CN110272295A - 一种高电导率受电弓滑板基材及其制备方法 - Google Patents

一种高电导率受电弓滑板基材及其制备方法 Download PDF

Info

Publication number
CN110272295A
CN110272295A CN201910696094.3A CN201910696094A CN110272295A CN 110272295 A CN110272295 A CN 110272295A CN 201910696094 A CN201910696094 A CN 201910696094A CN 110272295 A CN110272295 A CN 110272295A
Authority
CN
China
Prior art keywords
parts
pantograph pan
pore
nanofiber
high conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910696094.3A
Other languages
English (en)
Other versions
CN110272295B (zh
Inventor
高国强
邓磊
王虹
王潇
魏文赋
杨泽锋
左浩梓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201910696094.3A priority Critical patent/CN110272295B/zh
Publication of CN110272295A publication Critical patent/CN110272295A/zh
Application granted granted Critical
Publication of CN110272295B publication Critical patent/CN110272295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0025Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors starting from inorganic materials only, e.g. metal foam; Lanxide type products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • D01F9/17Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate from lignin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D9/00Open-work fabrics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

本发明公开了一种高电导率受电弓滑板基材及其制备方法。本发明通过在受电弓滑板中制造多层均匀分布的孔隙以收集滑动电接触过程中产生的磨屑,防止磨屑在接触区域堆积,从而减弱磨屑对电流在受电弓与接触线之间传导的阻碍作用。其中,通过在碳铜纳米纤维编织网中预埋造孔剂,达到均匀造孔的效果;碳铜纳米纤维编织网由木质素溶液以及醋酸铜溶液制得;预埋造孔剂后将碳铜纳米纤维编织网进行单面碳沉积;重复此操作至基材达到设定高度,最后将材料放入碳化炉里焙烧。本发明制备的受电弓滑板,一方面通过均匀分布的孔隙收集磨屑提高了电流在受电弓与接触线之间的电导率,另一方面引入碳铜纳米纤维进一步提高滑板自身的电导率。

Description

一种高电导率受电弓滑板基材及其制备方法
技术领域
本发明属于受电弓技术领域,具体涉及一种高电导率受电弓滑板基材及其制备方法。
背景技术
受电弓滑板主要是以碳和石墨为骨料,使用粘结剂作为连续相,经过定型烧结处理制得的特殊电工材料,其广泛应用于高速铁路受电弓滑板领域。受电弓滑板作为高速列车的受流装置,对于列车安全、稳定的运行尤为重要。随着高速列车高速化、重载化的发展,列车需要通过受电弓获取更大的电流来保证列车的正常运行。根据电接触理论,接触线与受电弓的接触区域是凹凸不平的,通过接触面上凸出峰的相互接触来传导电流。目前,行业内普遍采用浸金属碳滑板作为受电弓滑板材料,但是该类材料在与接触线发生滑动电接触时容易产生细小磨屑,当磨屑运动到传导电流的两个凸出峰之间时会使接触线与受电弓之间的接触电阻增加从而影响电流传输,另一方面金属磨屑在接触表堆积氧化后也会抑制电流传输。
发明内容
针对上述现有技术,本发明提供一种高电导率受电弓滑板基材及其制备方法,以解决受电弓在滑动过程中容易产生磨屑而影响电流传输的问题。
为了达到上述目的,本发明所采用的技术方案是:提供一种高电导率受电弓滑板基材,本发明中的受电弓滑板基材内部至少分布有两层大小均匀的孔隙。
为了更加高效地对受电弓滑动过程中产生的磨屑进行收集,本发明将电弓滑板基材内部的孔隙大小进行了进一步的限定,孔隙的大小被限定在50μm×50μm×100μm~80μm×80μm×160μm的范围内;并且当孔隙小为60μm×60μm×100μm~70μm×70μm×160μm时,电导率提升效果最佳,磨屑越小对接触电阻的影响越大,60μm×60μm×100μm~70μm×70μm×160μm大小的孔隙既能收集小颗粒的磨屑,又能保证滑板整体性能不受影响。
本发明中的高电导率受电弓滑板基材利用以下质量份的原料制得:沥青焦25~60份、人造石墨10~25份、碳铜纳米纤维编织网15~30份、粘结剂30~75份和造孔剂5~15份。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,受电弓滑板基材利用以下质量份的原料制得:沥青焦50份、人造石墨20份、碳铜纳米纤维编织网25份、粘结剂75份和造孔剂10份。
进一步,造孔剂包括造孔主料和造孔添加剂;造孔主料为碳酸氢铵或硝酸铵,造孔添加剂为聚乙烯醇。
进一步,造孔主料与造孔添加剂的质量比为1~5:1。
本发明以沥青焦为骨料,并且以人造石墨作为润滑剂,以碳铜纳米纤维编织网作为改性剂,以碳酸氢铵或硝酸铵作为造孔剂,以聚乙烯醇作为造孔添加剂,在粘结剂的作用下通过挤压、烧结和制成受电弓滑板,滑板内部分布着一层层大小50μm×50μm×100μm~80μm×80μm×160μm的孔隙用以收集摩擦过程中产生的磨屑。
本发明通过在具有均匀孔隙的碳铜纳米纤维网中预埋造孔剂,造孔剂在高温条件下分解产生气体从而达到造孔效果。一方面制造的小孔能够收集滑板运行过程中产生的磨屑,防止磨屑增大接触线与受电弓之间的接触电阻;另一方面,小孔能够收集接触线的磨屑避免铜屑在接触区域堆积氧化抑制电流传输。小孔的存在能够极大的提高接触线与受电弓之间的导电率,同时碳铜纳米纤维的引入进一步也提升了滑板自身的导电。
不能发明中的造孔剂包括造孔主料和造孔添加剂,造孔添加剂聚乙烯醇可以包裹造孔主料碳酸氢铵或硝酸铵使在其在碳铜纳米纤维编织网中不扩散,造孔主料碳酸氢铵或硝酸铵在高温条件下分解产生气体从而达到造孔的效果。
进一步,碳铜纳米纤维编织网经过以下步骤制得:
S1:常温下,按照一定质量配比制得木质素溶液,所配制的木质素溶液质量份计包括:木质素10~25份,乙醇60~70份;在70~80℃条件下,将10~15份醋酸铜、20~30份聚甲基丙烯酸甲酯和60~80份二甲基甲酰胺(DMF)混合并搅拌4~6h,制得醋酸铜溶液。
S2:常温下,将木质素溶液以及醋酸铜溶液按1:1的体积比均匀混合,并在电动势10~60kV、注射器针头和收集屏幕距离50cm、收集屏幕以注射器针头不停转动的条件下进行静电纺丝得到醋酸铜纳米纤维毡;
S3:将制得的醋酸铜纳米纤维毡置于烧结炉中进行预氧化,烧结炉内升温速率为1℃/min,加热至300℃后保温4h;将处理后的醋酸铜纳米纤维毡置于碳化炉中,以氮气为加压载体,气压加至2~3MPa,碳化炉内升温速率为10℃/min,加热至1000℃后保温2h,将醋酸铜纳米纤维毡碳化制得碳铜纳米纤维;
S4:采用经纬交织法将碳铜纳米纤维编织成具有均匀孔隙的碳铜纳米纤维编织网。
进一步,碳铜纳米纤维编织网表面的孔隙大小为80μm×80μm×100μm~90μm×90μm×160μm。
本发明采用木质素的醇溶液制得的纳米纤维毡相对于常规材料制得的纳米纤维毡具有更高的石墨结构,具有更好的导电性、润滑性、抗热震性。同时醋酸铜溶液的加入能够产生铜纳米粒子形成铜纳米线,并且铜纳米线能均匀镶嵌在碳基质中,进一步增强了纳米纤维毡的导电性。碳铜纳米纤维编织网表面有均匀分布的孔隙,有利于预埋造孔剂,造孔剂在高温条件下分解成气体,能够制造出均匀分布的小孔,而且在孔隙的大小为80μm×80μm×100μm~90μm×90μm×160μm时造孔效果最好;同时碳铜纳米纤维能够进一步增强滑板自身导电性。
进一步,受电弓滑板基材内部碳铜纳米纤维编织网层的表密度为1.0~1.8g/cm3,尺寸为150mm×32mm×100μm~200mm×40mm×160μm。
进一步,粘结剂按质量份计包括煤沥青20~30份和聚酰亚胺树脂40~50份。
煤沥青能够更好的使粘结粉末成型,高温粘结剂聚酰亚胺树脂能够使相邻的碳铜纳米纤维编织网层相互粘连。
本发明中的高电导率受电弓滑板基材制备流程如图3所示,包括以下步骤:
(1)将木质素溶液以及醋酸铜溶液通过静电纺丝法制得碳铜纳米纤维,再将其通过经纬编织法制得表面具有均匀孔隙的碳铜纳米纤维编织网;
(2)将碳酸氢铵或硝酸铵与聚乙烯醇混合、轧片研磨成粒径为20~40μm的粉末后预埋在碳铜纳米纤维编织网的孔隙中,预埋造孔剂后的碳铜纳米纤维编织网如图2所示;再将沥青焦、人造石墨、煤沥青和聚酰亚胺树脂进行混合混捏、轧片研磨成径为50~80μm的粉末后,单面沉积到碳铜纳米纤维网上预埋有造孔剂的一侧;
(3)重复步骤(1)和(2),继续在碳沉积之后的材料上继续铺设碳铜纳米纤维编织网,预埋造孔剂并进行单面碳沉积,不停重复以上步骤直至基材达到预设高度,预设高度为2cm左右,并且根据实际受电弓滑板的制作要求可以对预设高度作出更改;最后将基材置于碳化炉中焙烧,焙烧工艺为:以氮气为加压载体,气压加至3~4MPa,碳化炉内升温速率为5℃/min,加热至120℃后保温30min,然后以10℃/min的升温速率将温度升高至1200~1250℃,焙烧2h,得高电导率受电弓滑板基材,所得到的受电弓滑板基材结构如图1所示。
以氮气作为加压载体能够防止基材在焙烧过程中发生氧化,同时压力的加载有利于碳铜纳米编织网层结合更紧密增强基材的整体性。焙烧温度以5℃/min增加至120℃后保温30min,使基材能够均匀受热,避免基材在焙烧过程中产生龟裂现象。
本发明的有益效果是:本发明中的高电导率受电弓滑板基材制备方法简单、材料易得,小孔的存在能够极大的减小滑动电接触中磨屑对电流传导的影响,改善了接触线与受电弓滑板的接触状态,提升了接触线与受电弓滑板之间的电导率,另一方面碳铜纳米纤维的引入也提升了滑板自身电导率。
附图说明
图1为高电导率受电弓滑板基材的结构示意图;
图2为预埋造孔剂后的碳铜纳米纤维编织网示意图;
图3为高电导率受电弓滑板基材制备流程图;
其中,1、高电导率受电弓滑板基材;2、碳铜纳米纤维编织网;3、造孔剂。
具体实施方式
以下结合实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例一
本实施例的高电导率受电弓滑板基材,利用以下质量份的原料制得:沥青焦50份,人造石墨20份,碳铜纳米纤维网25份,粘结剂75份(煤沥青25份+聚酰亚胺树脂50份)、造孔剂10份(碳酸氢铵5份、聚乙烯醇5份);所制得的受电弓滑板基材内部分布有多层大小均匀的孔隙,并且孔隙的大小为80μm×80μm×120μm左右。该实施例中的高电导率受电弓滑板基材经过以下步骤制得:
(1)常温下,将20质量份的木质素溶于65质量份的乙醇中,搅拌均匀得木质素溶液;在80℃条件下,将15质量份的醋酸铜和25质量份的聚甲基丙烯酸甲酯溶于70质量份的二甲基甲酰胺中,搅拌6h制得醋酸铜溶液。
(2)常温下,将木质素溶液以及醋酸铜溶液按1:1的体积比均匀混合,并在电动势40kV、注射器针头和收集屏幕距离50cm、收集屏幕以注射器针头不停转动的条件下进行静电纺丝得到醋酸铜纳米纤维毡;将制得的醋酸铜纳米纤维毡置于烧结炉中进行预氧化,烧结炉内升温速率为1℃/min,加热至300℃后保温4h;然后将醋酸铜纳米纤维毡置于碳化炉中,以氮气为加压载体,气压加至3MPa,碳化炉内升温速率为10℃/min,加热至1000℃后保温2h,将醋酸铜纳米纤维毡碳化制得碳铜纳米纤维。
(3)采用经纬交织法将碳铜纳米纤维编织成均匀分布80μm×80μm×120μm大小孔隙的碳铜纳米纤维编织网。
(4)首先将造孔剂研磨成粒径20μm的粉末,并将该粉末预埋在碳铜纳米纤维编织网的孔隙中,然后将沥青焦、人造石墨和粘结剂均匀混合并混捏、轧片研磨成粒径60μm大小的粉末,单面沉积在碳铜纳米纤维编织网预埋有造孔剂的一侧。
(5)重复步骤(1)~(4),继续在碳沉积之后的材料上继续铺设碳铜纳米纤维编织网,预埋造孔剂并进行单面碳沉积,不停重复以上步骤直至材料达到预设高度,然后将所得基材置于碳化炉中以氮气为加压载体,气压加至4MPa,碳化炉内升温速率为5℃/min,加热至120℃后保温30min,然后以10℃/min的升温速率将温度升高至1200℃,焙烧2h,得高电导率受电弓滑板基材。
实施例二
本实施例的高电导率受电弓滑板基材,利用以下质量份的原料制得:沥青焦60份,人造石墨15份,碳铜纳米纤维网20份,粘结剂70份(煤沥青30份+聚酰亚胺树脂40份)、造孔剂8份(碳酸氢铵4份、聚乙烯醇4份);所制得的受电弓滑板基材内部分布有多层大小均匀的孔隙,并且孔隙的大小为60μm×60μm×100μm左右。该实施例中的高电导率受电弓滑板基材经过以下步骤制得:
(1)常温下,将25质量份的木质素溶于70质量份的乙醇中,搅拌均匀得木质素溶液;在80℃条件下,将12质量份的醋酸铜和30质量份的聚甲基丙烯酸甲酯溶于80质量份的二甲基甲酰胺中,搅拌5h制得醋酸铜溶液。
(2)常温下,将木质素溶液以及醋酸铜溶液按1:1的体积比均匀混合,并在电动势60kV、注射器针头和收集屏幕距离50cm、收集屏幕以注射器针头不停转动的条件下进行静电纺丝得到醋酸铜纳米纤维毡;将制得的醋酸铜纳米纤维毡置于烧结炉中进行预氧化,烧结炉内升温速率为1℃/min,加热至300℃后保温3h;然后将醋酸铜纳米纤维毡置于碳化炉中,以氮气为加压载体,气压加至2MPa,碳化炉内升温速率为10℃/min,加热至1000℃后保温2h,将醋酸铜纳米纤维毡碳化制得碳铜纳米纤维。
(3)采用经纬交织法将碳铜纳米纤维编织成均匀分布60μm×60μm×100μm大小孔隙的碳铜纳米纤维编织网。
(4)首先将造孔剂研磨成粒径25μm的粉末,并将该粉末预埋在碳铜纳米纤维编织网的孔隙中,然后将沥青焦、人造石墨和粘结剂均匀混合并混捏、轧片研磨成粒径60μm大小的粉末,单面沉积在碳铜纳米纤维编织网预埋有造孔剂的一侧。
(5)重复步骤(1)~(4),继续在碳沉积之后的材料上继续铺设碳铜纳米纤维编织网,预埋造孔剂并进行单面碳沉积,不停重复以上步骤直至材料达到预设高度,然后将所得基材置于碳化炉中以氮气为加压载体,气压加至3MPa,碳化炉内升温速率为5℃/min,加热至120℃后保温30min,然后以10℃/min的升温速率将温度升高至1200℃,焙烧2h,得高电导率受电弓滑板基材。
实施例三
本实施例的高电导率受电弓滑板基材,利用以下质量份的原料制得:沥青焦40份,人造石墨10份,碳铜纳米纤维网15份,粘结剂55份(煤沥青20份+聚酰亚胺树脂35份)、造孔剂6份(碳酸氢铵3份、聚乙烯醇3份);所制得的受电弓滑板基材内部分布有多层大小均匀的孔隙,并且孔隙的大小为70μm×70μm×160μm左右。该实施例中的高电导率受电弓滑板基材经过以下步骤制得:
(1)常温下,将10质量份的木质素溶于60质量份的乙醇中,搅拌均匀得木质素溶液;在80℃条件下,将10质量份的醋酸铜和30质量份的聚甲基丙烯酸甲酯溶于80质量份的二甲基甲酰胺中,搅拌6h制得醋酸铜溶液。
(2)常温下,将木质素溶液以及醋酸铜溶液按1:1的体积比均匀混合,并在电动势10kV、注射器针头和收集屏幕距离50cm、收集屏幕以注射器针头不停转动的条件下进行静电纺丝得到醋酸铜纳米纤维毡;将制得的醋酸铜纳米纤维毡置于烧结炉中进行预氧化,烧结炉内升温速率为1℃/min,加热至300℃后保温4h;然后将醋酸铜纳米纤维毡置于碳化炉中,以氮气为加压载体,气压加至2MPa,碳化炉内升温速率为10℃/min,加热至1000℃后保温2h,将醋酸铜纳米纤维毡碳化制得碳铜纳米纤维。
(3)采用经纬交织法将碳铜纳米纤维编织成均匀分布70μm×70μm×160μm大小孔隙的碳铜纳米纤维编织网。
(4)首先将造孔剂研磨成粒径25μm的粉末,并将该粉末预埋在碳铜纳米纤维编织网的孔隙中,然后将沥青焦、人造石墨和粘结剂均匀混合并混捏、轧片研磨成粒径60μm大小的粉末,单面沉积在碳铜纳米纤维编织网预埋有造孔剂的一侧。
(5)重复步骤(1)~(4),继续在碳沉积之后的材料上继续铺设碳铜纳米纤维编织网,预埋造孔剂并进行单面碳沉积,不停重复以上步骤直至材料达到预设高度,然后将所得基材置于碳化炉中以氮气为加压载体,气压加至3MPa,碳化炉内升温速率为5℃/min,加热至120℃后保温30min,然后以10℃/min的升温速率将温度升高至1300℃,焙烧2h,得高电导率受电弓滑板基材。
结果分析
将上述实施例得到的高电导率受电弓滑板基材进行性能测试,得到如下数据,如表1所示:
表1实施例制备得到的受电弓滑板基材性能测试表
通过上述实施例的数据表明,本发明制备的受电弓滑板基材的电阻率低、载流磨损率低,说明其具有高电导率、低磨损的特点。
虽然结合实施例对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (10)

1.一种高电导率受电弓滑板基材,其特征在于:所述受电弓滑板基材内部至少分布有两层大小均匀的用于收集磨屑的孔隙。
2.根据权利要求1所述的高电导率受电弓滑板基材,其特征在于:所述孔隙的大小为50μm×50μm×100μm~80μm×80μm×160μm。
3.根据权利要求1或2所述的高电导率受电弓滑板基材,其特征在于,所述受电弓滑板基材利用以下质量份的原料制得:沥青焦25~60份、人造石墨10~25份、碳铜纳米纤维编织网15~30份、粘结剂30~75份和造孔剂5~15份。
4.根据权利要求3所述的高电导率受电弓滑板基材,其特征在于:所述受电弓滑板基材利用以下质量份的原料制得:沥青焦50份、人造石墨20份、碳铜纳米纤维编织网25份、粘结剂75份和造孔剂10份。
5.根据权利要求3所述的高电导率受电弓滑板基材,其特征在于:所述造孔剂包括造孔主料和造孔添加剂;所述造孔主料为碳酸氢铵或硝酸铵,所述造孔添加剂为聚乙烯醇;并且所述造孔主料与造孔添加剂的质量比为1:1。
6.根据权利要求3所述的高电导率受电弓滑板基材,其特征在于,所述碳铜纳米纤维编织网经过以下步骤制得:
S1:将木质素溶液和醋酸铜溶液通过静电纺丝法制得醋酸铜纳米纤维毡;其中,木质素溶液按质量份计包括:木质素10~25份,乙醇60~70份;醋酸铜溶液按质量份计包括:醋酸铜10~15份,聚甲基丙烯酸甲酯20~30份和二甲基甲酰胺60~80份;
S2:将醋酸铜纳米纤维毡通过预氧化和碳化制得碳铜纳米纤维;
S3:运用经纬编织法将碳铜纳米纤维编织成表面具有均匀孔隙的碳铜纳米纤维编织网。
7.根据权利要求6所述的高电导率受电弓滑板基材,其特征在于:所述碳铜纳米纤维编织网表面的孔隙大小为80μm×80μm×100μm~90μm×90μm×160μm。
8.根据权利要求3所述的高电导率受电弓滑板基材,其特征在于:所述受电弓滑板基材内部碳铜纳米纤维编织网层的表密度为1.0~1.8g/cm3,尺寸为150mm×32mm×100μm~200mm×40mm×160μm。
9.根据权利要求3所述的高电导率受电弓滑板基材,其特征在于,所述粘结剂按质量份计包括煤沥青20~30份和聚酰亚胺树脂40~50份。
10.如权利要求1~9任一项所述的高电导率受电弓滑板基材的制备方法,其特征在于,包括以下步骤:
(1)将造孔剂研磨成粒径为20~40μm的粉末,并预埋到碳铜纳米纤维编织网的孔隙中;然后将沥青焦、人造石墨和粘结剂混匀并研磨成粒径为50~80μm的粉末,并将它们单面沉积到碳铜纳米纤维网上预埋有造孔剂的一侧;再在沉积层表面铺设碳铜纳米纤维编织网,完成基底层的制备;
(2)重复步骤(1),至基材达到预设厚度;
(3)将达到预设厚度的基材放入炭化炉内进行焙烧处理,得受电弓滑板基材;焙烧工艺为:以氮气为加压载体,气压加至3~4MPa,碳化炉内升温速率为5℃/min,加热至120℃后保温30min,然后以10℃/min的升温速率将温度升高至1200~1250℃,焙烧2h。
CN201910696094.3A 2019-07-30 2019-07-30 一种高电导率受电弓滑板基材及其制备方法 Active CN110272295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910696094.3A CN110272295B (zh) 2019-07-30 2019-07-30 一种高电导率受电弓滑板基材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910696094.3A CN110272295B (zh) 2019-07-30 2019-07-30 一种高电导率受电弓滑板基材及其制备方法

Publications (2)

Publication Number Publication Date
CN110272295A true CN110272295A (zh) 2019-09-24
CN110272295B CN110272295B (zh) 2022-02-18

Family

ID=67965998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910696094.3A Active CN110272295B (zh) 2019-07-30 2019-07-30 一种高电导率受电弓滑板基材及其制备方法

Country Status (1)

Country Link
CN (1) CN110272295B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119740A (ja) * 1994-10-17 1996-05-14 Sumitomo Metal Ind Ltd 金属繊維/炭素複合材の製造方法
EP1041056A2 (en) * 1999-03-30 2000-10-04 Railway Technical Research Institute Titanium- and copper-containing carbon composite material and process for the production thereof
CN101492015A (zh) * 2009-03-02 2009-07-29 浙江师范大学 网状层压碳-铜复合材料受电弓滑板及其制造方法
CN106145995A (zh) * 2015-04-21 2016-11-23 苏州东南电碳科技有限公司 一种碳纤维增强受电弓碳滑板碳条的造孔方法
CN109574696A (zh) * 2019-01-25 2019-04-05 西南交通大学 一种高强度耐电弧受电弓滑板材料及其制备方法
CN109774484A (zh) * 2019-01-25 2019-05-21 西南交通大学 一种受电弓滑板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119740A (ja) * 1994-10-17 1996-05-14 Sumitomo Metal Ind Ltd 金属繊維/炭素複合材の製造方法
EP1041056A2 (en) * 1999-03-30 2000-10-04 Railway Technical Research Institute Titanium- and copper-containing carbon composite material and process for the production thereof
CN101492015A (zh) * 2009-03-02 2009-07-29 浙江师范大学 网状层压碳-铜复合材料受电弓滑板及其制造方法
CN106145995A (zh) * 2015-04-21 2016-11-23 苏州东南电碳科技有限公司 一种碳纤维增强受电弓碳滑板碳条的造孔方法
CN109574696A (zh) * 2019-01-25 2019-04-05 西南交通大学 一种高强度耐电弧受电弓滑板材料及其制备方法
CN109774484A (zh) * 2019-01-25 2019-05-21 西南交通大学 一种受电弓滑板及其制备方法

Also Published As

Publication number Publication date
CN110272295B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN101480927B (zh) 网状烧结碳-铜复合材料受电弓滑板及其制造方法
CN104868134B (zh) 一种泡沫金属‑碳纳米管复合材料及其制备方法与应用
CN110066972B (zh) 一种C/C-Ni-Cu复合材料及其制备方法和应用
CN108584942A (zh) 一种石墨烯泡沫炭复合材料的制备方法
CN115583835B (zh) 一种低气孔率高机械强度炭石墨材料及其制备方法
CN100427537C (zh) 一种碳素机敏材料及其制备方法和应用
CN115872744B (zh) 一种固相增密制备高性能无粘结剂炭石墨材料的方法
CN106140162A (zh) 一种用于电催化析氢的铜纳米粒子/碳纳米纤维杂化材料的制备方法
CN109295335A (zh) 一种改性膨胀石墨-石墨/铜复合材料及其制备方法
KR20070068770A (ko) 면상 발열체용 탄소섬유의 제조법
CN110272295A (zh) 一种高电导率受电弓滑板基材及其制备方法
CN110611965A (zh) 一种远红外辐射发热织物及其制备方法
CN109774484A (zh) 一种受电弓滑板及其制备方法
CN109935472A (zh) 一种多形貌Fe-Mn复合碳纳米纤维及其制备和应用
CN116715528B (zh) 高韧性陶瓷研磨介质的制备方法
JP7253454B2 (ja) 集電摺動材料及びその製造方法
CN113913153B (zh) 一种粘结剂和一种碳纤维复合隔热材料及其制备方法
CN105156526A (zh) 一种碳纤维刹车片复合材料的制备方法
CN114210345B (zh) 一种同源异质界面结构复合材料及其制备方法
CN101420801A (zh) 准超高功率石墨电极
CN114808197A (zh) 一种一体两相沥青基碳纳米纤维及其制备方法与应用
CN108515170A (zh) 一种新型高性能受电弓材料的制备工艺
CN107916466A (zh) 碳纤维材料及制备方法和应用、制备受电弓滑块的方法
CN109704773A (zh) 一种添加硅微粉原位制备SiC/B4C复合陶瓷粉的方法
CN115894032B (zh) 一种Ti3AlC2增强碳基受电弓滑板的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant