CN110227485A - 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法 - Google Patents

一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法 Download PDF

Info

Publication number
CN110227485A
CN110227485A CN201910417933.3A CN201910417933A CN110227485A CN 110227485 A CN110227485 A CN 110227485A CN 201910417933 A CN201910417933 A CN 201910417933A CN 110227485 A CN110227485 A CN 110227485A
Authority
CN
China
Prior art keywords
ruthenium
source
hydrogen production
water electrolysis
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910417933.3A
Other languages
English (en)
Inventor
林进猛
詹猛清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD GUONENG ZHONGLI ENTERPRISE CO Ltd
Original Assignee
GD GUONENG ZHONGLI ENTERPRISE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GD GUONENG ZHONGLI ENTERPRISE CO Ltd filed Critical GD GUONENG ZHONGLI ENTERPRISE CO Ltd
Priority to CN201910417933.3A priority Critical patent/CN110227485A/zh
Publication of CN110227485A publication Critical patent/CN110227485A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及电解水制氢的领域,公开了一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法。包括如下制备过程:(1)将镍源、铁源、钌源和助剂加入去离子水中配制为溶胶;(2)将聚苯胺包覆的泡沫镍粉末浸渍于溶胶中,静置陈化;(3)过滤烘干后高温锻烧,制得核壳结构的钌掺杂铁镍合金催化剂。本发明制得的催化剂与普通制氢催化剂相比,将铁镍钌合金包覆于泡沫镍表层,增加了催化剂的反应活性位点,有效降低了水的自发电解势垒,提高了催化剂的析氢能力,具有优异的氢催化性能,催化活性好,用于电解水制氢时效率高。

Description

一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法
技术领域
本发明涉及电解水制氢的领域,公开了一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法。
背景技术
氢能作为一种清洁的能源,以其高燃烧率、燃烧产物洁净以及用途多样化等突出优点,被认为是未来最有希望的能源之一;并且,燃料电池因其高能量转化效率和环境友好性能而受到极大关注。作为燃料电池的首选燃料,氢能在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将会占有越来越重要的位置。由于自然界的氢多以化合态存在,因此要实现氢的大规模应用,须首先解决氢源问题。在目前制氢技术中,利用电解水技术制氢是目前最有潜力的技术,也是一种经济有效的技术。
水电解制氢是一种较为方便的制取氢气的方法。在充满电解液的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。电解水制氢是一种高效、清洁的制氢技术,其制氢工艺简单,产品纯度高,氢气、氧气纯度一般可达99.9%,是最有潜力的大规模制氢技术。特别是随着目前可再生能源发电的日益增长,氢气将成为电能存储的理想载体。
在电解水制氢方法中,优良的催化剂是提高制氢效率有着举足轻重的作用,成功的设计出低温高效催化剂是制氢研究的关键技术之一。用作电解水制氢的催化剂主要由半导体材料、贵金属及其化合物等。近年来研究发现,NiFe双金属氢氧化物(NiFe-LDH)在碱性溶液中表现出优异的电催化分解水析氧(OER)性能,在制氢技术中,提高催化剂对于水的自发电离的性能,从而提高催化活性具有十分重要的实际意义。
中国发明专利申请号201610141649.4公开了一种具有多形貌的金属掺杂W18O49电催化剂及其在电解水制氢中的应用,具体是利用W18O49在特定晶向的择优生长特性并以溶剂热法制备W18O49催化剂,通过改变前驱体溶液的浓度,可获得纳米纤维、纳米纤维束和由纳米纤维构成的微球三种形貌,并且可通过掺入钯、钼等元素提高其电催化性能。该发明充分利用W18O49的一维纳米纤维结构促进电子传输,并且催化剂中大量的氧空位为H+还原生成H2提供了充足的活性位点;此外,固态W18O49纳米纤维能够与液相电解质完全接触,有利于H+在纳米纤维构成的三维网络中扩散,从而提高其催化性能。该发明所述多形貌电催化剂电催化活性高、稳定性好、制备方法简便易行、成本低廉。
中国发明专利申请号201611167015.2公开了一种电解水制氢的催化剂,催化剂是碳担载纳米铜铂合金。该发明的催化剂具有更多的活性位点,提高电化学催化效率;同时铜的加入减少了铂的载量,进一步降低了成本;由于金属间的协同作用,铂铜合金可以有效的降低电化学反应的过电位,降低了电解池电压,减少了能耗成本。
根据上述,现有方案中用于电解水制氢的金属氢氧化物催化剂,存在析氢性能非常差,分解水需要很大的电压输入,并且析氢动力学主要受限于水电离出氢离子过程较慢,进而影响电价水制氢的效率,本发明提出了一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法,可有效解决上述技术问题。
发明内容
针对现有技术的不足,本发明提供了一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法,有效解决了现有技术中电解水制氢的金属氢氧化物催化剂存在析氢性能非常差,电压输入要求高,水电离出氢离子过程较慢,制氢效率低等缺陷。
为解决上述问题,本发明采用以下技术方案:
一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,制备的具体过稈为:
S1、将镍源、铁源、钌源和助剂加入去离子水中,配制为溶胶;
S2、先将聚苯胺包覆的泡沫镍粉末浸渍于步骤S1制得的溶胶中,然后静置陈化至体系达到平衡;
S3、将步骤S2中得到的溶胶过滤、烘干,然后在还原气氛下进行高温煅烧,除去聚苯胺,制得核壳结构的钌掺杂铁镍合金催化剂。
优选的,步骤S1中所述镍源为氯化镍、硫酸镍、硝酸镍中的一种或者多种。
优选的,步骤S1中所述铁源为氯化铁、硫酸铁、硝酸铁、溴化铁中的一种或者多种。
优选的,步骤S1所述钌源为三氯化钌、硝酸钌中的一种或者两种。
优选的,步骤S1所述助剂微胶体稳定剂,如壳聚糖、明胶中的一种。
优选的,步骤S1所述溶胶中,镍源10~12重量份、铁源20~25重量份、钌源4~6重量份、助剂2~5重量份、去尚子水52~64重量份。
优选的,步骤S2所述包覆聚苯胺厚度为1~10um。
优选的,步骤S2所述静置陈化的时间为4~6h。
优选的,步骤S3所述高温煅烧的温度为500~700℃,时间为2~3h。
由上述方法制备得到的一种电解水制氢能源用钌掺杂铁镍合金催化剂,通过铁、镍、钌的无机盐配置为溶胶,自发附着于聚苯胺膜表面,通过高温烧结去除聚苯胺后,铁镍钌合金均匀包覆在泡沫镍表层。
测试本发明制备的钌掺杂铁镍合金催化剂的电解最低槽压、制氢电耗及产氢速率,并与NiFe双金属氢氧化物催化剂,本发明的方法具有明显优势,如表1所示。
表1
性能指标 本发明 NiFe双金属催化剂
电解最低槽压(V) 0.8~1.0 1.2~1.8
制氢电耗(Kw/m<sup>3</sup>) 1.8~2.0 2.4~2.8
产氢速率mL/mm*cm<sup>2</sup> 2.5~2.8 1.6~1.9
本发明提供了一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法,与现有技术相比,其突出的特点和优异的效果在于:
1、提出了将铁镍钌合金包覆于泡沫镍表层制备电解水制氢能源用钌掺杂铁镍合金催化剂的方法,相比传统的NiFe双金属催化剂制作方法,本方法电解最低槽压降低40%左右、制氢电耗降低25%左右,产氢速率提高45%左右。
2、通过引入金属钌,增加了催化剂的反应活性位点,有效降低了水的自发电解势垒,提高了催化剂的析氢能力,可提供更多的活性氢。
3、本发明制得的的催化剂具有优异的氢催化性能,催化活性好,用于电解水制氢时效率高。
具体实施方式
以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
实施例1
S1、将镍源、铁源、钌源和壳聚糖加入去离子水中,配制为溶胶;镍源为氯化镍、铁源为氯化铁、钌源为硝酸钌,溶胶中,镍源10重量份、铁源20重量份、钌源6重量份、助剂4重量份、去离子水60重量份;
S2、先将聚苯胺包覆的泡沫镍粉末浸渍于步骤S1制得的溶胶中,然后静置陈化至体系达到平衡,静置陈化的时间为5h;
S3、将步骤S2中得到的溶胶过滤、烘干,然后在还原气氛下进行高温煅烧,除去聚苯胺,制得核壳结构的钌掺杂铁镍合金催化剂,高温煅烧的温度为700℃,时间为2h。
实施例1制得的合金催化剂,其电解最低槽压、制氢电耗、产氢速率如表2所示。
实施例2
S1、将镍源、铁源、钌源和明胶加入去离子水中,配制为溶胶;镍源为硫酸镍,铁源为硫酸铁,钌源为三氯化钌,溶胶中,镍源12重量份、铁源25重量份、钌源6重量份、助剂2重量份、去离子水55重量份;
S2、先将聚苯胺包覆的泡沫镍粉末浸渍于步骤S1制得的溶胶中,然后静置陈化至体系达到平衡,静置陈化的时间为6h;
S3、将步骤S2中得到的溶胶过滤、烘干,然后在还原气氛下进行高温煅烧,除去聚苯胺,制得核壳结构的钌掺杂铁镍合金催化剂,高温煅烧的温度为500℃,时间为3h。
实施例2制得的合金催化剂,其电解最低槽压、制氢电耗、产氢速率如表2所示。
实施例3
S1、将镍源、铁源、钌源和壳聚糖加入去离子水中,配制为溶胶;镍源为硝酸镍,铁源为硝酸铁,钌源为硝酸钌,溶胶中,镍源10重量份、铁源22重量份、钌源6重量份、助剂2重量份、去离子水60重量份;
S2、先将聚苯胺包覆的泡沫镍粉末浸渍于步骤S1制得的溶胶中,然后静置陈化至体系达到平衡,静置陈化的时间为4h;
S3、将步骤S2中得到的溶胶过滤、烘干,然后在还原气氛下进行高温煅烧,除去聚苯胺,制得核壳结构的钌掺杂铁镍合金催化剂,高温煅烧的温度为650℃,时间为2h。
实施例3制得的合金催化剂,其电解最低槽压、制氢电耗、产氢速率如表2所示。
实施例4
S1、将镍源、铁源、钌源和明胶加入去离子水中,配制为溶胶;镍源为硝酸镍,铁源为溴化铁,钌源为三氯化钌,溶胶中,镍源12重量份、铁源25重量份、钌源6重量份、助剂5重量份、去离子水52重量份;
S2、先将聚苯胺包覆的泡沫镍粉末浸渍于步骤S1制得的溶胶中,然后静置陈化至体系达到平衡;静置陈化的时间为6h;
S3、将步骤S2中得到的溶胶过滤、烘干,然后在还原气氛下进行高温煅烧,除去聚苯胺,制得核壳结构的钌掺杂铁镍合金催化剂,高温煅烧的温度为550℃,时间为2h。
实施例4制得的合金催化剂,其电解最低槽压、制氢电耗、产氢速率如表2所示。
实施例5
S1、将镍源、铁源、钌源和壳聚糖加入去离子水中,配制为溶胶;镍源为氯化镍,铁源为硫酸铁,钌源为硝酸钌,溶胶中,镍源10重量份、铁源22重量份、钌源5重量份、助剂5重量份、去离子水58重量份;
S2、先将聚苯胺包覆的泡沫镍粉末浸渍于步骤S1制得的溶胶中,然后静置陈化至体系达到平衡;静置陈化的时间为5h;
S3、将步骤S2中得到的溶胶过滤、烘干,然后在还原气氛下进行高温煅烧,除去聚苯胺,制得核壳结构的钌掺杂铁镍合金催化剂,高温煅烧的温度为700℃,时间为2h。
实施例5制得的合金催化剂,其电解最低槽压、制氢电耗、产氢速率如表2所示。
实施例6
S1、将镍源、铁源、钌源和壳聚糖加入去离子水中,配制为溶胶;镍源为硝酸镍,铁源为氯化铁,钌源为三氯化钌,溶胶中,镍源10重量份、铁源25重量份、钌源5重量份、助剂3重量份、去离子水57重量份;
S2、先将聚苯胺包覆的泡沫镍粉末浸渍于步骤S1制得的溶胶中,然后静置陈化至体系达到平衡;静置陈化的时间为5h;
S3、将步骤S2中得到的溶胶过滤、烘干,然后在还原气氛下进行高温煅烧,除去聚苯胺,制得核壳结构的钌掺杂铁镍合金催化剂,高温煅烧的温度为600℃,时间为2h。
实施例6制得的合金催化剂,其电解最低槽压、制氢电耗、产氢速率如表2所示。
对比例1
对比例1没有添加钌源,制作步骤和其它参数与实施例1相同,制得的合金催化剂,其电解最低槽压、制氢电耗、产氢速率如表2所示。
上述性能指标的测试方法为:
采用HD-D300水电解水制氢装置进行试验,水的体积为10L,加lg入本发明制得催化剂,为了便于定性比较,水解装置其余条件均为常规条件,在同等条件下实验,水的试验温度为50℃,测定电解最低槽压,以及制氢电耗,根据制得的氢气的量,测定并计算产氢效率。
表2
从比表2中可以看出,实施例1-6(添加钌源)和对比例1(未添加钌源)相比,电解最低槽压显著降低,降低幅度高达40%-46%,制氢电耗降低了28%-26%,产氢速率提高了45%-52%,其原因是通过引入金属钌,增加了催化剂的反应活性位点,有效降低了水的自发电解势垒,提高了催化剂的析氢能力,可提供更多的活性氢。

Claims (10)

1.一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于,制备的具体过程为:
S1、将镍源、铁源、钌源和助剂加入去离子水中,配制为溶胶;
S2、先将聚苯胺包覆的泡沫镍粉末浸渍于步骤S1制得的溶胶中,然后静置陈化至体系达到平衡;
S3、将步骤S2中得到的溶胶过滤、烘干,然后在还原气氛下进行高温煅烧,除去聚苯胺,制得核壳结构的钌掺杂铁镍合金催化剂。
2.根据权利要求1所述一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于:步骤S1所述镍源为氯化镍、硫酸镍、硝酸镍中的一种或者多种。
3.根据权利要求1所述一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于:步骤S1所述铁源为氯化铁、硫酸铁、硝酸铁、溴化铁中的一种或者多种。
4.根据权利要求1所述一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于:步骤S1所述钌源为三氯化钌、硝酸钌中的一种或者两种。
5.根据权利要求1所述一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于:步骤S1所述助剂为胶体稳定剂。
6.根据权利要求1所述一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于:步骤S1所述溶胶中,镍源1~12重量份、铁源20~25重量份、钌源4~6重量份、助剂2~5重量份、去离子水52~64重量份。
7.根据权利要求1所述一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于:步骤S2所述包覆聚苯胺的厚度为1~10um。
8.根据权利要求1所述一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于:步骤S2所述静置陈化的时间为4~6h。
9.根据权利要求1所述一种电解水制氢能源用钌掺杂铁镍合金催化剂的制备方法,其特征在于:步骤S3所述高温煅烧的温度为500~700℃,时间为2~3h。
10.权利要求1~9任一项所述方法制备得到的一种电解水制氢能源用钌掺杂铁镍合金催化剂。
CN201910417933.3A 2019-05-20 2019-05-20 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法 Pending CN110227485A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910417933.3A CN110227485A (zh) 2019-05-20 2019-05-20 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910417933.3A CN110227485A (zh) 2019-05-20 2019-05-20 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN110227485A true CN110227485A (zh) 2019-09-13

Family

ID=67860766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910417933.3A Pending CN110227485A (zh) 2019-05-20 2019-05-20 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN110227485A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871426A (zh) * 2020-06-11 2020-11-03 安徽师范大学 一种Pd纳米颗粒负载镍铁双氢氧化物纳米片阵列结构材料、制备方法及其应用
CN116273005A (zh) * 2023-02-21 2023-06-23 哈尔滨工业大学 一种过渡金属基自支撑催化剂及其制备方法
WO2023219900A1 (en) * 2022-05-10 2023-11-16 Uop Llc Method of preparing metal oxide catalysts for oxygen evolution reaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108842160A (zh) * 2018-06-27 2018-11-20 成都新柯力化工科技有限公司 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108842160A (zh) * 2018-06-27 2018-11-20 成都新柯力化工科技有限公司 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871426A (zh) * 2020-06-11 2020-11-03 安徽师范大学 一种Pd纳米颗粒负载镍铁双氢氧化物纳米片阵列结构材料、制备方法及其应用
CN111871426B (zh) * 2020-06-11 2023-08-29 安徽师范大学 一种Pd纳米颗粒负载镍铁双氢氧化物纳米片阵列结构材料、制备方法及其应用
WO2023219900A1 (en) * 2022-05-10 2023-11-16 Uop Llc Method of preparing metal oxide catalysts for oxygen evolution reaction
CN116273005A (zh) * 2023-02-21 2023-06-23 哈尔滨工业大学 一种过渡金属基自支撑催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Wen et al. Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction
Li et al. Water splitting: from electrode to green energy system
CN107442125B (zh) 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用
Xu et al. Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances
CN108080034B (zh) 一种基于镍基三维金属有机框架物催化剂制备方法和应用
Zhan et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
CN110479329B (zh) 一种磷掺杂碲化钴纳米材料的制备及应用
CN109731586B (zh) 基于含铜金属有机框架衍生的分级多孔磷化铜/碳水解电催化剂的制备方法及其应用
CN110227485A (zh) 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法
Sun et al. 1D/3D rambutan-like Mott–Schottky porous carbon polyhedrons for efficient tri-iodide reduction and hydrogen evolution reaction
CN110813350B (zh) 一种碳基复合电催化剂及其制备方法与应用
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN112663087A (zh) 一种铁、氮掺杂硒化钴电催化剂的制备方法及其应用
Zhao et al. Doping engineering on carbons as electrocatalysts for oxygen reduction reaction
CN113289650A (zh) 一种双金属磷化物-炭电催化析氢材料及其制备方法
CN108842160A (zh) 一种电解水制氢能源用钌掺杂铁镍合金催化剂及制备方法
Wang et al. Homogeneous pseudoamorphous metal phosphide clusters for ultra stable hydrogen generation by water electrolysis at industrial current density
CN107570166B (zh) 一种复合碳和过渡元素氧化物纳米催化剂制备方法和应用
SUN et al. Galvanic replacement strategy for a core-shell like Ni-Pt electrocatalyst with high Pt utilization
Wu et al. Morphology-dependent catalysis on nanostructures Fe2O3@ MWCNT as Pt-free counter electrode for dye-sensitized solar cells
Ren et al. Electrospinning-derived functional carbon-based materials for energy conversion and storage
CN110038637B (zh) 一种三元纳米复合材料的制备方法和应用
CN110649275A (zh) 一种Co2P/NPC电催化剂的制备方法
Li et al. Directly converting metal organic framework into designable complex architectures with rich co-arranged active species for efficient solar-driven water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190913