CN110270315B - Mof-聚合物复合材料、其制备方法及应用 - Google Patents

Mof-聚合物复合材料、其制备方法及应用 Download PDF

Info

Publication number
CN110270315B
CN110270315B CN201910583685.XA CN201910583685A CN110270315B CN 110270315 B CN110270315 B CN 110270315B CN 201910583685 A CN201910583685 A CN 201910583685A CN 110270315 B CN110270315 B CN 110270315B
Authority
CN
China
Prior art keywords
mof
polymer
polymer composite
composite material
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910583685.XA
Other languages
English (en)
Other versions
CN110270315A (zh
Inventor
朱世平
朱贺
陈聪聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese University of Hong Kong CUHK
Original Assignee
Chinese University of Hong Kong CUHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese University of Hong Kong CUHK filed Critical Chinese University of Hong Kong CUHK
Priority to CN201910583685.XA priority Critical patent/CN110270315B/zh
Publication of CN110270315A publication Critical patent/CN110270315A/zh
Application granted granted Critical
Publication of CN110270315B publication Critical patent/CN110270315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了MOF‑聚合物复合材料、其制备方法及应用,涉及复合材料技术领域。MOF‑聚合物复合材料的制备方法包括:将MOF前体、聚合物、第一有机溶剂混合溶解以形成原始溶液;将原始溶液进行溶剂蒸发后得到MOF‑聚合物复合材料初料。MOF‑聚合物复合材料,其通过上述制备方法制备而得,得到的复合材料兼具金属有机框架材料高比表面积和聚合物良好力学性能的优点,复合材料比表面积100‑600m2/g,是一种同时含有微孔、介孔和大孔的多级孔隙结构,对二氧化碳气体具有很好的吸附性能,吸附量大且吸附速率快。

Description

MOF-聚合物复合材料、其制备方法及应用
技术领域
本发明涉及复合材料技术领域,且特别涉及MOF-聚合物复合材料、其制备方法及应用。
背景技术
金属有机框架材料(MOF)/聚合物复合材料因可以有效结合MOF高比表面积、高孔隙率以及聚合物优良力学性能、易于加工的优点在近年来受到广泛关注。此外绝大部分纯MOF材料因其孔径仅在微孔(小于2nm)范围内,导致在催化、吸附等领域应用中具有较大的扩散阻力,催化、吸附效率低下。制备具有多级孔结构的MOF及其复合材料,尤其是同时具有微孔(小于2nm)、介孔(2-50nm)和大孔(大于50nm)的复合材料在吸附、分离、催化等领域具有良好的应用前景。
目前多级孔MOF-聚合物复合材料制备方法主要有两大类方法,包括在多孔聚合物基质上原位生长MOF(如水热合成、二次生长等),和在MOF颗粒存在下聚合基质得到多孔材料(如高内向乳液聚合)。但这些方法都存在制备过程复杂,如前者聚合物基质通常需要改性来改善两者相容性,后者乳液体系制备需进行高耗能搅拌,大大增加了操作复杂度和成本从而难以工业化推广。
发明内容
本发明的目的在于提供一种MOF-聚合物复合材料的制备方法,旨在采用易于工业化操作的方法制备多级孔隙的复合材料。
本发明的另一目的在于提供一种MOF-聚合物复合材料,其同时具备微孔、介孔和大孔,具有较大的比表面积,还具备高的CO2吸附量和吸附速率,可以作为吸附剂得到应用。
本发明解决其技术问题是采用以下技术方案来实现的。
本发明提出了一种MOF-聚合物复合材料的制备方法,包括如下步骤:
将MOF前体、聚合物、第一有机溶剂混合溶解以形成原始溶液;
将原始溶液进行溶剂蒸发后得到MOF-聚合物复合材料初料;
优选地,MOF前体选自HKUST-1、CuBDC、ZIF-8或UiO-66对应的前体材料,且前体材料包括盐和配体;更优选地,MOF前体为HKUST-1对应的前体材料。优选地,聚合物选自聚偏氟乙烯、聚醚砜、聚丙烯腈、醋酸纤维素和聚酰亚胺中的一种或多种;优选为聚偏氟乙烯。
本发明还提出一种MOF-聚合物复合材料,由上述制备方法制备而得;
优选地,复合材料上具有大孔、介孔和微孔。
本发明还提出上述复合材料作为吸附剂的应用。
本发明实施例提供一种MOF-聚合物复合材料的制备方法的有益效果是:其通过将MOF前体、聚合物和第一有机溶剂形成的原始溶液进行溶剂蒸发,使MOF结晶同时聚合物析出,能够形成多级孔隙的结构,包括微孔、介孔和大孔。该方法具有操作简便、易于放大、MOF-聚合物相容性好等优点。
发明人猜测这可能是由于:一方面形成的刚性MOF晶体限制聚合物链的运动,从而造成大孔级别多孔的聚合物基质;另一方面MOF结晶和聚合物析出过程中,MOF和聚合物相互作用,在晶体中引入了缺陷即MOF中引入介孔,同时在聚合物基质中也引入了介孔;最终结合具有微孔孔道的MOF,得到具有大孔-介孔-微孔的MOF-聚合物多孔复合材料。
本发明还提供了一种MOF-聚合物复合材料,其通过上述制备方法制备而得,得到的复合材料兼具金属有机框架材料高比表面积和聚合物良好力学性能的优点,复合材料比表面积100-600m2/g,可以作为吸附剂得到应用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例和对比例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例提供的不锈钢模具三视图;
图2为本发明实施例制备得到的复合材料表面和断面SEM图;
图3为本发明实施例制备得到的复合材料和标准HKUST-1的XRD对比;
图4为本发明实施例制备得到的复合材料二氧化碳吸附速率和吸附等温线;
图5为本发明对比例制备得到的材料的XRD图;
图6为本发明对比例制备得到的复合材料表面和断面SEM图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例提供的MOF-聚合物复合材料、其制备方法及应用进行具体说明。
本发明实施例提供的一种MOF-聚合物复合材料的制备方法,其包括如下步骤:
S1、原始溶液的制备
将MOF前体、聚合物、第一有机溶剂混合溶解以形成原始溶液;通过将MOF前体和聚合物溶解于同一有机溶剂形成待蒸发体系。
其中,MOF表示金属有机框架材料,MOF前体选自HKUST-1、CuBDC、ZIF-8或UiO-66对应的前体材料,且前体材料包括盐和配体;更优选地,MOF前体为HKUST-1对应的前体材料。聚合物选自聚偏氟乙烯、聚醚砜、聚丙烯腈、醋酸纤维素和聚酰亚胺中的一种或多种;优选为聚偏氟乙烯。金属有机框架材料前体、聚合物和第一有机溶剂形成的混合体系有一定要求,发明人通过优化混合体系的组成使本发明中“一锅法”(均相溶液蒸发的方法)得以更好地实现。发明人发现,金属有机框架材料和聚合物采用以上几种能够得到具备多级孔结构的复合材料,且材料具备很大的比表面积。
MOF在现有技术中一般均采用简写,如HKUST-1表示金属为铜,配体为BTC(均苯三甲酸);CuBDC表示金属为铜,配体为BDC(对苯二甲酸);UiO-66表示金属为Zr,配体为BDC(对苯二甲酸);ZIF-8表示金属为锌,配体为2-MeIM(2-甲基咪唑)。
为了进一步优化复合材料的性能,发明人对于制备条件进行了进一步优化,在原始溶液中,MOF前体的总质量分数为0.5-15%,聚合物的质量分数为0.5-15%;优选地,MOF前体的总质量分数为4-10%,聚合物的质量分数为4-10%;更优选地,HKUST-1对应的前体盐和配体质量比为1.8-2.3:1。在原始溶液中,MOF前体和聚合物的浓度控制在上述范围内为宜,以使得最终复合材料更加均匀,比表面积和吸附性能更为理想。MOF前体和聚合物的浓度过大或过小均不利于复合材料性能的提升,甚至会导致不能形成多级孔结构的情况。
具体地,第一有机溶剂选自二甲基亚砜、N,N-二甲基甲酰胺和甲基乙酰胺中的任意一种或多种;优选为二甲基亚砜。第一有机溶剂的选择也是混合体系中的重要因素,并不是所有能够将MOF前体和聚合物溶解的有机溶剂均能够形成多级孔结构的复合材料,发明人通过不断探索发现以上几种溶剂最为适合本发明中的混合体系。
优选地,原始溶液的制备过程是将聚合物和MOF前体分别溶解于同一溶剂以得到聚合物溶液和MOF前体溶液,然后将聚合物溶液和MOF前体溶液混合。采用分步混合的步骤有利于提高原始溶液的均匀性,使得到材料的孔隙分布更加均匀。
优选地,在MOF前体溶液中加入MOF晶体合成调节添加剂;其中,HKUST-1、CuBDC、ZIF-8前体溶液对应的晶体合成调节添加剂为三乙胺,UiO-66前体溶液对应的晶体合成调节添加剂为盐酸或醋酸。晶体合成调节添加剂能够使有效的调节晶体的析出过程,使得到复合材料的晶体结构和孔隙更加均匀一致。发明人发现,不同的MOF前体对应不同的晶体合成调节添加剂,才能使晶体析出过程得到更有效的控制。
S2、溶剂蒸发
将原始溶液进行溶剂蒸发后得到MOF-聚合物复合材料初料,此过程可以在本发明中实施例提供的不锈钢模具中进行,如图1所示。在蒸发过程中,MOF和聚合物一同析出,且形成了多级孔隙的结构,同时包括了微孔、介孔和大孔。
具体地,纯聚合物直接蒸发得到的是致密膜,孔隙率很小只有4.1%,而复合材料有20-40%的孔隙率;纯PVDF孔均为死孔,复合材料为相互连通的孔。HKUST-1/PVDF材料中大孔的孔径范围为50nm-3μm,介孔的平均孔径为3.8nm,微孔的孔径为0.9nm。
需要说明的是,形成多级孔隙结构的原因并不十分明确,由于整体体系的相变等因素的影响,整体的原理可能是十分复杂的。这可能是由于:一方面形成的刚性MOF晶体限制聚合物链的运动,从而造成大孔级别多孔的聚合物基质;另一方面MOF结晶过程因溶液中存在的聚合物链受到影响,在晶体中引入了缺陷,从而在MOF中引入介孔,同时MOF和聚合物相互作用在聚合物中也引入了介孔;最终结合具有微孔孔道的MOF,得到具有大孔-介孔-微孔的MOF-聚合物多孔复合材料。
优选地,溶剂蒸发是在70-110℃的条件下蒸发5-12h;更优选地,蒸发温度为85-95℃,蒸发时间为8-10h。蒸发的条件对最终晶体的形态有较为显著的影响,蒸发条件控制在上述范围内为宜,若超出上述范围可能会导致无法形成多级孔隙结构,或者复合材料的均匀性差等问题。本发明中的蒸发温度小于溶剂沸点,可能原因在于:MOF合成过程需要相对温和环境,溶剂沸腾会影响MOF晶体的合成。
S3、纯化
将MOF-聚合物复合材料初料在第二有机溶剂中浸泡后干燥,通过第二有机溶剂的浸泡去除第一有机溶剂,在干燥过程中同样能够进一步去除第一有机溶剂,第二有机溶液的要求是能够溶解第一有机溶剂并且不能溶解复合材料。优选地,第二有机溶剂选自无水甲醇和/或无水乙醇(如采用单独的无水甲醇、单独的无水乙醇或采用二者组合)。以上几种溶剂均能够有效溶解第一有机溶剂,且不会影响复合材料的形态,起到进一步提纯的效果。
优选地,浸泡时间为1-4h;更优选为1.5-3h。浸泡时间不宜过短,否则不能有效溶解残留的第一有机溶剂,也不宜过长,聚合物可能会在有机溶剂中溶胀,复合材料孔隙结构会改变。
进一步地,干燥过程是在80-120℃的条件下真空干燥12-24h。干燥过程的温度也较高,目的是通过高温进一步去除第一有机溶剂,同时也去除第二有机溶剂。
本发明实施例还提供了一种MOF-聚合物复合材料,由上述制备方法制备而得;优选地,复合材料上具有大孔、介孔和微孔;优选地,复合材料的比表面积为100-600m2/g。HKUST-1/PVDF材料中大孔的孔径范围为50nm-3μm,介孔的平均孔径为3.8nm,微孔的孔径为0.9nm。
需要补充的是,复合材料兼具金属有机框架材料高比表面积和聚合物良好力学性能的优点。宏观上复合材料具有良好的柔韧性,易于包装加工;微观上MOF颗粒均匀地镶嵌在聚合物基质孔壁表面,同时MOF微孔孔道不会被聚合物堵塞。多级孔MOF-聚合物复合材料能很好体现MOF前体优良的吸附性同时大大改善MOF前体大传质阻力的缺点,具有良好的吸附、催化、分离等应用前景。
本发明实施例还提供了上述复合材料作为吸附剂的应用,优选用于吸附二氧化碳。由于上述复合材料具备很高的二氧化碳吸附量,且吸附速率很快,这使得复合材料作为吸附剂具备很好的应用前景,可以用于工业混合气中CO2捕集及吸附。该吸附剂对二氧化碳的吸附量为0.8-1.5mmol/g,吸附速率约为0.82min-1
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种MOF-聚合物复合材料的制备方法,其包括以下步骤:
(1)称量0.27g三水硝酸铜(Cu(NO3)2·3H2O),0.13g配体1,3,5-均苯三甲酸(H3BTC),并将两者搅拌溶解于5.07g二甲亚砜(DMSO)中,随后加入19.4μl三乙胺(TEA)搅拌得到均一HKUST-1前体溶液;准确称量0.40g聚偏氟乙烯(PVDF)于2.93g DMSO中搅拌溶解得到均一聚合物溶液;将HKUST-1前体溶液和聚合物溶液共混搅拌得到均一原始溶液。
(2)将(1)中的原始溶液1.3g倒入不锈钢模具中,随后将模具和原始溶液置于90℃烘箱蒸发溶剂10h。
(3)待(2)中的原始溶液溶剂完全蒸发,将模具和复合材料从烘箱中取出缓慢冷却到室温,将模具置于100mL无水甲醇中洗涤浸泡2h,进一步除去复合材料中残留溶剂,复合材料从模具中脱落。
(4)将(3)中的复合材料置于100℃烘箱抽真空干燥12h除去复合材料中的甲醇,最终得到多级孔HKUST-1/PVDF复合材料。
实施例2
本实施例提供一种MOF-聚合物复合材料的制备方法,其包括以下步骤:
(1)称量0.54g三水硝酸铜(Cu(NO3)2·3H2O),0.26g配体1,3,5-均苯三甲酸(H3BTC),并将两者搅拌溶解于5.07g二甲亚砜(DMSO)中,随后加入38.8μl三乙胺(TEA)搅拌得到均一HKUST-1前体溶液;准确称量0.40g聚偏氟乙烯(PVDF)于2.93g DMSO中搅拌溶解得到均一聚合物溶液;将HKUST-1前体溶液和聚合物溶液共混搅拌得到均一原始溶液。
(2)将(1)中的原始溶液1.3g倒入不锈钢模具中,随后将模具和原始溶液置于90℃烘箱蒸发溶剂5h。
(3)待(2)中的原始溶液溶剂完全蒸发,将模具和复合材料从烘箱中取出缓慢冷却到室温,将模具置于100mL无水甲醇中洗涤浸泡2h,进一步除去复合材料中残留溶剂,复合材料从模具中脱落。
(4)将(3)中的复合材料置于100℃烘箱抽真空干燥12h除去复合材料中的甲醇,最终得到多级孔HKUST-1/PVDF复合材料。
实施例3
本实施例提供一种MOF-聚合物复合材料的制备方法,其包括以下步骤:
(1)称量0.54g三水硝酸铜(Cu(NO3)2·3H2O),0.26g配体1,3,5-均苯三甲酸(H3BTC),并将两者搅拌溶解于2.13g二甲亚砜(DMSO)中,随后加入38.8μl三乙胺(TEA)搅拌得到均一HKUST-1前体溶液;准确称量0.80g聚偏氟乙烯(PVDF)于5.87g DMSO中搅拌溶解得到均一聚合物溶液;将HKUST-1前体溶液和聚合物溶液共混搅拌得到均一原始溶液。
(2)将(1)中的原始溶液1.3g倒入不锈钢模具中,随后将模具和原始溶液置于90℃烘箱蒸发溶剂12h。
(3)待(2)中的原始溶液溶剂完全蒸发,将模具和复合材料从烘箱中取出缓慢冷却到室温,在模具中加入100mL无水甲醇,浸泡2h,进一步除去复合材料中残留溶剂,复合材料从模具中脱落。
(4)将(3)中的复合材料置于100℃烘箱抽真空干燥12h除去复合材料中的甲醇,最终得到多级孔HKUST-1/PVDF复合材料。
实施例4
本实施例提供一种MOF-聚合物复合材料的制备方法,其包括以下步骤:
(1)称量0.54g三水硝酸铜(Cu(NO3)2·3H2O),0.26g配体1,3,5-均苯三甲酸(H3BTC),并将两者搅拌溶解于3.2g二甲亚砜(DMSO)中,随后加入38.8μl三乙胺(TEA)搅拌得到均一HKUST-1前体溶液;准确称量1.20g聚偏氟乙烯(PVDF)于4.80g DMSO中搅拌溶解得到均一聚合物溶液;将HKUST-1前体溶液和聚合物溶液共混搅拌得到均一原始溶液。
(2)将(1)中的原始溶液1.3g倒入不锈钢模具中,随后将模具和原始溶液置于90℃烘箱蒸发溶剂12h。
(3)待(2)中的原始溶液溶剂完全蒸发,将模具和复合材料从烘箱中取出缓慢冷却到室温,将模具置于100mL无水甲醇中洗涤浸泡2h,进一步除去复合材料中残留溶剂,复合材料从模具中脱落。
(4)将(3)中的复合材料置于100℃烘箱抽真空干燥12h除去复合材料中的甲醇,最终得到多级孔HKUST-1/PVDF复合材料。
实施例5
本实施例提供一种MOF-聚合物复合材料的制备方法,其包括以下步骤:
(1)称量0.24g三水硝酸铜(Cu(NO3)2·3H2O),0.16g配体对苯二甲酸(BDC),并将两者搅拌溶解于5.07g DMSO中得到溶液得到CuBDC前体溶液;准确称量0.4g聚醚砜(PES)于2.93g DMSO中搅拌溶解得到均一聚合物溶液;将CuBDC前体溶液和聚合物溶液共混搅拌得到均一原始溶液。
(2)将(1)中的原始溶液1.3g倒入不锈钢模具中,随后将模具和原始溶液置于70℃烘箱蒸发溶剂12h。
(3)待(2)中的原始溶液溶剂完全蒸发,将模具和复合材料从烘箱中取出缓慢冷却到室温,将模具置于100mL无水乙醇中洗涤浸泡2h,进一步除去复合材料中残留溶剂,复合材料从模具中脱落。
(4)将(3)中的复合材料置于80℃烘箱抽真空干燥24h除去复合材料中的甲醇,最终得到多级孔CuBDC/PES复合材料。
实施例6
本实施例提供一种MOF-聚合物复合材料的制备方法,其包括以下步骤:
(1)称量0.23g氯化锆(ZrCl4),0.17g配体对苯二甲酸(BDC),并将两者搅拌溶解于5.07g N,N-二甲基甲酰胺中,随后加入35.2μl盐酸(1M)搅拌得到均一UiO-66前体溶液;准确称量0.4g醋酸纤维素(CA)于2.93g N,N-二甲基甲酰胺中搅拌溶解得到均一聚合物溶液;将UiO-66前体溶液和聚合物溶液共混搅拌得到均一原始溶液。
(2)将(1)中的原始溶液1.3g倒入不锈钢模具中,随后将模具和原始溶液置于110℃烘箱蒸发溶剂5h。
(3)待(2)中的原始溶液溶剂完全蒸发,将模具和复合材料从烘箱中取出缓慢冷却到室温,将模具置于100mL无水甲醇中洗涤浸泡3h,进一步除去复合材料中残留溶剂,复合材料从模具中脱落。
(4)将(3)中的复合材料置于120℃烘箱抽真空干燥12h除去复合材料中的甲醇,最终得到多级孔UiO-66/CA复合材料。
对比例1
本对比例提供一种MOF-聚合物复合材料的制备方法,其与实施例1的步骤大致相同,不同之处在于:HKUST-1前体溶液替换为MnBTC前体溶液;MnBTC前体溶液制备方法为:称量0.15g氯化锰(MnCl2),0.25g配体均苯二甲酸(BTC),并将两者搅拌溶解于5.07g DMSO中,随后加入20.7μl三乙胺(TEA)搅拌得到均一MnBTC前体溶液。
对比例2
本对比例提供一种MOF-聚合物复合材料的制备方法,其与实施例1的步骤大致相同,不同之处在于:聚合物溶液替换为聚酰亚胺溶液。
试验例1
将实施例1-4中制备的复合材料的孔结构参数,结果见表1。
比表面积SBET测试方法:采用美国QUANTACHROME仪器公司的气体吸附仪(AUTOSORB-IQ2-MP)测定,测量前100℃真空脱气12h。比表面积采用Brunauer–Emmett–Teller(BET)方法计算得到,介孔孔径通过Barrett-Joyner-Halenda(BJH)方法计算得到。
孔隙率及大孔孔径测试方法:采用美国麦克默瑞提克仪器公司的压汞仪(MIP,AutoPore IV 9510)测定。
表1不同原始溶液配比HKUST-1/PVDF复合材料孔结构参数
Figure BDA0002113811510000151
从表1可知,采用本发明实施例中的制备方法制备得到的复合材料具备很大的比表面积,且原始溶液的配比对孔隙率和孔径分布有显著的影响。
试验例2
测试实施例2中制备得到复合材料的表面和断面SEM图,结果见图2。表面形态结构测试方法:采用场发射扫描电子显微镜(SEM)得到,型号SIRION-100,厂家为美国FEI公司,在25kV加速电压下观察,观察前真空镀金300秒。
从图2可知,采用本发明实施例中的制备方法制备得到的复合材料具备多级孔隙的结构,MOF颗粒均匀地镶嵌在聚合物基质孔壁表面,同时MOF微孔孔道不会被聚合物堵塞。
试验例3
测试实施例2中制备得到复合材料的XRD图,结果见图3。X射线衍射PXRD测试方法:采用荷兰PANalytical公司的PANalytical X’Pert PRO X-射线衍射仪,扫描范围5-50°。
从图3可知,对此标准的HKUST-1图谱和实施例2中复合材料的图谱可知,本发明实施例制备得到的材料中HKUST-1晶型良好。
试验例4
测试实施例2的吸附性能,包括CO2吸附量和吸附速率,结果见图4。CO2吸附性能测试方法:采用德国RUBOTHERM公司的磁悬浮高压热天平(ISOSORP GAS HP-static-S),测试温度25℃,测试压力0-51bar。
实施例2的复合材料在25℃和1bar条件下吸附量为1.47mmol/g或4.06mmol/g-MOF,吸附速率为0.82min-1,相比较纯HKUST-1粉末在25℃和1bar条件下为3.84mmol/g-MOF,吸附速率为0.24min-1;因此HKUST-1/PVDF复合材料显示出明显高的吸附速率同时兼具高的吸附量。
试验例5
测试对比例1中制备得到复合材料的XRD图,结果见图5。X射线衍射PXRD测试方法:采用荷兰PANalytical公司的PANalytical X’Pert PRO X-射线衍射仪,扫描范围5-50°。
图5中无法看到明显的MnBTC晶体峰,因此蒸发MnBTC前体-PVDF-DMSO原始溶液体系过程中没有合成MnBTC的MOF晶体。
试验例6
测试对比例2中制备得到复合材料的表面和断面SEM图,结果见图6。表面形态结构测试方法:采用场发射扫描电子显微镜(SEM)得到,型号SIRION-100,厂家为美国FEI公司,在25kV加速电压下观察,观察前真空镀金300秒。
从图6可以看出得到的材料非常致密,不能得到多级孔材料。因此采用本发明实施例中提供的原料形成体系才能保证复合材料的性能。
综上所述,本发明提供的一种MOF-聚合物复合材料的制备方法,其通过将MOF前体、聚合物和第一有机溶剂形成的原始溶液进行溶剂蒸发,使MOF结晶和聚合物同时析出,能够形成多级孔隙的结构,包括微孔、介孔和大孔。
本发明还提供的一种MOF-聚合物复合材料,其通过上述制备方法制备而得,得到的复合材料兼具金属有机框架材料高比表面积和聚合物良好力学性能的优点,复合材料比表面积100-600m2/g。本发明还提供的一种吸附剂,由上述复合材料制备而得,对二氧化碳气体具有很好的吸附性能,吸附量大且吸附速率快。
以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (24)

1.一种MOF-聚合物复合材料的制备方法,其特征在于,包括如下步骤:
将MOF前体、聚合物、第一有机溶剂混合溶解以形成原始溶液;
将所述原始溶液进行溶剂蒸发后得到MOF-聚合物复合材料初料;
所述MOF前体选自HKUST-1、CuBDC、ZIF-8或UiO-66对应的前体材料,且所述前体材料包括盐和配体;
所述聚合物选自聚偏氟乙烯、聚醚砜、聚丙烯腈和醋酸纤维素中的一种或多种;
溶剂蒸发是在70-110℃的条件下蒸发5-12h。
2.根据权利要求1所述的MOF-聚合物复合材料的制备方法,其特征在于,所述MOF前体为HKUST-1对应的前体材料。
3.根据权利要求1所述的MOF-聚合物复合材料的制备方法,其特征在于,所述聚合物为聚偏氟乙烯。
4.根据权利要求1所述的MOF-聚合物复合材料的制备方法,其特征在于,溶剂蒸发温度为85-95℃,蒸发时间为8-10h。
5.根据权利要求1所述的MOF-聚合物复合材料的制备方法,其特征在于,所述第一有机溶剂选自二甲基亚砜、N,N-二甲基甲酰胺和二甲基乙酰胺中的任意一种或多种。
6.根据权利要求5所述的MOF-聚合物复合材料的制备方法,其特征在于,所述第一有机溶剂为二甲基亚砜。
7.根据权利要求1所述的MOF-聚合物复合材料的制备方法,其特征在于,在所述原始溶液中,所述MOF前体的总质量分数为0.5-15%,所述聚合物的质量分数为0.5-15%。
8.根据权利要求7所述的MOF-聚合物复合材料的制备方法,其特征在于,所述MOF前体的总质量分数为4-10%,所述聚合物的质量分数为4-10%。
9.根据权利要求7所述的MOF-聚合物复合材料的制备方法,其特征在于,HKUST-1对应的前体盐和配体质量比为1.8-2.3:1。
10.根据权利要求1-9中任一项所述的MOF-聚合物复合材料的制备方法,其特征在于,所述原始溶液的制备过程是将所述聚合物和所述MOF前体分别溶解于同一溶剂以得到聚合物溶液和MOF前体溶液,然后将所述聚合物溶液和所述MOF前体溶液混合。
11.根据权利要求10所述的MOF-聚合物复合材料的制备方法,其特征在于,在所述MOF前体溶液中加入MOF晶体合成调节添加剂。
12.根据权利要求11所述的MOF-聚合物复合材料的制备方法,其特征在于,HKUST-1、CuBDC、ZIF-8前体溶液对应的所述晶体合成调节添加剂为三乙胺,UiO-66前体溶液对应的所述晶体合成调节添加剂为盐酸或醋酸。
13.根据权利要求1所述的MOF-聚合物复合材料的制备方法,其特征在于,所述制备方法还包括将所述MOF-聚合物复合材料初料在第二有机溶剂中浸泡后干燥。
14.根据权利要求13所述的MOF-聚合物复合材料的制备方法,其特征在于,浸泡时间为1-4h。
15.根据权利要求13所述的MOF-聚合物复合材料的制备方法,其特征在于,浸泡时间为1.5-3h。
16.根据权利要求13所述的MOF-聚合物复合材料的制备方法,其特征在于,所述第二有机溶剂选自无水甲醇和/或无水乙醇。
17.根据权利要求13所述的MOF-聚合物复合材料的制备方法,其特征在于,干燥过程是在80-120℃的条件下真空干燥12-24h。
18.一种MOF-聚合物复合材料,其特征在于,由权利要求1-17中任一项所述的制备方法制备而得。
19.根据权利要求18所述的MOF-聚合物复合材料,其特征在于,复合材料上具有大孔、介孔和微孔。
20.根据权利要求19所述的MOF-聚合物复合材料,其特征在于,HKUST-1/PVDF复合材料中大孔的孔径范围为50nm-3μm,介孔的平均孔径为3.8nm,微孔的孔径为0.9nm。
21.根据权利要求19所述的MOF-聚合物复合材料,其特征在于,复合材料的比表面积为100-600m2/g。
22.权利要求1-17中任一项所述制备方法制备得到的复合材料或权利要求18-21中任一项所述的复合材料作为吸附剂的应用。
23.根据权利要求22所述的应用,其特征在于,所述吸附剂用于吸附二氧化碳,所述吸附剂的吸附速率为0.7-1.3min-1
24.根据权利要求22所述的应用,其特征在于,所述吸附剂对二氧化碳的吸附量为0.8-1.5mmol/g。
CN201910583685.XA 2019-07-01 2019-07-01 Mof-聚合物复合材料、其制备方法及应用 Active CN110270315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910583685.XA CN110270315B (zh) 2019-07-01 2019-07-01 Mof-聚合物复合材料、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910583685.XA CN110270315B (zh) 2019-07-01 2019-07-01 Mof-聚合物复合材料、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN110270315A CN110270315A (zh) 2019-09-24
CN110270315B true CN110270315B (zh) 2020-07-17

Family

ID=67963956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910583685.XA Active CN110270315B (zh) 2019-07-01 2019-07-01 Mof-聚合物复合材料、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN110270315B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4114564A1 (en) * 2020-03-04 2023-01-11 ExxonMobil Technology and Engineering Company Methods of making metal-organic framework composites
CN111732147B (zh) * 2020-06-23 2022-03-11 东莞理工学院 一种利用Bi-MOF-聚合物复合物处理水体中磷酸根的方法
CN114100580B (zh) * 2020-09-01 2023-12-12 中国石油化工股份有限公司 具有轻烃吸附功能的复合材料及其制备方法及利用其去除轻烃的方法和应用
CN113871617A (zh) * 2021-09-15 2021-12-31 西安热工研究院有限公司 氧化石墨烯掺杂多孔配位聚合物高性能锂离子电池负极材料及其制备方法
CN113960028A (zh) * 2021-10-28 2022-01-21 浙江大学 基于柔性金属有机框架混合基质膜的嗅觉可视化传感器及其制备和应用
CN114806510B (zh) * 2022-02-24 2024-03-26 东南大学 一种复合相变储能材料及其制备方法
CN114736387B (zh) * 2022-04-12 2022-12-09 香港中文大学(深圳) 块状金属有机框架材料及其制备方法和应用
CN116764606B (zh) * 2023-08-15 2023-10-20 西南民族大学 Bpa分子印迹pan/mof纳米纤维聚合物膜及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637983B1 (en) * 2006-06-30 2009-12-29 Uop Llc Metal organic framework—polymer mixed matrix membranes
DE102006037194A1 (de) * 2006-08-09 2008-02-14 Merck Patent Gmbh Monolithische Materialien für Gasspeicher
US8093350B2 (en) * 2007-01-03 2012-01-10 Insilicotech Co., Ltd Coordination polymer crystal with porous metal-organic frameworks and preparation method thereof
US20110138999A1 (en) * 2009-12-15 2011-06-16 Uop Llc Metal organic framework polymer mixed matrix membranes
CN101816924A (zh) * 2010-04-13 2010-09-01 东南大学 用于co2吸附与分离的金属有机骨架材料及其制备方法

Also Published As

Publication number Publication date
CN110270315A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN110270315B (zh) Mof-聚合物复合材料、其制备方法及应用
O'Neill et al. Macro-/microporous MOF composite beads
Yang et al. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO 2 adsorption
Wee et al. Submicrometer‐sized ZIF‐71 filled organophilic membranes for improved bioethanol recovery: mechanistic insights by Monte Carlo simulation and FTIR spectroscopy
Torad et al. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals
Kang et al. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures
JP7463293B2 (ja) ポリマー溶液中の金属有機構造体のコロイド懸濁液を作製する方法およびその使用
CN106905536B (zh) 一种快速合成多级孔zif-8材料的方法
Naik et al. PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation
Li et al. Sol–gel asynchronous crystallization of ultra-selective metal–organic framework membranes for gas separation
Moitra et al. Mechanically stable, hierarchically porous Cu 3 (btc) 2 (HKUST-1) monoliths via direct conversion of copper (ii) hydroxide-based monoliths
Gao et al. Polymer–metal–organic framework core–shell framework nanofibers via electrospinning and their gas adsorption activities
Pan et al. ZIF-derived in situ nitrogen decorated porous carbons for CO 2 capture
CN107759801B (zh) 利用晶体缺陷法合成中微双孔mof-74材料的方法
CN109261141B (zh) 一种zif-8纳米晶及其制备方法和应用
Li et al. One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption
JP5835787B2 (ja) ミクロポーラス炭素系材料、ミクロポーラス炭素系材料の製造方法及びミクロポーラス系炭素材料を用いた水素吸蔵方法
CN107312181B (zh) 一种快速制备Cu-BTC的方法
CN111266089A (zh) 一种金属有机框架复合材料及其制备方法与应用
Song et al. Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels
Zakaria Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction
Nian et al. Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H 2 separation
Athar et al. Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments
CN114181398B (zh) 一种多级孔金属有机骨架材料及其制备方法和应用
Madhav et al. Synthesis of nanoparticles of zeolitic imidazolate framework ZIF-94 using inorganic deprotonators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant