CN110252946B - 一种降低钛合金熔模精密铸件表面粗糙度的制备方法 - Google Patents

一种降低钛合金熔模精密铸件表面粗糙度的制备方法 Download PDF

Info

Publication number
CN110252946B
CN110252946B CN201910643965.5A CN201910643965A CN110252946B CN 110252946 B CN110252946 B CN 110252946B CN 201910643965 A CN201910643965 A CN 201910643965A CN 110252946 B CN110252946 B CN 110252946B
Authority
CN
China
Prior art keywords
investment
casting
preparation
mold
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910643965.5A
Other languages
English (en)
Other versions
CN110252946A (zh
Inventor
郄喜望
张美娟
南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aviation Materials Research Institute Co.,Ltd.
Original Assignee
Beijing Aeronautical Materials Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Aeronautical Materials Research Institute Co ltd filed Critical Beijing Aeronautical Materials Research Institute Co ltd
Priority to CN201910643965.5A priority Critical patent/CN110252946B/zh
Publication of CN110252946A publication Critical patent/CN110252946A/zh
Application granted granted Critical
Publication of CN110252946B publication Critical patent/CN110252946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

本发明属于铸造技术领域,涉及一种降低钛合金熔模精密铸件表面粗糙度的制备方法。制备方法包括下述步骤:熔模制备、铸件浇注系统设计、带浇注系统的熔模制备、型壳制备、铸件浇注、一次吹砂和酸洗。本方法解决了采用熔模精密铸造方法制备的钛合金铸件表面粗糙度高的问题,并且通过改善钛合金铸件的表面质量可提高钛合金铸件的性能和使用可靠性。

Description

一种降低钛合金熔模精密铸件表面粗糙度的制备方法
技术领域
本发明属于熔模精密铸造技术领域,涉及对一种降低钛合金熔模精密铸件表面粗糙度的制备方法的改进。
背景技术
钛合金精密铸件主要采用熔模精密铸造方法制备,采用易熔材料制备熔模,然后在熔模表面包覆若干层耐火材料制成型壳,将脱除熔模后的型壳焙烧,获得稳定的型壳,然后利用型壳进行铸件浇注。目前采用熔模精密铸造方法制备的钛合金铸件表面粗糙度介于3.2~6.3μm之间。由于钛合金铸件主要被用于航空航天领域,其对铸件的表面粗糙度、尺寸精度和使用可靠性有较高的要求,其中铸件的表面粗糙度与产品的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切的关系,对产品的使用寿命和可靠性有重要的影响,因而要求钛合金铸件表面粗糙度要低于3.2μm以下,对关键铸件或者铸件的关键区域要求表面粗糙度甚至要低。
由于熔模精密铸造的第一个工序就是制造熔模,要获得表面光洁度和尺寸精度高的铸件,首先熔模应具有较高的表面光洁度和尺寸精度。其次,铸件是利用型壳浇注制备而成,因而型壳内腔的表面光洁度也影响铸件的表面粗糙度。由于铸件在成型后,内部不可避免会存在冶金缺陷,需要通过补焊修复的方法消除,对铸件表面也有较大的影响,因而需要降低铸件一次成型的缺陷率。由于熔模精密铸造工序长,各工序都对表面粗糙度有影响,也要进行相关工序的过程表面粗糙度控制,才能实现铸件表面粗糙度降低。同时为进一步降低铸件表面粗糙度,需对铸件表面进行特殊处理,结合多种工艺效果,逐级降低铸件表面粗糙度,使铸件表面具有较低的表面粗糙度。
发明内容
本发明的目的是克服上述现有技术的缺点,提供一种降低钛合金熔模精密铸件表面粗糙度的制备方法。
本发明的技术方案是:一种降低钛合金熔模精密铸件表面粗糙度的制备方法,其包括熔模制备、铸件浇注系统设计、带浇注系统的熔模制备、型壳制备和铸件浇注。其中,在熔模制备前还包括熔模制备模拟,在铸件浇注后包括吹砂和酸洗处理。
所述熔模制备模拟过程如下:
1.1根据铸件的三维模型,设计熔模模型,并初步设计模具模型;
1.2采用数值模拟软件进行面网格和体网格划分,形成可用于模拟的带网格的熔模模型和模具模型,所述的熔模模型面网格和体网格的边长≤5mm;
1.3设定熔模模拟边界参数;
1.4设定不同熔模制备工艺参数,对熔模制备过程进行模拟,其中模具预热温度为25~50℃,熔模注射温度为55~85℃,熔模注射压力为0.5~2MPa,熔模保压时间为150s~500s,评价表面流痕,并进行工艺参数优化;
1.5根据步骤1.4的模拟结果,观察熔模充型过程中,熔模在模具中的流动方向和充型顺序,通过改变模具注射口的设计位置,来改变熔模的流动和充型顺序,减少熔模紊流,平稳顺序充型,并确定模具注射口的设计位置及最终模具模型设计方案;
1.6在步骤1.5确定的模具模型设计方案的基础上,重复进行步骤1.4,根据步骤1.4的模拟结果预测熔模缺陷产生位置,进一步调整步骤1.4优化后的熔模制备工艺参数,将缺陷率降低10%以上,确定最终熔模制备工艺参数。
所述吹砂时,在铸件表面上喷涂钛合金玻璃润滑剂,改善吹砂效果。
所述吹砂用的砂料采用玻璃珠、碳化硅、棕刚玉、石英砂中的一种或几种,一次吹砂的压力为0.1~4MPa。
酸洗中,酸洗溶液为HNO3+HF+添加剂的混合溶液。
所述熔模制备后还包括熔模修复,对于熔模上存在表面缺陷的位置进行修复,具体过程如下:
2.1将熔模需修复的位置修平;
2.2用砂纸打磨熔模修复位置,打磨时根据砂纸的粒度分三级进行,采用不同型号的砂纸对熔模表面修复区进行逐级打磨,先粗后细;
2.3清洗熔模。
将熔模表面需修复的区域采用刷涂修复模料或者多次滴落修复模料的方式进行修复,使熔模表面的凹陷区域被修复模料填满或者熔模表面的凸起区域微熔化,然后将该熔模表面需修复的区域修平。
熔模表面需修复的区域的大小以表面凹陷区域或表面凸起区域的最外侧轮廓为基础,向外延伸一定尺寸;
当表面凹陷区域或表面凸起区域的形状类似圆形,且最大直径d≤10mm时,熔模表面需修复区域的大小为表面凹陷区域或表面凸起区域的最外侧轮廓向四周延伸5~10mm;
当表面凹陷区域或表面凸起区域的形状类似圆形,且最大直径d>10mm时,熔模表面需修复区域的大小为表面凹陷区域或表面凸起区域的最外侧轮廓向四周延伸10~20mm;
当表面凹陷区域或表面凸起区域的形状类似线形,以线形的短径方向最外轮廓向四周延伸5~10mm。
步骤2.2中,熔模修复所用砂纸型号为:第一级砂纸型号500≤M1<800目,第二级砂纸型号800≤M2<1200目,第三级砂纸型号1200≤M3<2000目。
步骤2.3熔模清洗的具体步骤为:先采用清水浸泡,然后用有机试剂浸泡,最后用清水冲洗。
清水浸泡选择采用超声振动模式。
铸件浇注系统设计中,利用数值模拟软件模拟铸件充型凝固过程,并对铸件缺陷进行预测,设计的浇注系统经过数值模拟预测的缺陷率需低于8%,具体过程如下:
3.1设定熔炼浇注工艺参数,包括型壳预热温度、浇注温度、离心转速;
3.2对铸件进行充型凝固过程温度场模拟,预测铸件缺陷产生位置;
3.3通过调整浇冒系统位置和浇注工艺参数,减少缩孔缺陷的数量以及缺陷的尺寸,直至缺陷率低于8%。
本发明具有以下有益效果:
本发明提供的钛合金熔模精密铸件的制备方法,通过熔模模拟过程确定的模具方案和熔模工艺参数,在保证熔模平稳充型的基础上,减少熔模表面流痕和内部缺陷等,有利于提升熔模整体表面质量和内部质量,进而提升铸件的表面质量,降低了铸件的表面粗糙度,使钛合金铸件表面粗糙度Ra≤2.5μm,铸件缺陷率降低20%以上。大大提高了钛合金精密铸件的表面质量,进而提升铸件的使用可靠性。
附图说明
图1是本发明降低钛合金熔模精密铸件表面粗糙度的制备方法流程图。
具体实施方式
下面对本发明做进一步详细说明。
请参考图1,本发明一种降低钛合金熔模精密铸件表面粗糙度的制备方法,包括:熔模制备模拟、熔模制备、熔模修复、铸件浇注系统设计、带浇注系统的熔模制备、型壳制备、铸件浇注、一次吹砂和酸洗,具体过程如下:
熔模制备模拟,包含下述步骤:
1.1根据铸件的三维模型,设计熔模模型,并初步设计模具模型;
1.2采用数值模拟软件进行面网格和体网格划分,形成可用于模拟的带网格的熔模模型和模具模型,所述的熔模面网格和体网格的边长≤5mm,以保证熔模模拟精度;
1.3设定熔模模拟边界参数;
1.4设定不同熔模制备工艺参数,对熔模制备过程进行模拟,其中模具预热温度为25~50℃,熔模注射温度为55~85℃,熔模注射压力为0.5~2MPa,熔模保压时间为150s~500s,上述工艺参数组合为通过不确定试验获取,具有较少的表面流痕。再根据所研制的熔模结构,选择不同工艺参数组合,评价熔模表面流痕,进行工艺参数优化,缩小工艺参数区间范围,以进一步满足不同结构熔模表面流痕尺寸和数量的要求;
1.5根据步骤1.4的模拟结果,观察熔模充型过程中,熔模在模具中的流动方向和充型顺序,通过改变模具注射口的设计位置,来改变熔模的流动和充型顺序,减少熔模紊流,平稳顺序充型,并确定模具注射口的设计位置及最终模具模型设计方案。模具注射口位置的选择对熔模表面流痕和内部缺陷的产生有较大的影响,通过熔模模拟选择较优的模具注射口位置,减少熔模紊流带来的熔模内部卷气,局部充型不足和表面缺陷,可进一步提升熔模表面和内部质量。
1.6在步骤1.5确定的模具模型设计方案的基础上,重复进行步骤1.4,根据步骤1.4的模拟结果预测熔模缺陷产生位置,进一步调整步骤1.4优化后的熔模制备工艺参数,将缺陷率降低10%以上,确定最终熔模制备工艺参数。熔模缺陷率降低,可减少熔模修复量及熔模修复时对原始表面的破坏,有利于提高熔模的表面质量。
制备熔模,根据熔模制备模拟步骤确定的熔模模具和熔模制备工艺参数,制备熔模;
熔模修复,对于熔模上存在表面缺陷的位置进行修复,包含下述步骤:
2.1将熔模需修复的位置修平;
将熔模表面需修复的区域采用刷涂修复模料或者多次滴落修复模料的方式进行修复,使熔模表面的凹陷区域被修复模料填满或者熔模表面的凸起区域微熔化,然后将该熔模表面需修复的区域修平。
熔模表面需修复的区域的大小以表面凹陷区域或表面凸起区域的最外侧轮廓为基础,向外延伸一定尺寸,通过控制熔模修复热影响区的大小,避免修复区域过小,修复后会存在修复表面局部凹陷,或者修复区过大,修复表面的热影响区过大,影响熔模表面质量。
当表面凹陷区域或表面凸起区域的形状类似圆形,且最大直径d≤10mm时,熔模表面需修复区域的大小为表面凹陷区域或表面凸起区域的最外侧轮廓向四周延伸5~10mm;
当表面凹陷区域或表面凸起区域的形状类似圆形,且最大直径d>10mm时,熔模表面需修复区域的大小为表面凹陷区域或表面凸起区域的最外侧轮廓向四周延伸10~20mm;
当表面凹陷区域或表面凸起区域的形状类似线形,以线形的短径方向最外轮廓向四周延伸5~10mm。
2.2用砂纸打磨熔模修复位置,打磨时根据砂纸的粒度分三级进行,采用不同型号的砂纸对熔模表面修复区进行逐级打磨,先粗后细;
熔模修复所用砂纸型号为:第一级砂纸型号500≤M1<800目,第二级砂纸型号800≤M2<1200目,第三级砂纸型号1200≤M3<2000目。熔模表面强度低,较粗的砂纸不仅不能达到打磨熔模表面的作用,反而会划伤熔模表面,提高熔模表面粗糙度。通过对熔模修复砂纸颗粒度的特定逐级选择和设计,可以有效保障熔模修复质量和修复效率。
2.3清洗熔模。
熔模清洗的具体步骤为:先采用清水浸泡,然后用有机试剂浸泡,最后用清水冲洗。其中有机试剂采用丙醇和酒精;清水浸泡选择采用超声振动。
铸件浇注系统设计,采用数值模拟的方法对铸件充型凝固过程进行模拟分析,设计铸件的浇注系统;
利用数值模拟软件模拟铸件充型凝固过程,并对铸件缺陷进行预测,设计的浇注系统经过数值模拟预测的缺陷率需低于8%,具体过程如下:
3.1设定熔炼浇注工艺参数,包括型壳预热温度、浇注温度、离心转速;
3.2对铸件进行充型凝固过程温度场模拟,预测铸件缺陷产生位置;
3.3调整浇冒系统位置和浇注工艺参数,重点减少直径3mm以上缩孔缺陷的数量,或者减少缺陷的尺寸,直至缺陷率低于8%。3mm以上的缩孔缺陷无法通过特殊处理工艺进行无损伤式修复,只能通过破坏表面的方式进行排除修复,对铸件表面粗糙度有较大的影响,因而通过模拟预测并降低缺陷率有利于减少后期铸件缺陷修复,进而提升铸件表面光洁度。
带浇注系统的熔模制备,根据铸件浇注系统设计步骤中数值模拟设计的铸件浇注系统方案,完成熔模和浇注系统组合;采用与熔模修复相同的方式进行带浇注系统的熔模表面缺陷修复;
型壳制备,利用带浇注系统的熔模进行型壳制备;
铸件浇注,对型壳进行预热,然后进行铸件浇注,制备出铸件;
铸件浇注前型壳的预热温度为100~500℃,保温2~8小时。
铸件浇注电流20~50KA,浇注电压50~100V,熔炼真空度≤7.0Pa,铸件冷却时间≥2小时,上述参数的组合选择和控制,有利于铸件表面氧化层厚度的控制,从而提高铸件表面光洁度。
一次吹砂,对去除浇注系统后的铸件进行表面吹砂处理;采用30~80目的砂;一次吹砂的粒度选择与熔模精铸后钛合金铸件表面形成的氧化层有关,表面氧化层属于脆性层,易在表面形成微裂纹影响表面粗糙度和表面质量,通过一次吹砂,可去大部分氧化层,有利于后工序的进一步去除和控制。
可在铸件表面上喷涂钛合金玻璃润滑剂,改善吹砂效果。
砂料采用玻璃珠、碳化硅、棕刚玉、石英砂中的一种或几种。一次吹砂的压力为0.1~4MPa,从而可以有效保障吹砂效率和效果,同时避免表面出现吹砂损伤。
酸洗,对一次吹砂后的铸件进行工序处理,后进行表面酸洗,酸洗后铸件厚度的去除量a≤5mm。该去除量可有效去除钛合金铸件表面氧化层,并且不会大量侵蚀钛合金铸件本体。
酸洗溶液为HNO3+HF+添加剂的混合溶液。
实施例一
一种框形钛合金熔模精密铸件,铸件尺寸为1460×380×670mm。铸件的整体表面粗糙度要求小于Ra≤2.5μm。铸件制备所需的熔模采用蜡模,该钛合金熔模精密铸件低表面粗糙度的制备方法包括蜡模制备模拟、蜡模制备、蜡模修复、铸件浇注系统设计、带浇注系统的蜡模制备、型壳制备、铸件浇注、一次吹砂和酸洗,具体过程如下:
蜡模制备模拟,包含下述步骤:
1.1根据铸件的三维模型,设计蜡模模型,并初步设计模具模型;
1.2采用数值模拟软件进行面网格和体网格划分,形成可用于模拟的带网格的蜡模模型和模具模型,所述的蜡模面网格和体网格的边长3mm,以保证蜡模模拟精度;
1.3设定蜡模模拟边界参数;
1.4设定不同蜡模制备工艺参数,对蜡模制备过程进行模拟,其中模具预热温度为25~50℃,注射温度为55~85℃,注射压力为0.5~2MPa,保压时间为150s~500s,在上述参数范围内,根据所研制的蜡模结构,选择不同工艺参数组合,评价蜡模表面流痕,进行工艺参数优化。通过模拟,蜡模注射温度选择在65~85℃之间,模具的预热温度控制在30~50℃之间,注射压力为9~13bar,保压时间为250s~500s时,蜡模表面的流痕和缺陷较少。
1.5根据步骤1.4的模拟结果,观察蜡模充型过程中,蜡模在模具中的流动方向和充型顺序,通过改变模具注射口的设计位置,来改变蜡模的流动和充型顺序,减少蜡模紊流,平稳顺序充型,并确定模具注射口的设计位置及最终模具模型设计方案。模具注射口位置的选择对蜡模表面流痕和内部缺陷的产生有较大的影响,通过蜡模模拟选择较优的模具注射口位置,减少蜡模紊流带来的蜡模内部卷气,局部充型不足和表面缺陷,可进一步提升蜡模表面和内部质量。
当注蜡口设计在铸件边长为380×670mm的面中心位置,采用侧面注射的方式,通过模拟可知,蜡液充型过程流程长,经过转折结构后交汇形成紊流。当注蜡口设计在铸件边长为1460×670mm的面中心位置,采用底面注射的方式,通过模拟可知,蜡液紊流减少,充型较平稳。因此选择在底面设置注蜡口的方式,并设计模具。
1.6在步骤1.5确定的模具模型设计方案的基础上,重复进行步骤1.4,根据步骤1.4的模拟结果预测蜡模缺陷产生位置,进一步调整步骤1.4优化后的蜡模制备工艺参数,将缺陷率降低10%以上,确定最终蜡模制备工艺参数。
最终确定的蜡模制备工艺参数为:模具预热的温度为35℃,注射温度为72℃,注射压力为1.1MPa,保压时间为300s。选择此参数,蜡模的缺陷率可降低12%,蜡模缺陷率降低,可减少蜡模修复量及蜡模修复时对原始表面的破坏,有利于提高蜡模的表面质量。
制备蜡模,根据蜡模制备模拟步骤确定的蜡模模具和蜡模制备工艺参数,制备蜡模;
蜡模修复,对于蜡模上存在表面缺陷的位置进行修复,包含下述步骤:
2.1将蜡模需修复的位置修平;
将蜡模表面需修复的区域采用刷涂修复模料或者多次滴落修复模料的方式进行修复,使蜡模表面的凹陷区域被修复模料填满或者蜡模表面的凸起区域微熔化,然后将该蜡模表面需修复的区域修平。
蜡模表面需修复的区域的大小以表面凹陷区域或表面凸起区域的最外侧轮廓为基础,向外延伸一定尺寸,通过控制蜡模修复热影响区的大小,避免修复区域过小,修复后会存在修复表面局部凹陷,或者修复区过大,修复表面的热影响区过大,影响蜡模表面质量;
将蜡模表面需修复的区域采用刷涂修复模料的方式进行修复多次滴落修复模料的方式,使蜡模表面的凹陷区域被修复模料填满或者蜡模表面的凸起区域微熔化,然后将该蜡模表面需修复的区域修平。需修复区域为形状主要为类似圆形和线形的缺陷,并且尺寸较大。
对于类似圆形的缺陷,其直径d>10mm,蜡模表面需修复区域的大小为表面凹陷区域或表面凸起区域的最外侧轮廓向四周延伸15mm;
对于类似线形的缺陷,以线形的短径方向最外轮廓向四周延伸8mm。
2.2用砂纸打磨蜡模修复位置,打磨时根据砂纸的粒度分三级进行,采用不同型号的砂纸对蜡模表面修复区进行逐级打磨,先粗后细;
蜡模修复所用砂纸型号为:第一级砂纸型号为600目,第二级砂纸型号介于1000目,第三级砂纸型号介于1500目。蜡模表面强度低,较粗的砂纸不仅不能达到打磨蜡模表面的作用,反而会划伤蜡模表面,提高蜡模表面粗糙度通过对蜡模修复砂纸颗粒度的特定逐级选择和设计,从而可以有效保障蜡模修复质量和修复效率。
2.3清洗蜡模。
蜡模清洗的具体步骤为:先采用清水浸泡,然后用有机试剂浸泡,最后用清水冲洗。其中有机试剂采用丙醇和酒精;清水浸泡选择采用超声振动。
铸件浇注系统设计,采用数值模拟的方法对铸件充型凝固过程进行模拟分析,设计铸件的浇注系统;
利用数值模拟软件模拟铸件充型凝固过程,并对铸件缺陷进行预测,设计的浇注系统经过数值模拟预测的缺陷率需低于8%,具体过程如下:
3.1设定熔炼浇注工艺参数,包括型壳预热温度、浇注温度、离心转速;
3.2对铸件进行充型凝固过程温度场模拟,预测铸件缺陷产生位置;
3.3调整浇冒系统位置和浇注工艺参数,重点减少直径3mm以上缩孔缺陷的数量,或者减少缺陷的尺寸,直至缺陷率低于8%。3mm以上的缩孔缺陷无法通过特殊处理工艺进行无损伤式修复,只能通过破坏表面的方式进行排除修复,对铸件表面粗糙度有较大的影响,因而通过模拟预测并降低缺陷率有利于减少后期铸件缺陷修复,进而提升铸件表面光洁度。
带浇注系统的蜡模制备,根据铸件浇注系统设计步骤中数值模拟设计的铸件浇注系统方案,完成蜡模和浇注系统组合;采用与蜡模修复相同的方式进行带浇注系统的蜡模表面缺陷修复;
对蜡模组焊浇注系统的位置进行表面修复,将该区域采用多次滴落修复模料的方式进行修复,使蜡模表面的凹陷区域被修复模料填满或者蜡模表面的凸起区域微熔化,然后将该蜡模表面需修复的区域修平。修复区域向外延伸10mm。
蜡模修复所用砂纸型号为:第一级砂纸型号为600目,第二级砂纸型号介于1000目,第三级砂纸型号介于1500目。
型壳制备,利用带浇注系统的蜡模进行型壳制备;
铸件浇注,对型壳进行预热,然后进行铸件浇注,制备出铸件;
铸件浇注前型壳的预热温度为120℃,保温2小时。
根据铸件的结构和重量,铸件浇注电流20KA,浇注电压50V,熔炼真空度≤6.0Pa,铸件冷却时间5小时,上述参数的组合选择和控制,有利于铸件表面氧化层厚度的控制,从而提高铸件表面光洁度。
一次吹砂,对去除浇注系统后的铸件进行表面吹砂处理;采用60目的砂;
可在铸件表面上喷涂钛合金玻璃润滑剂,改善吹砂效果。
砂料采用石英砂。一次吹砂的压力为1MPa,从而可以有效保障吹砂效率和效果,同时避免表面出现吹砂损伤。
酸洗,对一次吹砂后的铸件进行工序处理,后进行表面酸洗,酸洗后铸件厚度的去除量4mm。酸洗溶液为HNO3+HF+添加剂的混合溶液。

Claims (9)

1.一种降低钛合金熔模精密铸件表面粗糙度的制备方法,其特征在于,包括熔模制备、铸件浇注系统设计、带浇注系统的熔模制备、型壳制备和铸件浇注;其中,在熔模制备前还包括熔模制备模拟,在铸件浇注后包括吹砂和酸洗处理;所述熔模制备模拟过程如下:
1.1根据铸件的三维模型,设计熔模模型,并初步设计模具模型;
1.2采用数值模拟软件进行面网格和体网格划分,形成可用于模拟的带网格的熔模模型和模具模型,所述的熔模模型面网格和体网格的边长≤5mm;
1.3设定熔模模拟边界参数;
1.4设定不同熔模制备工艺参数,对熔模制备过程进行模拟,其中模具预热温度为25~50℃,熔模注射温度为55~85℃,熔模注射压力为0.5~2MPa,熔模保压时间为150s~500s,评价表面流痕数量和尺寸,并进行工艺参数优化;
1.5根据步骤1.4的模拟结果,观察熔模充型过程中,熔模在模具中的流动方向和充型顺序,通过改变模具注射口的设计位置,来改变熔模的流动和充型顺序,减少熔模紊流,平稳顺序充型,确定模具注射口的设计位置及最终模具模型设计方案;
1.6在步骤1.5确定的模具模型设计方案的基础上,重复进行步骤1.4,根据步骤1.4的模拟结果预测熔模缺陷产生位置,通过调整步骤1.4优化后的熔模制备工艺参数,将缺陷率降低10%以上,确定最终熔模制备工艺参数;
所述熔模制备后还包括熔模修复,对于熔模上存在表面缺陷的位置进行修复,具体过程如下:
2.1将熔模需修复的位置修平;
熔模表面需修复的区域的大小以表面凹陷区域或表面凸起区域的最外侧轮廓为基础,向外延伸一定尺寸;
当表面凹陷区域或表面凸起区域的形状类似圆形,且最大直径d≤10mm时,熔模表面需修复区域的大小为表面凹陷区域或表面凸起区域的最外侧轮廓向四周延伸5~10mm;
当表面凹陷区域或表面凸起区域的形状类似圆形,且最大直径d>10mm时,熔模表面需修复区域的大小为表面凹陷区域或表面凸起区域的最外侧轮廓向四周延伸10~20mm;
当表面凹陷区域或表面凸起区域的形状类似线形,以线形的短径方向最外轮廓向四周延伸5~10mm;
2.2用砂纸打磨熔模修复位置,打磨时根据砂纸的粒度分三级进行,采用不同型号的砂纸对熔模表面修复区进行逐级打磨,先粗后细;
2.3清洗熔模。
2.根据权利要求1所述的降低钛合金熔模精密铸件表面粗糙度的制备方法,其特征在于,所述吹砂时,在铸件表面上喷涂钛合金玻璃润滑剂,改善吹砂效果。
3.根据权利要求2所述的降低钛合金熔模精密铸件表面粗糙度的制备方法,其特征在于:所述吹砂用的砂料采用玻璃珠、碳化硅、棕刚玉、石英砂中的一种或几种,一次吹砂的压力为0.1~4MPa。
4.根据权利要求1所述的降低钛合金熔模精密铸件表面粗糙度的制备方法,其特征在于,酸洗中,酸洗溶液为HNO3+HF+添加剂的混合溶液。
5.根据权利要求1所述的一种降低钛合金熔模精密铸件表面粗糙度的制备方法,其特征在于,将熔模表面需修复的区域采用刷涂修复模料或者多次滴落修复模料的方式进行修复,使熔模表面的凹陷区域被修复模料填满或者熔模表面的凸起区域微熔化,然后将该熔模表面需修复的区域修平。
6.根据权利要求1所述的一种降低钛合金熔模精密铸件表面粗糙度的制备方法,其特征在于,步骤2.2中,熔模修复所用砂纸型号为:第一级砂纸型号500≤M1<800目,第二级砂纸型号800≤M2<1200目,第三级砂纸型号1200≤M3<2000目。
7.根据权利要求1所述的一种降低钛合金熔模精密铸件表面粗糙度的制备方法,其特征在于,步骤2.3熔模清洗的具体步骤为:先采用清水浸泡,然后用有机试剂浸泡,最后用清水冲洗。
8.根据权利要求7所述的降低钛合金熔模精密铸件表面粗糙度的制备方法,其特征在于,清水浸泡选择采用超声振动模式。
9.根据权利要求1所述的降低钛合金熔模精密铸件表面粗糙度的制备方法,铸件浇注系统设计中,利用数值模拟软件模拟铸件充型凝固过程,并对铸件缺陷进行预测,设计的浇注系统经过数值模拟预测的缺陷率需低于8%,具体过程如下:
3.1设定熔炼浇注工艺参数,包括型壳预热温度、浇注温度、离心转速;
3.2对铸件进行充型凝固过程温度场模拟,预测铸件缺陷产生位置;
3.3通过调整浇冒系统位置和浇注工艺参数,减少缩孔缺陷的数量以及缺陷的尺寸,直至缺陷率低于8%。
CN201910643965.5A 2019-07-16 2019-07-16 一种降低钛合金熔模精密铸件表面粗糙度的制备方法 Active CN110252946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910643965.5A CN110252946B (zh) 2019-07-16 2019-07-16 一种降低钛合金熔模精密铸件表面粗糙度的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910643965.5A CN110252946B (zh) 2019-07-16 2019-07-16 一种降低钛合金熔模精密铸件表面粗糙度的制备方法

Publications (2)

Publication Number Publication Date
CN110252946A CN110252946A (zh) 2019-09-20
CN110252946B true CN110252946B (zh) 2021-09-14

Family

ID=67926574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910643965.5A Active CN110252946B (zh) 2019-07-16 2019-07-16 一种降低钛合金熔模精密铸件表面粗糙度的制备方法

Country Status (1)

Country Link
CN (1) CN110252946B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142036A (ja) * 1989-10-11 1991-06-17 Soc Natl Etud Constr Mot Aviat <Snecma> 標準的鋳型の製造方法
CN102819651A (zh) * 2012-08-20 2012-12-12 西北工业大学 基于仿真的单晶涡轮叶片精铸工艺参数优化方法
CN104353784A (zh) * 2014-10-31 2015-02-18 沈阳黎明航空发动机(集团)有限责任公司 一种高温合金空腔复杂薄壁结构件骨架的精铸方法
CN104504195A (zh) * 2014-12-18 2015-04-08 上海交通大学 一种熔模精铸模具收缩率的确定方法
CN105033191A (zh) * 2015-06-30 2015-11-11 四川德恩精工科技股份有限公司 皮带轮浇铸模拟分析及优化设计方法
CN105436407A (zh) * 2015-12-03 2016-03-30 天津市中机雄风机械有限公司 一种矿山用挖掘机斗齿的数字化制造方法
CN106825409A (zh) * 2017-01-09 2017-06-13 洛阳双瑞精铸钛业有限公司 一种厚大型钛合金熔模精密铸件的生产方法
CN108746496A (zh) * 2018-06-01 2018-11-06 中国航发北京航空材料研究院 一种熔模铸造用型壳制备方法
CN109277528A (zh) * 2018-11-23 2019-01-29 安徽应流集团霍山铸造有限公司 一种应用砂型铸造和熔模铸造的复合铸造工艺方法
US10252325B1 (en) * 2017-10-10 2019-04-09 General Electric Company Core mechanical integrity testing by viscosity manipulation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142036A (ja) * 1989-10-11 1991-06-17 Soc Natl Etud Constr Mot Aviat <Snecma> 標準的鋳型の製造方法
CN102819651A (zh) * 2012-08-20 2012-12-12 西北工业大学 基于仿真的单晶涡轮叶片精铸工艺参数优化方法
CN104353784A (zh) * 2014-10-31 2015-02-18 沈阳黎明航空发动机(集团)有限责任公司 一种高温合金空腔复杂薄壁结构件骨架的精铸方法
CN104504195A (zh) * 2014-12-18 2015-04-08 上海交通大学 一种熔模精铸模具收缩率的确定方法
CN105033191A (zh) * 2015-06-30 2015-11-11 四川德恩精工科技股份有限公司 皮带轮浇铸模拟分析及优化设计方法
CN105436407A (zh) * 2015-12-03 2016-03-30 天津市中机雄风机械有限公司 一种矿山用挖掘机斗齿的数字化制造方法
CN106825409A (zh) * 2017-01-09 2017-06-13 洛阳双瑞精铸钛业有限公司 一种厚大型钛合金熔模精密铸件的生产方法
US10252325B1 (en) * 2017-10-10 2019-04-09 General Electric Company Core mechanical integrity testing by viscosity manipulation
CN108746496A (zh) * 2018-06-01 2018-11-06 中国航发北京航空材料研究院 一种熔模铸造用型壳制备方法
CN109277528A (zh) * 2018-11-23 2019-01-29 安徽应流集团霍山铸造有限公司 一种应用砂型铸造和熔模铸造的复合铸造工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熔模精密铸造蜡模充型过程的数值模拟;韩昌仁等;《特种铸造及有色合金》;20010620(第3期);第38-39页 *

Also Published As

Publication number Publication date
CN110252946A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN101530892B (zh) 熔模铸造薄壁件铸造法
US7802613B2 (en) Metallic coated cores to facilitate thin wall casting
CN105436406A (zh) 基于选择性激光粉末烧结3d打印的精密蜡模铸造工艺
CN102228956A (zh) 高速客运专线道岔用系列滑床台板精密熔模铸造工艺及专用模具
CN109986025A (zh) 不锈钢水泵叶轮熔模铸造工艺
CN111112552A (zh) 基于3d打印技术的精密铸造成型方法
CN108746496B (zh) 一种熔模铸造用型壳制备方法
CN109108221A (zh) 快速启闭电站抽气止回阀铸件的生产工艺
CN110252946B (zh) 一种降低钛合金熔模精密铸件表面粗糙度的制备方法
CN110340286B (zh) 一种高表面光洁度钛合金熔模精密铸件的制备方法
CN110238349B (zh) 降低钛合金熔模精密铸件表面粗糙度的制备方法及其熔模制备方法
CN111421112A (zh) 一种消失模烧空壳型铸造工艺
CN111203514A (zh) 一种高温合金复杂薄壁铸件精密铸造方法
CN108927493A (zh) 一种铝合金电动汽车用内冷电机壳铸造成型工艺
CN111375731B (zh) 一种大型骨架类高温钛合金铸件的整体制备工艺
CN107398531A (zh) 高精度不锈钢阀体的铸造工艺
CN109986029A (zh) 水泵泵体熔模铸造工艺
CN110039003A (zh) 一种大型马氏体不锈钢铸件的制造方法
CN110918898B (zh) 一种大型陶瓷型壳裂纹修补方法
CN112643001A (zh) 一种提高铸件表面质量的型芯涂料涂刷工艺方法
CN110090916A (zh) 一种核主泵壳体铸造过程中表面缺陷的控制方法
CN110508750B (zh) 一种细长孔内带隔板工件的铸造方法
CN111673044A (zh) 一种隔砂冷铁放置方式
CN105268926A (zh) 利用复合砂型铸造钢阳极板模的方法
CN113926992B (zh) 一种钛合金铸件的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210601

Address after: No. 5 Yongxiang North Road, Haidian District, Beijing 100094

Applicant after: Beijing Aeronautical Materials Research Institute Co.,Ltd.

Address before: Science and technology development department, No.81 box, Haidian District, Beijing 100095

Applicant before: AECC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS

GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: No. 5 Yongxiang North Road, Haidian District, Beijing 100094

Patentee after: Beijing Aviation Materials Research Institute Co.,Ltd.

Address before: No. 5 Yongxiang North Road, Haidian District, Beijing 100094

Patentee before: Beijing Aeronautical Materials Research Institute Co.,Ltd.