CN110255699A - 一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法 - Google Patents

一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法 Download PDF

Info

Publication number
CN110255699A
CN110255699A CN201910557757.3A CN201910557757A CN110255699A CN 110255699 A CN110255699 A CN 110255699A CN 201910557757 A CN201910557757 A CN 201910557757A CN 110255699 A CN110255699 A CN 110255699A
Authority
CN
China
Prior art keywords
hydrogen
ammonia nitrogen
waste liquid
nitrogen waste
high ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910557757.3A
Other languages
English (en)
Other versions
CN110255699B (zh
Inventor
黄涛
宋东平
刘万辉
刘龙飞
陶骏骏
周璐璐
徐娇娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN201910557757.3A priority Critical patent/CN110255699B/zh
Publication of CN110255699A publication Critical patent/CN110255699A/zh
Application granted granted Critical
Publication of CN110255699B publication Critical patent/CN110255699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Abstract

本发明公开了一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,所述方法包括以下步骤:1)称取亚硝酸钠、碳酸钠、葡萄糖,加入到高氨氮废液中,密封条件下搅拌至完全溶解,得厌氧氨氧化菌驯化液;2)将厌氧氨氧化菌驯化液与厌氧污泥混合,得到启动混合浆体;3)将启动混合浆体加入氢气回收反应装置的阳极室,连续缓慢搅拌;4)每隔6~10小时可见光照射阳极电极2~4小时,当阴极室的导气孔处氢气体积浓度检测值低于1%时,即结束反应过程。本发明通过耦合光催化、厌氧氨氧化、微生物燃料电池三种技术,提高氨氮脱氢效果,提高氢气转化效率,在无需外加载电压及升温的情况下实现高氨氮废液的氢能回收,并将氨氮转化为氮气安全排放到空气中。

Description

一种在常温及无外接电压条件下从高氨氮废液中回收氢气的 方法
技术领域
本发明属于含氨氮废液无害化处置及资源化利用领域,具体涉及一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法。
背景技术
目前我国水体主要污染物为氨氮和有机物。水污染趋势的加重使得水资源短缺的矛盾更加凸显,这严重制约了我国可持续发展道路的拓展。因此,氨氮处理工艺逐渐被纳入到水处理技术模块中。目前高浓度氨氮废液处置思路以去除为主,通过化学沉淀、物理吸附、光(电)催化、生物处置等方式将氨氮直接从废液中去除或是转化成氮气后排放到空气中。然而这些以去除为主导思路衍生出的技术均忽略了氨氮本身的可回收特性,没有将高更高的价值附加在浓度氨氮废液的处置过程。氨是一种化学储氢材料,具有储氢量高以及能量密度高的优点,在适宜的条件下,可分解成不含碳氧化物的氢气。然而氨是一种非常稳定的分子,其分解过程是一种可逆和吸热的过程,需要较高的温度匹配才能实现较好的效果。
目前氨分解技术主要包括:高温热解法、氨电解法、多相催化法、光催化法以及等离子体法等。将高温热解法应用于高浓度氨氮废液处置还需前置加碱和吹脱工艺,工艺复杂,易滋生二次污染。氨电解法和等离子体法匹配较高的温度或电压补偿,大批次处置时能耗较高。多相催化法对催化材料制备及催化材料搭配要求高,同时催化材料失活及失稳等问题使得该技术运行成本居高不下。
相比与其他几种方法,光催化法具有温度补偿要求低及运行成本较少的优势。然而光催化法氨氮催化分解及氢能回收效率低,若要提高分解性能仍然需要设置电压补偿,需要外接电源。因此,结合上述问题,寻求或研发一种在常温下及无外接电压条件下从高氨氮废液中回收氢气的方法对解决高氨氮废液处置困境具有重要的现实意义。
发明内容
发明目的:本发明所要解决的技术问题是提供了一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法。
技术方案:为了解决上述技术问题,本发明采取了如下的技术方案:一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,所述方法包括以下步骤:
1)称取亚硝酸钠、碳酸钠、葡萄糖,加入到高氨氮废液中,密封条件下搅拌至完全溶解,得厌氧氨氧化菌驯化液;
2)将厌氧氨氧化菌驯化液与厌氧污泥混合,得到启动混合浆体;
3)将启动混合浆体加入氢气回收反应装置的阳极室,连续缓慢搅拌;
4)每隔6~10小时可见光照射阳极电极2~4小时,当阴极室的导气孔处氢气体积浓度检测值低于1%时,即结束反应过程。
其中,所述步骤1)中亚硝酸钠、碳酸钠、葡萄糖、高氨氮废液中的氨氮摩尔比为5~15∶8~12∶5~10∶100。
其中,所述步骤2)启动混合浆体中的悬浮固体浓度为4~8g/L。
其中,所述氢气回收反应装置包括阳极室和阴极室,所述阳极室和所述阴极室通过质子交换膜隔开,所述阳极室内设有搅拌器,所述阳极室和阴极室上分别设有导气孔,所述阳极室还设有加样孔,阳极电极和阴极电极分别置于所述阳极室最左端和阴极室最右端,所述阳极电极和所述阴极电极用导线连接。
其中,所述氢气回收反应装置为可透光的密封装置。
其中,所述阳极电极为氧掺石墨碳氮/钒酸铋复合电极,所述阴极电极为玻碳电极。
其中,所述氢气回收反应装置外部设置可见光光源。所述可见光光源可以为发射白光的LED灯。
其中,所述阳极电极和所述阴极电极之间串联有开关。
其中,在阳极室和阴极室各有一个导气孔,分别用于导排氮气和氢气。
其中,所述搅拌器用于搅拌混合浆体,转速为20~40转/分钟。
本发明的整个氢气回收反应装置为密封槽,密封槽中的阳极室及阴极室都是处于厌氧环境下工作。在反应初期,污泥中的厌氧氨氧化菌以亚硝酸盐为电子受体结合碳酸盐和氨氮反应生成氮气、氢离子、硝酸根及有机物获得能量实现扩增。随着亚硝酸盐和碳酸盐的快速消耗,厌氧氨氧化菌催化氧化氨氮,氨氮中的电子在无电子受体(亚硝酸盐)的情况下通过厌氧氨氧化菌群转移到阳极表面,再由外接导线转移至阴极电极表面。氢离子在电迁移作用下由阳极室穿过质子交换膜进入阴极室。在阴极室,氢离子在阴极表面获得电子生成氢气。同时在可见光照射下阳极电极激发催化,产生光生电子和光生空穴。光生电子通过导线直接转移到阴极与从阳极电迁移过来的氢离子的结合生成氢气。而阳极表面的光生空穴可以将氨氮氧化,生成肼、氮气、硝酸根及氢离子。氨氮光催化氧化生成的氢离子通过电迁移作用转至阴极表面获得电子发生还原反应生成氢气。厌氧污泥中的厌氧氨氧化菌群可以进一步氧化肼获得能量并产生氮气和氢离子,并将电子传至电极表面。随着氨氮的减少,试验反应中后期,污泥中的反硝化菌氧化葡萄糖获得能量并产生氢离子。葡萄糖氧化产生的氢离子通过电迁移作用转至阴极参与上述还原反应。随着葡萄糖的消耗,反硝化菌群快速扩增,反硝化菌群通过还原作用将硝酸盐转化成氮气。
有益效果:本发明制备操作过程简单,设备要求低,可直接商业化推广。本发明通过耦合光催化、厌氧氨氧化、微生物燃料电池三种技术,提高氨氮脱氢效果,提高氢气转化效率,在无需外加载电压及升温的情况下实现高氨氮废液的氢能回收,并将氨氮转化为氮气安全排放到空气中。本发明简化了从高浓度氨氮废液回收氢气的工艺流程,为常温下从高氨氮废液中回收氢气提供了一种新思路。
附图说明
图1在常温及无外接电压条件下从高氨氮废液中回收氢气的方法流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
本发明实施例中采用的氢气回收反应装置:氢气回收反应装置为可透光的密封装置,其共有两个电极室,从左到右依次为阳极室和阴极室,阳极室和阴极室之间用质子交换膜隔开,阳极电极和阴极电极分别置于阳极室最左端和阴极室最右端。阳极室和阴极室各有一个导气孔,分别用于导排氮气和氢气。阳极室有个搅拌器,用于搅拌混合浆体。阳极为氧掺石墨碳氮/钒酸铋复合电极,阴极为玻碳电极。阳极和阴极用导线连接,并串联一个开关。外部设有发射白光的LED灯为可见光光源。
如图1所示,为一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法流程图。
实施例1亚硝酸钠用量对高氨氮废液中氨转化率及氢气平均体积浓度的影响
高氨氮废液处置过程:分别称取亚硝酸钠、碳酸钠、葡萄糖,加入到高氨氮废液中,密封条件下搅拌至完全溶解,得厌氧氨氧化菌驯化液,其中亚硝酸钠、碳酸钠、葡萄糖、高氨氮废液中的氨氮摩尔比分别为4∶8∶5∶100、4.5∶8∶5∶100、4.8∶8∶5∶100、5∶8∶5∶100、10∶8∶5∶100、15∶8∶5∶100、15.2∶8∶5∶100、15.5∶8∶5∶100、16∶8∶5∶100。将厌氧氨氧化菌驯化液与厌氧污泥混合,得到启动混合浆体,其中启动混合浆体的悬浮固体浓度(MLSS)为4g/L。将启动混合浆体加入氢气回收反应装置的阳极室,搅拌器以20转/分钟的转速连续缓慢搅拌。每隔6小时可见光照射阳极电极2小时。随着反应的进行,当阴极室的导气孔处氢气体积浓度检测值低于1%时,即结束反应过程。
氨氮浓度的检测及氨氮氧化效率计算:废液中氨氮的浓度按照《水质氨氮的测定水杨酸分光光度法》(HJ536-2009)进行测定。氨氮氧化效率按照公式(1)计算,其中c0为废液中氨氮初始浓度(mg/L),cc为处置后,废液中氨氮剩余浓度(mg/L)。
氢气体积浓度检测及氢气平均体积浓度计算:将固定泵吸式氢气检测仪(型号:YT-95H-B-H2,UNITEC)安置在阴极室的导气孔处进行氢气体积浓度连续检测。实验结束后,将时间与对应体积浓度数值进行多项式拟合得f(x)并按照公式(2)计算氢气平均体积浓度,其中t为反应初始到反应结束的时间。试验结果见表1。
表1亚硝酸钠用量对高氨氮废液中氨转化率及氢气平均体积浓度的影响
由表1可看出,当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比低于5∶8∶5∶100时(如表1中,亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比=4.8∶8∶5∶100、4.5∶8∶5∶100、4∶8∶5∶100以及表1中未列举的更低比值),亚硝酸钠的投加量少,厌氧氨氧化菌活化启动不足,厌氧氨氧化作用较弱,氢离子生成、电迁移、还原过程受到影响,导致氨转化效率均低于73%,氢气平均体积浓度均低于32%,且氨转化效率和氢气平均体积浓度随着摩尔比的减少而逐渐降低;当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比等于5~15∶8∶5∶100时,亚硝酸钠投加适量,厌氧氨氧化菌活化启动,厌氧氨氧化作用显著,电子转移及氢离子生成、电迁移、还原过程进行顺畅,导致氨转化效率均高于83%,氢气平均体积浓度均高于47%;当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比高于15∶8∶5∶100时(如表1中,亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比=15.2∶8∶5∶100、15.5∶8∶5∶100、16∶8∶5∶100以及表1中未列举的更高比值),亚硝酸钠投加过量,厌氧氨氧化菌活化启动,厌氧氨氧化作用显著,然而受到总氮浓度不变的限制,氨转化率随着摩尔比的增加变化不显著。同时,亚硝酸钠投加过量使得氨氮氧化的电子直接转移到亚硝酸钠(电子受体),导致阴极表面转移电子量减少,进一步导致氢离子生成、电迁移、还原过程,导致氢气平均体积浓度均低于46%且随着亚硝酸钠增加而逐渐降低。因此,综合而言,结合效益与成本,当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比等于5~15∶8∶5∶100时,最有利于提高氨氮废液中氨转化率及氢气平均体积浓度。
实施例2碳酸钠用量对高氨氮废液中氨转化率及氢气平均体积浓度的影响
高氨氮废液处置过程:分别称取亚硝酸钠、碳酸钠、葡萄糖,加入到高氨氮废液中,密封条件下搅拌至完全溶解,得厌氧氨氧化菌驯化液,其中亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比分别为15∶7∶7.5∶100、15∶7.5∶7.5∶100、15∶7.8∶7.5∶100、15∶8∶7.5∶100、15∶10∶7.5∶100、15∶12∶7.5∶100、15∶12.2∶7.5∶100、15∶12.5∶7.5∶100、15∶13∶7.5∶100。将厌氧氨氧化菌驯化液与厌氧污泥混合,得到启动混合浆体,其中启动混合浆体混合液悬浮固体浓度(MLSS)为6g/L。将启动混合浆体加入氢气回收反应槽的阳极室,搅拌器以30转/分钟的转速连续缓慢搅拌。每隔8小时可见光照射阳极电极3小时。随着反应的进行,当阴极室的导气孔处氢气体积浓度检测值低于1%时,即结束反应过程。
氢气回收反应装置、氨氮浓度的检测、氨氮氧化效率计算、氢气体积浓度检测、氢气平均体积浓度计算同实施例1,试验结果见表2。
表2碳酸钠用量对高氨氮废液中氨转化率及氢气平均体积浓度的影响
由表2可看出,当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比低于15∶8∶7.5∶100时(如表2中,亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比=15∶7.8∶7.5∶100、15∶7.5∶7.5∶100、15∶7∶7.5∶100以及表2中未列举的更低比值),碳酸钠投加量少,厌氧氨氧化菌前期活化启动不足,厌氧氨氧化作用较弱,氢离子生成、电迁移、还原过程受到影响,导致氨转化效率均低于84%,氢气平均体积浓度均低于47%,且氨转化效率和氢气平均体积浓度随着摩尔比的减少而逐渐降低;当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比等于15∶8~12∶7.5∶100时,碳酸钠投加适量,厌氧氨氧化菌活化启动,厌氧氨氧化作用显著,电子转移及氢离子生成、电迁移、还原过程进行顺畅,导致氨转化效率均高于89%,氢气平均体积浓度均高于54%;当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比高于15∶12∶7.5∶100时(如表2中,亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比=15∶12.2∶7.5∶100、15∶12.5∶7.5∶100、15∶13∶7.5∶100以及表2中未列举的更高比值),碳酸钠投加过量,厌氧氨氧化菌活化启动,厌氧氨氧化作用显著,然而受到总氮浓度不变的限制,氨转化率和氢气平均体积浓度随着摩尔比的增加变化均不显著。因此,综合而言,结合效益与成本,当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比等于15∶8~12∶7.5∶100时,最有利于提高氨氮废液中氨转化率及氢气平均体积浓度。
实施例3葡萄糖用量对高氨氮废液中氨转化率及氢气平均体积浓度的影响
高氨氮废液处置过程:分别称取亚硝酸钠、碳酸钠、葡萄糖,加入到高氨氮废液中,密封条件下搅拌至完全溶解,得厌氧氨氧化菌驯化液,其中亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比分别为15∶12∶4∶100、15∶12∶4.5∶100、15∶12∶4.8∶100、15∶12∶5∶100、15∶12∶7.5∶100、15∶12∶10∶100、15∶12∶10.2∶100、15∶12∶10.5∶100、15∶12∶11∶100。将厌氧氨氧化菌驯化液与厌氧污泥混合,得到启动混合浆体,其中启动混合浆体混合液悬浮固体浓度(MLSS)为8g/L。将启动混合浆体加入氢气回收反应槽的阳极室,搅拌器以40转/分钟的转速连续缓慢搅拌。每隔10小时可见光照射阳极电极4小时。随着反应的进行,当阴极室的导气孔处氢气体积浓度检测值低于1%时,即结束反应过程。
氢气回收反应装置、氨氮浓度的检测、氨氮氧化效率计算、氢气体积浓度检测、氢气平均体积浓度计算同实施例1,试验结果见表3。
表3葡萄糖用量对高氨氮废液中氨转化率及氢气平均体积浓度的影响
由表3可看出,当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比低于15∶12∶5∶100时(如表3中,亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比=15∶12∶4.8∶100、15∶12∶4.5∶100、15∶12∶4∶100以及表3中未列举的更低比值),葡萄糖投加量少,反应中后期反硝化菌群繁殖较慢,废液中积累的硝酸盐浓度逐渐升高,从而抑制厌氧氨氧化菌活性,继而使得厌氧氨氧化作用较弱,氢离子生成、电迁移、还原过程受到影响,导致氨转化效率均低于87%,氢气平均体积浓度均低于52%,且氨转化效率和氢气平均体积浓度随着摩尔比的减少而逐渐降低;当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比等于15∶12∶5~10∶100时,葡萄糖投加适量,试验反应中后期,污泥中的反硝化菌氧化葡萄糖获得能量并产生氢离子。氢离子通过电迁移作用转至阴极参与上述还原反应。随着葡萄糖的消耗,反硝化菌群快速扩增,反硝化菌群通过还原作用将硝酸盐转化成氮气。最终,氨转化效率均高于91%,氢气平均体积浓度均高于57%;当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比高于15∶12∶10∶100时(如表3中,亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比=15∶12∶10.2∶100、15∶12∶10.5∶100、15∶12∶11∶100以及表3中未列举的更高比值),葡萄糖投加过量,反应过程中反硝化菌群快速繁殖,在反应初中期便代替厌氧氨氧化菌群成为优势菌种,继而使得厌氧氨氧化作用较弱,氢离子生成、电迁移、还原过程受到影响,导致氨转化效率均低于90%,氢气平均体积浓度均低于55%,且氨转化效率和氢气平均体积浓度随着摩尔比的增加而逐渐降低;因此,综合而言,结合效益与成本,当亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比等于15∶12∶5~10∶100时,最有利于提高氨氮废液中氨转化率及氢气平均体积浓度。
实施例4可见光照射时间对高氨氮废液中氨转化率及氢气平均体积浓度的影响
高氨氮废液处置过程:称取亚硝酸钠、碳酸钠、葡萄糖,加入到高氨氮废液中,密封条件下搅拌至完全溶解,得厌氧氨氧化菌驯化液,其中亚硝酸钠、碳酸钠、葡萄糖、废液中的氨氮摩尔比为15∶12∶10∶100。将厌氧氨氧化菌驯化液与厌氧污泥混合,得到启动混合浆体,其中混合液悬浮固体浓度(MLSS)为8g/L。将启动混合浆体加入氢气回收反应槽的阳极室,搅拌器以40转/分钟的转速连续缓慢搅拌。每隔10小时可见光照射阳极电极1、1.5、1.8、2、3、4、4.2、4.5、5小时。随着反应的进行,当阴极室的导气孔处氢气体积浓度检测值低于1%时,即结束反应过程。
氢气回收反应槽、氨氮浓度的检测、氨氮氧化效率计算、氢气体积浓度检测、氢气平均体积浓度计算同实施例1,试验结果见表4。
表4可见光照射时间对高氨氮废液中氨转化率及氢气平均体积浓度的影响
由表4可看出,当可见光照射时间低于2小时时(如表4中,可见光照射时间=1.8小时、1.5小时、1小时以及表4中未列举的更低比值),可见光照射时间较短,阳极光催化不足,产生光生电子和光生空穴较少,不仅直接影响氨氮氧化过程,也因为电势降低影响氢离子的电迁移及还原过程,最终导致氨转化效率均低于84%,氢气平均体积浓度均低于47%,且氨转化效率和氢气平均体积浓度随着可见光照射时间的减少而逐渐降低;当可见光照射时间等于2~4小时时,阳极光催化时间合适,产生足量光生电子和光生空穴。并且由于电势比较高,光生电子和光生空穴可以及时分开,分别参与氨氮氧化和氢还原过程。最终,氨转化效率均高于92%,氢气平均体积浓度均高于58%;当可见光照射时间高于4小时时(如表4中,可见光照射时间=4.2小时、4.5小时、5小时以及表4中未列举的更高比值),阳极光催化时间合适,产生足量光生电子和光生空穴。并且由于电势比较高,光生电子和光生空穴可以及时分开,分别参与氨氮氧化和氢还原过程。然而受到总氮浓度不变的限制,氨转化率和氢气平均体积浓度随着光照时间的增加变化均不显著。因此,综合而言,结合效益与成本,当可见光照射时间等于2~4小时,最有利于提高氨氮废液中氨转化率及氢气平均体积浓度。

Claims (8)

1.一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,其特征在于,所述方法包括以下步骤:
1)称取亚硝酸钠、碳酸钠、葡萄糖,加入到高氨氮废液中,密封条件下搅拌至完全溶解,得厌氧氨氧化菌驯化液;
2)将厌氧氨氧化菌驯化液与厌氧污泥混合,得到启动混合浆体;
3)将启动混合浆体加入氢气回收反应装置的阳极室,连续缓慢搅拌;
4)每隔6~10小时可见光照射阳极电极2~4小时,当阴极室的导气孔处氢气体积浓度检测值低于1%时,即结束反应。
2.根据权利要求1所述的一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,其特征在于,所述步骤1)中亚硝酸钠、碳酸钠、葡萄糖、高氨氮废液中的氨氮摩尔比为5~15:8~12:5~10:100。
3.根据权利要求1所述的一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,其特征在于,所述步骤2)启动混合浆体中的悬浮固体浓度为4~8g/L。
4.根据权利要求1所述的一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,其特征在于,所述氢气回收反应装置包括阳极室和阴极室,所述阳极室和所述阴极室通过质子交换膜隔开,所述阳极室内设有搅拌器,所述阳极室和阴极室上分别设有导气孔,所述阳极室还设有加样孔,阳极电极和阴极电极分别置于所述阳极室最左端和阴极室最右端,所述阳极电极和所述阴极电极用导线连接。
5.根据权利要求1所述的一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,其特征在于,所述氢气回收反应装置为可透光的密封装置。
6.根据权利要求4所述的一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,其特征在于,所述阳极电极为氧掺石墨碳氮/钒酸铋复合电极,所述阴极电极为玻碳电极。
7.根据权利要求1~6任一项所述的一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,其特征在于,所述氢气回收反应装置外部设置可见光光源。
8.根据权利要求5所述的一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法,其特征在于,所述阳极电极和所述阴极电极之间串联有开关。
CN201910557757.3A 2019-06-25 2019-06-25 一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法 Active CN110255699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910557757.3A CN110255699B (zh) 2019-06-25 2019-06-25 一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910557757.3A CN110255699B (zh) 2019-06-25 2019-06-25 一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法

Publications (2)

Publication Number Publication Date
CN110255699A true CN110255699A (zh) 2019-09-20
CN110255699B CN110255699B (zh) 2022-02-11

Family

ID=67921551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910557757.3A Active CN110255699B (zh) 2019-06-25 2019-06-25 一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法

Country Status (1)

Country Link
CN (1) CN110255699B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093009A (zh) * 2022-01-24 2022-09-23 成都理工大学 一种用于地下水循环井的光催化微生物燃料电池处理组件
CN115340189A (zh) * 2022-09-13 2022-11-15 浙江慧科环保科技有限公司 一种利用有机废液加速厌氧氨氧化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221052A1 (en) * 2003-07-07 2009-09-03 Ben Hankamer Photosynthetic hydrogen production
CN102976559A (zh) * 2012-12-10 2013-03-20 重庆大学 厌氧氨氧化微生物逆向电渗析污水处理同时发电的方法及装置
CN103296299A (zh) * 2013-05-31 2013-09-11 中国科学技术大学 生物光电化学池
CN103864201A (zh) * 2012-12-18 2014-06-18 中国科学院生态环境研究中心 一种利用源分离尿液微生物电解制取氢气的方法
CN104817190A (zh) * 2015-04-13 2015-08-05 浙江工商大学 一种利用太阳能降污产氢的生物电化学装置及方法
CN106745676A (zh) * 2016-11-25 2017-05-31 浙江工商大学 一种生态多阴极尿液处理装置和方法
CN108002517A (zh) * 2017-12-16 2018-05-08 傲自然成都生物科技有限公司 一种用于净化饮用水的生物电化学偶联系统及其净化方法
CN109638327A (zh) * 2018-12-19 2019-04-16 大连理工大学 一种用单室厌氧氨氧化污泥-微生物燃料电池装置进行脱氮产电的工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221052A1 (en) * 2003-07-07 2009-09-03 Ben Hankamer Photosynthetic hydrogen production
CN102976559A (zh) * 2012-12-10 2013-03-20 重庆大学 厌氧氨氧化微生物逆向电渗析污水处理同时发电的方法及装置
CN103864201A (zh) * 2012-12-18 2014-06-18 中国科学院生态环境研究中心 一种利用源分离尿液微生物电解制取氢气的方法
CN103296299A (zh) * 2013-05-31 2013-09-11 中国科学技术大学 生物光电化学池
CN104817190A (zh) * 2015-04-13 2015-08-05 浙江工商大学 一种利用太阳能降污产氢的生物电化学装置及方法
CN106745676A (zh) * 2016-11-25 2017-05-31 浙江工商大学 一种生态多阴极尿液处理装置和方法
CN108002517A (zh) * 2017-12-16 2018-05-08 傲自然成都生物科技有限公司 一种用于净化饮用水的生物电化学偶联系统及其净化方法
CN109638327A (zh) * 2018-12-19 2019-04-16 大连理工大学 一种用单室厌氧氨氧化污泥-微生物燃料电池装置进行脱氮产电的工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李亮: "光催化耦合燃料电池去除水中无机氮", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093009A (zh) * 2022-01-24 2022-09-23 成都理工大学 一种用于地下水循环井的光催化微生物燃料电池处理组件
CN115340189A (zh) * 2022-09-13 2022-11-15 浙江慧科环保科技有限公司 一种利用有机废液加速厌氧氨氧化方法

Also Published As

Publication number Publication date
CN110255699B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN112125390B (zh) 一种采用光催化辅助强化生物阳极降解抗生素的装置
CN101924228B (zh) 一种微生物燃料电池及其处理苯胺废水的方法
US20050194311A1 (en) Biological process for waste treatment and energy production
CN109179860A (zh) 一种同步催化氧化二级出水中难降解污染物与降解剩余污泥的方法
CN105140551B (zh) 一种PANI/BiVO4复合光催化剂与微生物燃料电池耦合系统
CN103872368B (zh) 交互式三室生物燃料电池装置及其应用于废水脱氮的方法
CN110273165A (zh) 一种低温等离子体技术制备氧缺陷型钨酸铋光电极的方法
CN104803441B (zh) 一种太阳能光‑热‑电耦合处理丙烯腈污水的方法
CN107952464B (zh) 一种新型光催化材料及双光催化电极自偏压污染控制系统
CN110255699A (zh) 一种在常温及无外接电压条件下从高氨氮废液中回收氢气的方法
CN105098217B (zh) 三维电极光电微生物燃料电池反应器及沼气提质增效的方法
CN101607776A (zh) 一种啤酒废水处理装置及处理方法
CN105967455A (zh) 一种垃圾渗滤液自供电脱硝的装置及其方法
CN104671589A (zh) 一种基于光电催化-自养生物膜的废水脱氮处理方法
CN110937764A (zh) 采用uasb-sbr-eo处理早期垃圾渗滤液实现深度除碳脱氮脱硫的方法
CN104141146A (zh) 利用有机废弃物制氢的方法及装置
CN103865957B (zh) 一种联合产氢产乙酸菌和产电菌强化生物制氢效能的方法
CN110482682A (zh) 一种电化学耦合厌氧微生物处理有机污水的方法
CN109574201A (zh) 有机和脱硫废水微生物燃料电池协同处理方法及系统
CN112030182B (zh) 电化学装置、电化学分解尿素合成过氧化氢的方法、应用
CN203346383U (zh) 利用有机废弃物制氢的装置
JP3891544B2 (ja) 燃料電池組込み型水素発酵バイオリアクター
CN108773972B (zh) 采用半短程硝化-厌氧氨氧化-电氧化处理城市污水厂污泥消化液实现深度除碳脱氮的方法
CN205944262U (zh) 一种污泥燃料电池
CN106990152A (zh) 一种灵敏的便携式光电催化化学需氧量传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant