涂布于薄膜基底材料的表面,获得叠加在薄膜基底材料表面的导电屏蔽功能层(100μm)。导电屏蔽海藻酸钠功能性混合溶液由导电剂碳纳米管、海藻酸钠、水按质量比3:10:1000组成。
(3)将磁场屏蔽海藻酸钠功能性混合溶液均匀涂布于步骤S2所得的薄膜另一侧,干燥获得叠加在所述薄膜基底材料表面的磁场屏蔽功能层(50μm)。磁场屏蔽海藻酸钠功能性混合溶液由磁性钴纳米线、海藻酸钠、水按质量比20:60:1000组成。
(4)将上述步骤所得的三明治结构电磁屏蔽膜浸泡于质量浓度为5%的氯化钙水溶液中,交联成膜后用去离子水洗涤并在50℃下干燥30分钟制得协同增强电磁屏蔽薄膜。
对比例1
本对比例提供一种协同增强电磁屏蔽薄膜,其制备方法除步骤(2)和(3)中不添加海藻酸钠,步骤(4)不浸渍于氯化钙溶液中交联,干燥外,其余步骤均与实施例1一致。
对实施例1~5和对比例1提供的协同增强电磁屏蔽薄膜进行可拉伸性和表面电阻测试,并采用GB/T12190-2006标准测试电磁屏蔽膜GHz频段的电磁屏蔽性能,结果如下表1。
表1实施例1~5和对比例1提供的弹性电磁屏蔽薄膜的可拉伸性和表面电阻测试
结果
从表1可知,各实施例提供的协同增强电磁屏蔽薄膜具有较好的电场屏蔽功能和电磁屏蔽功能,功能层黏附性好,透明度、雾度和导电性均较好;但条件变化可在一定程度上调节导电性、透明度和雾度等,便于根据使用场景需求进行选择。具体如下:实施例1和实施例5中电场屏蔽功能层厚度不同,实施例1和实施例2中磁场屏蔽功能层厚度不同,通过实验结果对比可知增加电场屏蔽功能层厚度和磁场屏蔽功能层厚度均能提高电磁屏蔽效果,同时由于厚度增加,透明度下降,雾度有所增加。实施例3和实施例4的对比说明磁场屏蔽功能层中磁性纳米材料含量增加有助于提高电磁屏蔽效果。另外通过实施例1和对比例1发现,海藻酸钠的引入有助于保护电磁屏蔽薄膜表面电场屏蔽功能层和磁场屏蔽功能层在多次弯折过程中不从薄膜基底表面脱落,从而保持其电磁屏蔽性能。
综上,协同增强电磁屏蔽薄膜,表面的电场屏蔽功能层、磁场屏蔽功能层分布均匀,屏蔽效果协同增强性能优异;功能层黏附性好,不易龟裂、脱落,不易氧化;本发明从制备工艺、结构性能上满足了电磁屏蔽材料的发展趋势,具有广阔的发展前景。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (10)

1.一种协同增强电磁屏蔽薄膜的制备方法,其特征在于,包括如下步骤:
S1:将导电剂和海藻酸钠溶解、分散得导电屏蔽海藻酸钠功能性混合溶液,将磁性纳米材料和海藻酸钠溶解、分散得磁场屏蔽海藻酸钠功能性混合溶液;
S2:分别将导电屏蔽海藻酸钠功能性混合溶液和磁场屏蔽海藻酸钠功能性混合溶液涂布于薄膜基底材料两侧,得到导电屏蔽功能层和磁场屏蔽功能层,形成三明治结构电磁屏蔽薄膜;
S3:将三明治结构电磁屏蔽薄膜置于氯化钙溶液中进行交联固化,洗涤,干燥后即得所述协同增强电磁屏蔽薄膜。
2.根据权利要求1所述制备方法,其特征在于,S1所述导电屏蔽海藻酸钠功能性混合溶液中导电剂和海藻酸钠的质量比为1:3~100。
3.根据权利要求1所述制备方法,其特征在于,S1中所述导电剂为碳纳米管、石墨烯、银纳米线、铜纳米线、聚噻吩导电聚合物或聚吡咯导电聚合物中的一种或几种。
4.根据权利要求1所述制备方法,其特征在于,S1所述磁场屏蔽海藻酸钠功能性混合溶液中磁性纳米材料和海藻酸钠的质量比为1:1~50。
5.根据权利要求1所述制备方法,其特征在于,S1中所述磁性纳米材料为镍、钴、四氧化三铁中的一种或几种。
6.根据权利要求1所述制备方法,其特征在于,S1中所述磁性纳米材料为金属或合金纳米线、纳米链、纳米颗粒、纳米棒或纳米片中的一种或几种。
7.根据权利要求1所述制备方法,其特征在于,S2中所述薄膜基底材料为聚对苯二甲酸乙二醇酯PET、聚甲基丙烯酸甲酯PMMA、聚碳酸酯PC、聚乙烯PE、聚苯乙烯PS、聚酰亚胺PI或聚乙烯醇PVA;S2中所述薄膜基底材料的厚度为10~500μm。
8.根据权利要求1所述制备方法,其特征在于,S2中所述导电屏蔽功能层的厚度为0.02~1mm;S2中所述磁场屏蔽功能层的厚度为0.02~1mm。
9.根据权利要求1所述制备方法,其特征在于,S3中所述氯化钙溶液的质量浓度为1~10%。
10.一种协同增强电磁屏蔽薄膜,其特征在于,通过权利要求1~9任一所述制备方法制备得到。
CN201910381778.4A 2019-05-08 2019-05-08 一种协同增强电磁屏蔽薄膜及其制备方法 Active CN110294857B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910381778.4A CN110294857B (zh) 2019-05-08 2019-05-08 一种协同增强电磁屏蔽薄膜及其制备方法
US17/056,674 US20210212243A1 (en) 2019-05-08 2020-04-29 Electromagnetic shielding film and method for making same
PCT/CN2020/087708 WO2020224496A1 (zh) 2019-05-08 2020-04-29 一种协同增强电磁屏蔽薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910381778.4A CN110294857B (zh) 2019-05-08 2019-05-08 一种协同增强电磁屏蔽薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110294857A true CN110294857A (zh) 2019-10-01
CN110294857B CN110294857B (zh) 2022-02-01

Family

ID=68026655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910381778.4A Active CN110294857B (zh) 2019-05-08 2019-05-08 一种协同增强电磁屏蔽薄膜及其制备方法

Country Status (3)

Country Link
US (1) US20210212243A1 (zh)
CN (1) CN110294857B (zh)
WO (1) WO2020224496A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155324A (zh) * 2020-01-15 2020-05-15 东华大学 一种蒸发诱导定向自组装高效导电织物涂层及其制备方法
WO2020224496A1 (zh) * 2019-05-08 2020-11-12 广东石油化工学院 一种协同增强电磁屏蔽薄膜及其制备方法
CN112159613A (zh) * 2020-10-10 2021-01-01 陈金锁 一种涂覆pmma/石墨烯复合膜的电磁屏蔽金属板及其制备方法
CN112366034A (zh) * 2020-11-04 2021-02-12 湖南华菱线缆股份有限公司 一种抗电磁干扰柔性抗拉医用电缆
CN113214736A (zh) * 2021-05-10 2021-08-06 常熟市方舟绝缘材料有限责任公司 一种聚酰亚胺薄膜及其制备方法及其快速收卷装置
CN114163682A (zh) * 2021-06-24 2022-03-11 贵州航天天马机电科技有限公司 一种电磁材料改性方法在制备聚酰亚胺泡沫电磁屏蔽材料中的应用
CN114479563A (zh) * 2022-01-26 2022-05-13 西南大学 一种生物可降解电磁屏蔽涂料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11805631B2 (en) * 2009-10-30 2023-10-31 Amosense Co., Ltd. Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
CN113329603B (zh) * 2021-05-17 2023-06-13 江南大学 一种轻质多孔MXene基复合薄膜电磁屏蔽材料及其制备方法
CN114369360B (zh) * 2021-11-29 2023-07-25 南方科技大学 一种高稳定性三维编织态柔性电磁屏蔽薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060115636A1 (en) * 2002-07-12 2006-06-01 Taro Yoshida Electromagnetic wave shield material and process for producing the same
US20090029125A1 (en) * 2005-02-15 2009-01-29 Fujifilm Corporation Photosensitive material for forming conductive film, conductive film, light transmitting electromagnetic wave shielding film and method for manufacturing the same
CN103606420A (zh) * 2013-11-08 2014-02-26 复旦大学 制备金属导电薄膜的方法
CN108003364A (zh) * 2017-11-24 2018-05-08 中南大学 一种柔性石墨烯基复合膜及其制备方法和作为电磁屏蔽材料的应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480250B1 (en) * 1999-06-02 2002-11-12 Fuji Photo Film Co., Ltd. Low-reflection transparent conductive multi layer film having at least one transparent protective layer having anti-smudge properties
CN2659097Y (zh) * 2003-11-07 2004-11-24 钢铁研究总院 一种具有多功能防护的方便贴膜
US7795708B2 (en) * 2006-06-02 2010-09-14 Honeywell International Inc. Multilayer structures for magnetic shielding
US8012676B2 (en) * 2006-06-22 2011-09-06 Mitsubishi Paper Mills Limited Process for preparing conductive material
US11051543B2 (en) * 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
CN109417863B (zh) * 2016-04-22 2021-02-09 德雷塞尔大学 用于emi屏蔽的二维金属碳化物、氮化物和碳氮化物膜和复合物
CN106601339A (zh) * 2016-12-20 2017-04-26 上海交通大学 一种制备银纳米线与海藻酸盐复合透明导电薄膜的方法
CN106601390B (zh) * 2016-12-30 2017-12-19 嵊州北航投星空众创科技有限公司 一种具有移动张力调节功能的电容芯子卷绕装置
US20180338396A1 (en) * 2017-05-16 2018-11-22 Murata Manufacturing Co., Ltd. Electronic component having electromagnetic shielding and method for producing the same
US11202398B2 (en) * 2017-09-28 2021-12-14 Murata Manufacturing Co., Ltd. Electromagnetic shielding material and method for producing the same
CN110294857B (zh) * 2019-05-08 2022-02-01 广东石油化工学院 一种协同增强电磁屏蔽薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060115636A1 (en) * 2002-07-12 2006-06-01 Taro Yoshida Electromagnetic wave shield material and process for producing the same
US20090029125A1 (en) * 2005-02-15 2009-01-29 Fujifilm Corporation Photosensitive material for forming conductive film, conductive film, light transmitting electromagnetic wave shielding film and method for manufacturing the same
CN103606420A (zh) * 2013-11-08 2014-02-26 复旦大学 制备金属导电薄膜的方法
CN108003364A (zh) * 2017-11-24 2018-05-08 中南大学 一种柔性石墨烯基复合膜及其制备方法和作为电磁屏蔽材料的应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224496A1 (zh) * 2019-05-08 2020-11-12 广东石油化工学院 一种协同增强电磁屏蔽薄膜及其制备方法
CN111155324A (zh) * 2020-01-15 2020-05-15 东华大学 一种蒸发诱导定向自组装高效导电织物涂层及其制备方法
CN112159613A (zh) * 2020-10-10 2021-01-01 陈金锁 一种涂覆pmma/石墨烯复合膜的电磁屏蔽金属板及其制备方法
CN112366034A (zh) * 2020-11-04 2021-02-12 湖南华菱线缆股份有限公司 一种抗电磁干扰柔性抗拉医用电缆
CN113214736A (zh) * 2021-05-10 2021-08-06 常熟市方舟绝缘材料有限责任公司 一种聚酰亚胺薄膜及其制备方法及其快速收卷装置
CN114163682A (zh) * 2021-06-24 2022-03-11 贵州航天天马机电科技有限公司 一种电磁材料改性方法在制备聚酰亚胺泡沫电磁屏蔽材料中的应用
CN114479563A (zh) * 2022-01-26 2022-05-13 西南大学 一种生物可降解电磁屏蔽涂料及其制备方法

Also Published As

Publication number Publication date
CN110294857B (zh) 2022-02-01
US20210212243A1 (en) 2021-07-08
WO2020224496A1 (zh) 2020-11-12

Similar Documents

Publication Publication Date Title
CN110294857A (zh) 一种协同增强电磁屏蔽薄膜及其制备方法
Tan et al. PANI/FeCo@ C composite microspheres with broadband microwave absorption performance
KR100744517B1 (ko) 전자파 차폐 소재
Wang et al. The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber
CN108281761B (zh) 一种碳/金属导电复合材料及其应用
CN101605447B (zh) 抗电磁波微粒材料
CN101085842A (zh) 新型电磁屏蔽塑料母粒和复合塑料的制备方法
CN105658043B (zh) 一种电磁屏蔽膜材料及其制备方法
CN108630351A (zh) 一种低成本柔性绿色可降解金属网络透明导电电极的方法
CN104209531A (zh) 一种钴/石墨烯复合纳米吸波材料及其制备方法
CN110283347A (zh) 一种弹性电磁屏蔽膜及其制备方法
CN111386023A (zh) 一种蜂窝状复合吸波电磁屏蔽材料及其制备方法
CN109423636A (zh) 一种二次镀银高导电填料的制备方法
CN109427449A (zh) 一种柔性基透明导电薄膜的制备方法
CN108074660B (zh) 一种复合柔性透明导电薄膜及其制备方法
CN110195351B (zh) 一种碳纳米管/硫化铜复合型电磁屏蔽织物的制备方法
Kim et al. Direct coating of copper nanoparticles on flexible substrates from copper precursors using underwater plasma and their EMI performance
CN104391596A (zh) 导电膜及其制备方法、应用该导电膜的触控屏及电子装置
CN104538087A (zh) 一种透明导电膜
CN104497656A (zh) 一种导电漆材料及其制备方法
Chung et al. High-performance transparent electromagnetic interference shielding film based on metal meshes
CN111560188A (zh) 一种纳米银/石墨烯复合电磁屏蔽油墨及其制备方法
He et al. Low-temperature-cured highly conductive composite of Ag nanowires & polyvinyl alcohol
Sorgucu Electromagnetic interference (EMI) shielding effectiveness (SE) of pure aluminum: an experimental assessment for 5G (SUB 6GHZ)
CN112538296A (zh) 一种用于柔性电路的石墨烯网络导电涂料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Two road 525000 Guangdong Maonan District No. 139 Guandu city of Maoming Province

Applicant after: GUANGDONG UNIVERSITY OF PETROCHEMICAL TECHNOLOGY

Address before: 524048 Guangdong Province, Zhanjiang city Chikan District Road No. 29.

Applicant before: GUANGDONG UNIVERSITY OF PETROCHEMICAL TECHNOLOGY

GR01 Patent grant
GR01 Patent grant