CN110261366A - 兼具检测和降解农药的双功能微米复合材料的制备方法 - Google Patents

兼具检测和降解农药的双功能微米复合材料的制备方法 Download PDF

Info

Publication number
CN110261366A
CN110261366A CN201910614920.5A CN201910614920A CN110261366A CN 110261366 A CN110261366 A CN 110261366A CN 201910614920 A CN201910614920 A CN 201910614920A CN 110261366 A CN110261366 A CN 110261366A
Authority
CN
China
Prior art keywords
preparation
micro
composites
zmrs
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910614920.5A
Other languages
English (en)
Inventor
高铭
王健
刘洋
王众
全英楠
姚佳成
杨景海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN201910614920.5A priority Critical patent/CN110261366A/zh
Publication of CN110261366A publication Critical patent/CN110261366A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种兼具检测和降解农药的双功能微米复合材料的制备方法,本发明制备方法通过①倾斜ZnO微米棒阵列ZMRs的制备、②ZMRs/Ag微米复合材料的制备两个步骤实现。本发明的主要优点是可回收性、稳定性、选择性、降解性和成本低,可以避免传统SERS基底的单次使用问题,在制备复合材料领域具有重要研究价值和良好的应用前景。

Description

兼具检测和降解农药的双功能微米复合材料的制备方法
技术领域
本发明属于双功能材料制备领域,具体涉及一种兼具检测和降解农药的双功能微米复合材料的制备方法。
背景技术
我国是农业大国,也是农药污染严重的国家。农药污染不仅会造成河流、土壤、环境的污染,而且食品和农产品中农药残留超标也会给人类身体健康和生命安全造成威胁。在食品安全领域中,农药残留问题一直是公众关注的焦点。
近些年来,农残检测的各种技术都得到极大的发展,使得农残的微量和痕量分析更加迅速和灵敏。当前,我国检测农药残留的主要方法有气相色谱法、高效液相色谱法、酶抑制法、免疫分析法和生物传感器法等。虽然这些方法在定量检测方面具有明显的优势,但仍存在设备昂贵、可用同位素半衰期有限、样品预处理复杂或需要专业检测人员等局限性,难以满足实际检测的需要。
表面增强拉曼散射(SERS)具有无损、非破坏性、超灵敏度、对样品要求低和独特“指纹”等优点。联用技术的发展使得SERS应用领域得到不断扩展。近年来,农药残留一直是人们普遍关注的问题,SERS检测精度高、对环境污染小、检测速度快,对应用于农药残留方面的检测有广阔的前景。吉芳英等以金/银核壳粒子为基底,在酸性、碱性及中性环境下获得不同浓度氧化乐果表面增强拉曼散射光谱,最低检测限可达2.0×10-10mol/L。Shende等用表面增强拉曼光谱技术检测水果上农药残留,其检测限达到10-6mol/L。Aaron等人采用表面增强拉曼光谱技术对多菌灵进行定量分析,检测浓度范围是10-4~10-5mol/L。
但在实际的农药检测过程中,还需要考虑的一件事是,农药残留会存在于在果蔬、动物和水源中,即使是痕量水平,它们也会通过食物链富集。所以无论是直接使用农药还是通过废物,一旦农药进入环境中,它们都会产生极大的危害。因此,在实际应用中,高效的SERS基底不仅要求有很强的SERS活性和良好的稳定性,更重要的是能分解和去除农药,具有可重复性。此外,为了使表面增强拉曼光谱成为一种通用的分析工具,SERS基底的制造成本应该更低并易于操作。
本发明采用Ag纳米粒子与倾斜的ZnO微米棒相结合(即ZMRs/Ag微米复合材料),该SERS基底对福美双的最低检测限可达10-11M,并且在可见光照射下,30分钟内福美双的降解率接近100%。本发明具有操作简单、制备周期短、成本低、降解效率高等优点,这种同时兼具检测和降解农药的双功能微米复合材料,有望在环境检测和食品安全等领域具有更加广泛的应用。
发明内容
本发明的目的是克服现有技术的缺点和不足,提供一种兼具检测和降解农药的双功能微米复合材料的制备方法。本发明的主要优点是可回收性、稳定性、选择性、降解性和成本低,可以避免传统SERS基底的单次使用问题,在制备复合材料领域具有重要研究价值和良好的应用前景。
本发明的目的是这样实现的,制备该双功能微米复合材料所采用的原料及其重量配比如下:
本发明制备方法的具体步骤是:
①、倾斜ZnO微米棒阵列ZMRs的制备:首先将0.0658g Zn(OOCCH3)2·2H2O溶于60mLC2H6O中,60℃加热搅拌1小时,然后将配置好的溶液旋涂在ITO衬底上,旋涂时间30s,旋涂速度2000rpm,旋涂4次,150℃退火30分钟;将2.9749g六水硝酸锌和1.419g六次甲基四胺溶于100ml去离子水中混合搅拌10分钟后,放于烧杯中,然后,将处理过的ITO衬底倾斜置于所述烧杯底部,放入95℃箱式炉中进行保温9小时后,取出衬底,用酒精清洗干净,自然晾干即可得到倾斜的ZnO微米棒阵列。
②、ZMRs/Ag微米复合材料的制备:采用磁控溅射法将Ag纳米颗粒沉积到步骤①制得的倾斜ZnO微米棒阵列上;基准压力为2×10-4Pa,工作气体为Ar气保护,气压为0.6Pa,气体流量为20SCCM,溅射时间为130s,即得到本发明的目标产品。
本发明的优点和积极效果:
1.本发明的制备方法简单、成本低,合成了Ag纳米粒子包覆倾斜ZnO微米复合材料,即ZMRs/Ag。本发明的目标产品ZMRs/Ag微米复合材料作为SERS基底具有高效、超灵敏,稳定性好等优点,在农药检测方面具有超高灵敏度,可以实现福美双的痕量检测,检测限可低至1×10-11M(如附图3所示),是目前文献报道的最低检测浓度。
2.本发明的目标产品ZMRs/Ag微米复合材料对农药具有可降解性,将ZMRs/Ag基底放入30ml浓度为10-3M福美双溶液中浸泡10分钟后取出,可见光照射30分钟后,进行拉曼测试,几乎检测不到福美双的信号,降解率达到100%(如附图4所示)。
3.本发明的目标产品ZMRs/Ag微米复合材料还可以实现混合农药的检测,在实际应用中,单一农药的使用不能有效防止多种病虫害对农作物的危害,所以需要喷洒多种农药。ZMRs/Ag基底可以实现福美双和甲胺磷两种混合农药的快速检测(如附图5所示)。
4.本发明的目标产品既能实现福美双的痕量检测又能在可见光下将其降解,并且这种双功能材料的制备工艺简单,成本低,有利于大规模生产,为今后的实际应用打下了坚实的基础,在食品安全、材料科学及生物物理等方面有广阔的应用前景。目前还没有该双功能材料的相关文献报道。
附图说明
图1是本发明目标产品ZMRs/Ag的制备流程图。
图2(a)和(b)是不同倍率下本发明目标产品ZMRs/Ag的扫描电镜图。
图3是本发明目标产品ZMRs/Ag检测不同浓度福美双的SERS图。
图4是本发明目标产品ZMRs/Ag不同光照时间降解福美双的SERS图。
图5是本发明目标产品ZMRs/Ag同时检测福美双和甲胺磷混合农药的SERS图。
具体实施方式
本发明所需的原料如下:
二水乙酸锌(Zn(OOCCH3)2·2H2O,沈阳国药集团化学试剂有限公司)为分析纯;
无水乙醇(C2H5OH,沈阳国药集团化学试剂有限公司)为分析纯;
六次甲基四胺(C6H12N4,沈阳国药集团化学试剂有限公司)为分析纯;
六水硝酸锌(Zn(NO3)2·6H2O,沈阳国药集团化学试剂有限公司)为分析纯;
福美双(C6H12N2S4,上海阿拉丁生化科技股份有限公司)为分析纯;
甲胺磷(C2H8NO2PS,上海阿拉丁生化科技股份有限公司)为分析纯。
如附图1所示:本发明制备方法的具体步骤是:
①、倾斜ZnO微米棒阵列(ZMRs)的制备:首先将0.0658g Zn(OOCCH3)2·2H2O溶于60mL C2H6O中,60℃加热搅拌1小时,然后将配置好的溶液旋涂在ITO衬底上,旋涂时间30s,旋涂速度2000rpm,旋涂4次,150℃退火30分钟。将2.9749g六水硝酸锌和1.419g六次甲基四胺溶于100ml去离子水中混合搅拌10分钟后,放于烧杯中,然后,将处理过的ITO衬底倾斜置于烧杯底部,放入95℃箱式炉中进行保温9小时后,取出衬底,用酒精清洗干净,自然晾干即可得到倾斜的ZnO微米棒阵列。
②、ZMRs/Ag微米复合材料的制备:采用磁控溅射法将Ag纳米颗粒沉积到步骤①制得的倾斜ZnO微米棒阵列上。基准压力为2×10-4Pa,工作气体为Ar气保护,气压为0.6Pa,气体流量为20SCCM,溅射时间为130s,即得到本发明的目标产品(如附图2所示)。
本发明的目标产品ZMRs/Ag微米复合材料作为SERS基底,对福美双具有很高的灵敏性,可以实现福美双的痕量检测,检测限可达1×10-11M,而且具有环保、经济、便捷、操作简单等优点,无论在实验范围亦或实际应用方面都有很重要的科学价值和意义。
本发明的目标产品可降解农药,将ZMRs/Ag基底放入30ml浓度为10-3M福美双溶液中浸泡10分钟后取出,可见光照射30分钟后,进行拉曼测试,几乎检测不到福美双的信号,降解率达到100%。并且本发明的目标产品ZMRs/Ag微米复合材料还可以实现混合农药的检测,在食品安全、材料科学及生物物理等方面有广阔的应用前景。

Claims (1)

1.一种兼具检测和降解农药的双功能微米复合材料的制备方法,其特征在于:该方法包括以下步骤:
①、倾斜ZnO微米棒阵列ZMRs的制备:首先将0.0658g Zn(OOCCH3)2·2H2O溶于60mLC2H6O中,60℃加热搅拌1小时,然后将配置好的溶液旋涂在ITO衬底上,旋涂时间30s,旋涂速度2000rpm,旋涂4次,150℃退火30分钟;将2.9749g六水硝酸锌和1.419g六次甲基四胺溶于100ml去离子水中混合搅拌10分钟后,放于烧杯中,然后,将处理过的ITO衬底倾斜置于烧杯底部,放入95℃箱式炉中进行保温9小时后,取出衬底,用酒精清洗干净,自然晾干即可得到倾斜的ZnO微米棒阵列;
②、ZMRs/Ag微米复合材料的制备:采用磁控溅射法将Ag纳米颗粒沉积到步骤①制得的倾斜ZnO微米棒阵列上;基准压力为2×10-4Pa,工作气体为Ar气保护,气压为0.6Pa,气体流量为20SCCM,溅射时间为130s。
CN201910614920.5A 2019-07-09 2019-07-09 兼具检测和降解农药的双功能微米复合材料的制备方法 Pending CN110261366A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910614920.5A CN110261366A (zh) 2019-07-09 2019-07-09 兼具检测和降解农药的双功能微米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910614920.5A CN110261366A (zh) 2019-07-09 2019-07-09 兼具检测和降解农药的双功能微米复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN110261366A true CN110261366A (zh) 2019-09-20

Family

ID=67925198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910614920.5A Pending CN110261366A (zh) 2019-07-09 2019-07-09 兼具检测和降解农药的双功能微米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110261366A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088685A (zh) * 2021-11-22 2022-02-25 生态环境部华南环境科学研究所 一种快速检测水体中农药残留的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198933A (ja) * 2006-01-27 2007-08-09 Keio Gijuku 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板
US20080206450A1 (en) * 2007-02-23 2008-08-28 The Penn State Research Foundation Thin metal film conductors and their manufacture
CN101994149A (zh) * 2009-08-12 2011-03-30 吉林师范大学 一种ZnO纳米棒阵列尺寸可控生长方法
WO2012027587A2 (en) * 2010-08-25 2012-03-01 Rensselaer Polytechnic Institute Tunable nanoporous films on polymer substrates, and methods for their manufacture
CN103451652A (zh) * 2012-05-29 2013-12-18 吉林师范大学 一种银纳米粒子包覆氧化锌纳米管衬底的制备方法
KR20160093959A (ko) * 2015-01-30 2016-08-09 영남대학교 산학협력단 인듐 아연 주석 산화물 제조 방법, 이를 포함하는 태양 전지 및 이의 제조 방법
CN106596505A (zh) * 2016-12-18 2017-04-26 江苏师范大学 一种检测农药的表面增强拉曼散射基底及其制备方法和应用
CN106602042A (zh) * 2017-01-17 2017-04-26 宁波大学 一种液相ZnO包覆Ni2+、Cr3+掺杂非晶硝酸钴锂电负极材料及其制备方法
CN107356584A (zh) * 2017-09-07 2017-11-17 东南大学 一种氧化锌‑银复合微腔结构表面增强拉曼基底制备方法
CN108007919A (zh) * 2017-12-26 2018-05-08 吉林师范大学 一种可用于痕量检测农药的sers基底的制备方法
WO2019014887A1 (zh) * 2017-07-20 2019-01-24 汎锶科艺股份有限公司 用以检验农药残留的表面增强型拉曼光谱检测方法
CN109580583A (zh) * 2018-12-26 2019-04-05 华东师范大学 一种致密型表面增强拉曼光谱基底及其制备方法与应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198933A (ja) * 2006-01-27 2007-08-09 Keio Gijuku 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板
US20080206450A1 (en) * 2007-02-23 2008-08-28 The Penn State Research Foundation Thin metal film conductors and their manufacture
CN101994149A (zh) * 2009-08-12 2011-03-30 吉林师范大学 一种ZnO纳米棒阵列尺寸可控生长方法
WO2012027587A2 (en) * 2010-08-25 2012-03-01 Rensselaer Polytechnic Institute Tunable nanoporous films on polymer substrates, and methods for their manufacture
CN103451652A (zh) * 2012-05-29 2013-12-18 吉林师范大学 一种银纳米粒子包覆氧化锌纳米管衬底的制备方法
KR20160093959A (ko) * 2015-01-30 2016-08-09 영남대학교 산학협력단 인듐 아연 주석 산화물 제조 방법, 이를 포함하는 태양 전지 및 이의 제조 방법
CN106596505A (zh) * 2016-12-18 2017-04-26 江苏师范大学 一种检测农药的表面增强拉曼散射基底及其制备方法和应用
CN106602042A (zh) * 2017-01-17 2017-04-26 宁波大学 一种液相ZnO包覆Ni2+、Cr3+掺杂非晶硝酸钴锂电负极材料及其制备方法
WO2019014887A1 (zh) * 2017-07-20 2019-01-24 汎锶科艺股份有限公司 用以检验农药残留的表面增强型拉曼光谱检测方法
CN107356584A (zh) * 2017-09-07 2017-11-17 东南大学 一种氧化锌‑银复合微腔结构表面增强拉曼基底制备方法
CN108007919A (zh) * 2017-12-26 2018-05-08 吉林师范大学 一种可用于痕量检测农药的sers基底的制备方法
CN109580583A (zh) * 2018-12-26 2019-04-05 华东师范大学 一种致密型表面增强拉曼光谱基底及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柳云骐 等: "《材料化学》", 28 February 2013, 中国石油大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088685A (zh) * 2021-11-22 2022-02-25 生态环境部华南环境科学研究所 一种快速检测水体中农药残留的方法

Similar Documents

Publication Publication Date Title
Akanyange et al. Does microplastic really represent a threat? A review of the atmospheric contamination sources and potential impacts
Wolfe et al. Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment
Deguillaume et al. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols
Li et al. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles
Li et al. Variation in quantity and quality of rainwater dissolved organic matter (DOM) in a peri-urban region: Implications for the effect of seasonal patterns on DOM fates
CN102759520A (zh) 一种具有表面增强拉曼散射效应的活性基底的制备方法
CN104101591A (zh) 柑桔中痕量农药残留的表面增强拉曼光谱快速检测方法
CN102721779A (zh) 植物硒形态的检测方法
CN103941008B (zh) 一种检测毒死蜱的免疫传感器的制备方法
Geng et al. Source apportionment of water-soluble brown carbon in aerosols over the northern South China Sea: Influence from land outflow, SOA formation and marine emission
Hu et al. Photochemical degradation of organic matter in the atmosphere
CN102608187A (zh) 空壳纳米金修饰的乙酰胆碱酯酶生物传感器的制备方法
CN105911031A (zh) 一种用于检测水体中砷(iii)的剂量敏感的可视化检测试纸
Xie et al. Atmospheric dry deposition of water-soluble organic matter: An underestimated carbon source to the coastal waters in North China
CN108593626A (zh) 基于sers技术快速检测水环境中痕量铀酰离子的方法
CN109856117A (zh) 一种水体中氨苄西林抗生素的检测方法
CN110261366A (zh) 兼具检测和降解农药的双功能微米复合材料的制备方法
CN113189253A (zh) 一种土壤环境中纳米级塑料颗粒的检测方法
CN109706005A (zh) 一种贻贝壳微纳米果蔬清洗剂及其制备方法
CN109406484A (zh) 一种纳米银胶的制备方法及该银胶用于检测环嗪酮的方法
Zhan et al. Seasonal variation of water-soluble brown carbon in Qingdao, China: Impacts from marine and terrestrial emissions
Sajjad et al. Comprehensive insights into advances in ambient bioaerosols sampling, analysis and factors influencing bioaerosols composition
Thakur et al. An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom
Chifflet et al. Isotopic compositions of copper and zinc in plankton from the Mediterranean Sea (MERITE-HIPPOCAMPE campaign): tracing trophic transfer and geogenic inputs
CN109135736B (zh) 一种氮掺杂碳量子点及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190920

RJ01 Rejection of invention patent application after publication