CN110238397A - 一种氧化铝弥散强化铜合金件的制备方法 - Google Patents

一种氧化铝弥散强化铜合金件的制备方法 Download PDF

Info

Publication number
CN110238397A
CN110238397A CN201910583703.4A CN201910583703A CN110238397A CN 110238397 A CN110238397 A CN 110238397A CN 201910583703 A CN201910583703 A CN 201910583703A CN 110238397 A CN110238397 A CN 110238397A
Authority
CN
China
Prior art keywords
preparation
powder
copper alloy
alloy components
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910583703.4A
Other languages
English (en)
Inventor
汪礼敏
贺会军
胡强
周友智
祁凤彩
张敬国
潘旭
李占荣
付东兴
刘琪
李楠楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Youyan Powder New Materials Research Institute Co Ltd
Youyan Powder New Materials Co Ltd
Original Assignee
Beijing Youyan Powder New Materials Research Institute Co Ltd
Youyan Powder New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Youyan Powder New Materials Research Institute Co Ltd, Youyan Powder New Materials Co Ltd filed Critical Beijing Youyan Powder New Materials Research Institute Co Ltd
Priority to CN201910583703.4A priority Critical patent/CN110238397A/zh
Publication of CN110238397A publication Critical patent/CN110238397A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了属于增材制造技术领域的一种氧化铝弥散强化铜合金件的制备方法。本发明制备方法包括步骤:(1)利用选择性激光熔覆,将由铜粉、纳米氧化铝组成的混合粉末打印成型;(2)对步骤(1)所得成型件进行热处理。本发明将增材制造技术与弥散强化技术相结合,原料来源较易获取,工艺流程大幅度缩短;利用本发明制备方法得到的铜合金件弥散相分布均匀、致密度得到显著提高、并具有良好导电性和力学性能。

Description

一种氧化铝弥散强化铜合金件的制备方法
技术领域
本发明属于增材制造技术领域,特别涉及一种氧化铝弥散强化铜合金件的制备方法。
背景技术
金属材料的强化方式包括应变强化、固溶强化及沉淀硬化或时效硬化;与应变强化、固溶强化、沉淀强化或时效强化相比,弥散强化突破再结晶温度限制(0.35~0.40Tm),在接近熔点(0.8-0.9Tm)的温度下依然保持强化作用。弥散强化是在金属基体中引入稳定、均匀、细小的第二相质点,阻碍位错运动,从而强化材料的方法。这种第二相粒子是机械混入或者一次性析出的第二相粒子,将合金加热到较高温度下,它们不再发生溶解。金属材料中产生强化效果的第二相粒子,必须是比较均匀地分散于金属中的细小颗粒。具有比较好的强化效果的第二相粒子,直径一般在几到十几纳米之间,而过大的粒子虽然对于位错的运动产生强烈阻碍作用,却会降低金属抗断裂性能、降低塑性。
颗粒弥散增强铜基复合触头材料的传统成型过程繁琐复杂,如图1所示。目前,弥散强化铜材料致密化过程中,需要对其进行热挤压和热等静压,存在工艺流程长、过程控制难度大和成本高等问题,且材料致密化程度不高,严重影响材料性能。
发明内容
本发明的目的在于提供一种氧化铝弥散强化铜合金件的制备方法,具体技术方案如下:
一种氧化铝弥散强化铜合金件的制备方法包括步骤:
(1)利用选择性激光熔覆,将由铜粉、纳米氧化铝组成的混合粉末打印成型;
(2)对步骤(1)所得成型件进行热处理。
所述步骤(1)中混合粉末由铜粉、纳米氧化铝均匀混合而成。
所述步骤(1)混合粉末中纳米氧化铝的质量百分数为0.1%-5%。
所述步骤(1)铜粉为雾化球形铜粉,粒径为5-40μm,粉末的相对密度为30-40%。
所述步骤(1)纳米氧化铝颗粒尺寸为1-15nm。
所述步骤(1)中选择性激光熔覆具体参数为:光斑直径为0.05-0.2mm,激光功率为100-350W,扫描速度600-1400mm/s,扫描间距0.05-0.2mm,铺粉厚度为0.01-0.04mm;选择性激光熔覆对混合粉末的熔化温度达到1100-1300℃;所述熔化温度下,增强相纳米氧化铝的纳米结构不变。
所述步骤(2)中热处理气氛为氢气、氮气或氩气,热处理温度为500-700℃,热处理时间为2-5h。
利用所述制备方法制得的氧化铝弥散强化铜合金件的室温抗拉强度达到300MPa以上,室温电导率达到90%IACS以上。
本发明的有益效果为:
(1)与传统弥散强化铜制备加工工艺相比,本发明提供的制备方法将增材制造技术(俗称3D打印)与弥散强化技术相结合,原料来源较易获取,工艺流程大幅度缩短;利用本发明制备方法得到的铜合金件弥散相分布均匀、致密度得到显著提高、并具有良好导电性和力学性能;
(2)本发明提供的方法能够在保证铜合金高强度高导电的同时,按照个性化需求快速制备成型件,无需使用模具,具有流程短、绿色制造、可个性化定制、成本低的特点,应用前景广阔。
附图说明
附图1为颗粒弥散增强铜基复合触头材料的传统成型过程;
附图2为本发明氧化铝弥散强化铜合金件的制备工艺流程图。
具体实施方式
本发明提供了一种氧化铝弥散强化铜合金件的制备方法,下面结合附图和实施例对本发明做进一步的说明。
如附图2所示的氧化铝弥散强化铜合金件的制备工艺流程图,先利用计算机建立三维几何模型,调整参数、打印功率和扫描速率,得到模型文件;然后将三维模型文件导入SLM打印机中,在高纯氩气气氛下,将均匀混合的球形铜粉与纳米氧化铝颗粒放入SLM打印机中,根据扫描模型逐层打印,得到成型件;最后将所得成型件热处理,使成型件中成分更加均匀,即制得氧化铝弥散强化铜合金件。
实施例1
根据附图2,利用下述步骤制备0.1wt%Al2O3弥散强化Cu复合材料件:
(1)以球形铜粉与纳米氧化铝颗粒的混合粉末作为原材料,其中Al2O3在混合粉末中的质量分数为0.1wt%;
(2)通过选择性激光熔覆技术打印成型,调整打印机参数使温度控制在1150℃;
(3)将步骤(2)成型件在保护气氛中,600℃温度下,进行3.5h热处理,使步骤(2)所得成型件成分均匀。
利用上述步骤所得材料的室温拉伸强度为316MPa,室温电导率为92%IACS。
实施例2
根据附图2,利用下述步骤制备2wt%Al2O3弥散强化Cu复合材料件:
(1)以球形铜粉与纳米氧化铝颗粒的混合粉末作为原材料,其中Al2O3在混合粉末中的质量分数为2wt%;
(2)通过选择性激光熔覆技术打印成型,调整打印机参数使温度控制在1200℃;
(3)将步骤(2)成型件在保护气氛中,550℃温度下,进行2.5h热处理,使步骤(2)所得成型件成分均匀。
利用上述步骤所得材料的室温拉伸强度为345MPa,室温电导率为93%IACS。
实施例3
根据附图2,利用下述步骤制备3wt%Al2O3弥散强化Cu复合材料件:
(1)以球形铜粉与纳米氧化铝颗粒的混合粉末作为原材料,其中Al2O3在混合粉末中的质量分数为3wt%;
(2)通过选择性激光熔覆技术打印成型,调整打印机参数使温度控制在1250℃;
(3)将步骤(2)成型件在保护气氛中,500℃温度下,进行5h热处理,使步骤(2)所得成型件成分均匀。
利用上述步骤所得材料的室温拉伸强度为360MPa,室温电导率为95%IACS。

Claims (7)

1.一种氧化铝弥散强化铜合金件的制备方法,其特征在于,包括步骤:
(1)利用选择性激光熔覆,将由铜粉、纳米氧化铝组成的混合粉末打印成型;
(2)对步骤(1)所得成型件进行热处理。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)混合粉末中纳米氧化铝的质量百分数为0.1%-5%。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)铜粉为雾化球形铜粉,粒径为5-40μm,粉末的相对密度为30-40%。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)纳米氧化铝颗粒尺寸为1-15nm。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中选择性激光熔覆对混合粉末的熔化温度为1100-1300℃。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中热处理气氛为氢气、氮气或氩气,热处理温度为500-700℃,热处理时间为2-5h。
7.一种权利要求1-6任一项所述制备方法制得的氧化铝弥散强化铜合金件,其特征在于,所述氧化铝弥散强化铜合金件的室温抗拉强度达到300MPa以上,室温电导率达到90%IACS以上。
CN201910583703.4A 2019-07-01 2019-07-01 一种氧化铝弥散强化铜合金件的制备方法 Pending CN110238397A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910583703.4A CN110238397A (zh) 2019-07-01 2019-07-01 一种氧化铝弥散强化铜合金件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910583703.4A CN110238397A (zh) 2019-07-01 2019-07-01 一种氧化铝弥散强化铜合金件的制备方法

Publications (1)

Publication Number Publication Date
CN110238397A true CN110238397A (zh) 2019-09-17

Family

ID=67890430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910583703.4A Pending CN110238397A (zh) 2019-07-01 2019-07-01 一种氧化铝弥散强化铜合金件的制备方法

Country Status (1)

Country Link
CN (1) CN110238397A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926213A (zh) * 2020-07-23 2020-11-13 广东合一纳米材料科技有限公司 一种纳米铜合金
CN112719297A (zh) * 2021-03-31 2021-04-30 陕西斯瑞新材料股份有限公司 一种3d打印高致密弥散强化铜零件的方法
CN113441730A (zh) * 2021-06-30 2021-09-28 中国兵器科学研究院宁波分院 一种大型弥散强化铜构件的增材制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182170A (en) * 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
CN104529474A (zh) * 2014-12-01 2015-04-22 青岛麦特瑞欧新材料技术有限公司 一种用于3d打印的掺铜无机纳米复合材料及其制备方法
CN104746068A (zh) * 2015-04-09 2015-07-01 安徽工业大学 一种用于铁基合金表面激光熔覆的铜基涂层及其制备方法
CN105861862A (zh) * 2016-04-23 2016-08-17 东莞市精研粉体科技有限公司 一种含有纳米尺寸弥散强化相的球形铜粉的生产方法
CN108179295A (zh) * 2017-12-28 2018-06-19 华中科技大学 一种增强型随形冷却模具铜的快速制造方法
CN109290582A (zh) * 2018-10-23 2019-02-01 陕西斯瑞新材料股份有限公司 一种高性能弥散强化铜铬触头材料的制备方法
CN109396453A (zh) * 2018-12-21 2019-03-01 东莞市精研粉体科技有限公司 一种弥散强化铝青铜球形粉的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182170A (en) * 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
CN104529474A (zh) * 2014-12-01 2015-04-22 青岛麦特瑞欧新材料技术有限公司 一种用于3d打印的掺铜无机纳米复合材料及其制备方法
CN104746068A (zh) * 2015-04-09 2015-07-01 安徽工业大学 一种用于铁基合金表面激光熔覆的铜基涂层及其制备方法
CN105861862A (zh) * 2016-04-23 2016-08-17 东莞市精研粉体科技有限公司 一种含有纳米尺寸弥散强化相的球形铜粉的生产方法
CN108179295A (zh) * 2017-12-28 2018-06-19 华中科技大学 一种增强型随形冷却模具铜的快速制造方法
CN109290582A (zh) * 2018-10-23 2019-02-01 陕西斯瑞新材料股份有限公司 一种高性能弥散强化铜铬触头材料的制备方法
CN109396453A (zh) * 2018-12-21 2019-03-01 东莞市精研粉体科技有限公司 一种弥散强化铝青铜球形粉的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926213A (zh) * 2020-07-23 2020-11-13 广东合一纳米材料科技有限公司 一种纳米铜合金
CN112719297A (zh) * 2021-03-31 2021-04-30 陕西斯瑞新材料股份有限公司 一种3d打印高致密弥散强化铜零件的方法
CN112719297B (zh) * 2021-03-31 2021-06-29 陕西斯瑞新材料股份有限公司 一种3d打印高致密弥散强化铜零件的方法
CN113441730A (zh) * 2021-06-30 2021-09-28 中国兵器科学研究院宁波分院 一种大型弥散强化铜构件的增材制造方法
CN113441730B (zh) * 2021-06-30 2022-08-09 中国兵器科学研究院宁波分院 一种大型弥散强化铜构件的增材制造方法

Similar Documents

Publication Publication Date Title
CN110238397A (zh) 一种氧化铝弥散强化铜合金件的制备方法
CN112935252B (zh) 一种基于激光选区熔化技术制备高强韧共晶高熵合金的方法
EP1992709B1 (en) Metal powder for use in additive manufacturing method for the production of three-dimensional objects and method using such metal powder
AU2009101361A4 (en) Preparation method for silver metal oxide made electric contact material
AU2017257559B2 (en) Bcc materials of titanium, aluminum, vanadium, and iron, and products made therefrom
CN105734316B (zh) 一种利用氢化钛粉末直接制备成型钛基复合材料的方法
CN109628772B (zh) 一种超短周期高强度-高延展性镍铝青铜合金及制备方法
CN109434118A (zh) 一种非晶增强金属基复合材料的制备与成形方法
CN112981177A (zh) 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备
CN105087981B (zh) 一种抗熔焊、抗烧蚀Cu‑纳米Al2O3‑Cr触头材料的制备方法
KR20180123221A (ko) 알루미늄 및 몰리브덴을 갖는 알파-베타 티타늄 합금, 및 그로부터 제조된 제품
JP7028791B2 (ja) チタン、アルミニウム、ニオビウム、バナジウム、及びモリブデンのbcc材料、並びにそれから製造される生成物
CN109207766A (zh) 一种组织可控高铝含量Cu-Al2O3纳米弥散铜合金制备工艺
CN106216680A (zh) 一种粉末烧结制备的铝硅合金板的热加工及热处理工艺
CN106591610B (zh) 一种放电等离子烧结制备高强高导铜合金的方法
CN113798507A (zh) 一种难熔合金的低温3d打印成形方法
CN108004426A (zh) 一种双相原位纳米增强钛基复合材料及其制备方法
CN115029587A (zh) 一种增材制造氧化物弥散强化镍基高温合金及其制备方法
CN105803283A (zh) 一种Nb-Si-Ti-W-Cr合金棒材及其制备方法
CN106997811B (zh) 一种电子束熔渗制备铜钨触头的方法
CN109072348A (zh) 铝、钴、镍和钛的fcc材料以及由其制成的产品
CN112024869A (zh) 一种3d打印用smtgh5188球形粉末及其制备方法和应用
CN113927043B (zh) 一种制备Ti-55531高强高韧钛合金3D打印-锻造结合件的方法
CN102031464A (zh) 铜-钢纤维铜基复合材料及其制备方法
CN107774999A (zh) 一种铜基合金的增材制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190917