CN110224733B - 一种用于在毫米波通信中接收传输数据的方法、装置和计算机可读存储介质 - Google Patents

一种用于在毫米波通信中接收传输数据的方法、装置和计算机可读存储介质 Download PDF

Info

Publication number
CN110224733B
CN110224733B CN201910384991.0A CN201910384991A CN110224733B CN 110224733 B CN110224733 B CN 110224733B CN 201910384991 A CN201910384991 A CN 201910384991A CN 110224733 B CN110224733 B CN 110224733B
Authority
CN
China
Prior art keywords
beamforming
parameter information
sub
communication
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910384991.0A
Other languages
English (en)
Other versions
CN110224733A (zh
Inventor
程谦
肖维民
刘嘉陵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN110224733A publication Critical patent/CN110224733A/zh
Application granted granted Critical
Publication of CN110224733B publication Critical patent/CN110224733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems

Abstract

本公开在第一示例性实施例中,在用户设备处接收毫米波mmWave通信的控制传输部分。该控制传输部分被分成多个控制传输部分子区域,每个子区域调度用于mmWave通信的数据传输部分的对应子区域的数据传输。然后解调和解码控制传输部分子区域的第一个。根据该解调和解码的控制传输部分子区域的第一个,布置接收模拟天线波束成形。在mmWave通信的数据传输部分的第一子区域上执行波束成形,该数据传输部分的第一子区域对应于控制传输部分子区域的第一个。在布置和执行期间,解调和解码控制传输部分子区域的第二个。

Description

一种用于在毫米波通信中接收传输数据的方法、装置和计算 机可读存储介质
优先权要求
本申请要求享有于2015年5月1日提交的、申请号为62/155,961的美国临时专利申请和 2016年4月27日提交的、申请号为15/140,088的美国专利申请的优先权,在此要求其优先权益,并且通过引用将其全部内容并入本文。
技术领域
本公开涉及用于无线通信的设备、网络和方法,并且在具体实施例中,涉及用于在毫米波通信中调度解码延迟下接收数据传输的设备和方法。
背景技术
移动网络中使用的无线数据的量在过去几年中急剧增加,推动了当前宏蜂窝部署的容量。利用微波频谱带(300MHz到3GHz)的蜂窝通信系统由于干扰和业务负载而变得容量受限。使用可用大量带宽的高频带(例如,28,38,60和73GHz)被认为是下一代通信系统的关键技术。使用这些高频带可以减轻目前观察到的容量问题。
发明内容
提供了用于提供使用各种延迟技术来接收毫米波(mmWave)通信的各种方法和系统,以确保来自mmWave通信的最佳可能的波束成形。
在第一示例性实施例中,提供了一种用于接收mmWave通信的方法。在用户设备处接收 mmWave通信的控制传输部分。控制传输部分被分成多个控制传输部分子区域,每个子区域调度用于mmWave通信的数据传输部分的对应子区域的数据传输。然后解调和解码控制传输部分子区域的第一个。根据解调和解码的控制传输部分子区域的第一个,布置接收模拟天线波束成形。在mmWave通信的数据传输部分的第一子区域上执行波束成形,数据传输部分的第一子区域对应于控制传输部分子区域的第一个。在布置和执行期间,解调和解码控制传输部分子区域的第二个。在mmWave通信的数据传输部分的第一子区域上的波束成形完成之后,根据解调和解码的控制传输部分子区域的第二个,布置接收模拟天线波束成形,并且在 mmWave通信的数据传输部分的第二子区域上执行波束成形,数据传输部分的第二子区域对应于控制传输部分子区域的第二个。
在第二示例性实施例中,提供了用于接收毫米波(mmWave)通信的另一种方法。在用户设备(UE)处接收mmWave通信的控制传输部分。调度限制被分配给mmWave通信的控制传输部分的较早部分。执行控制传输部分的较早部分的解调和解码。在解调和解码完成之前,接收mmWave通信的数据传输部分的较早部分,mmWave通信的数据传输部分的较早部分对应于mmWave通信的控制传输部分的较早部分。然后使用默认参数在mmWave通信的数据传输部分的较早部分上执行波束成形。执行控制传输部分的较晚部分的解调和解码。然后,使用在执行控制传输部分的较晚部分的解调和解码期间获得的参数来执行mmWave通信的数据传输部分的较晚部分的波束成形。
附图说明
为了更完整地理解本发明的主题及其益处,现在参考下面结合附图进行的描述,其中:
图1示出了具有共享阵列的一个混合波束成形架构的示例。
图2示出了具有子阵列的另一个混合波束成形架构的示例。
图3描述了从控制器到UE的发送/接收如何被称为下行链路(DL)发送/接收,并且从 UE到控制器的发送/接收如何被称为上行链路(UL)发送/接收。
图4是示出根据示例性实施例的示例资源块的图。
图5是示出根据示例性实施例的示例数据分组的图。
图6是示出根据示例性实施例的控制传输区域(例如,PDCCH)和数据传输区域(例如, PDSCH)的图。
图7是示出根据示例性实施例的划分的控制传输区域和划分的数据传输区域的图。
图8是示出根据示例性实施例的数据传输的开始部分的延迟的图。
图9是示出根据示例性实施例的用于处理mmWave通信中的输入数据传输的方法的流程图。
图10是更详细地示出根据示例性实施例将控制传输部分和数据传输部分划分成子区域的流程图。
图11是更详细地示出根据示例性实施例数据传输的较早部分应用调度限制的流程图。
图12是示出可以结合本文所描述的各种硬件架构使用的代表性软件架构的框图。
图13是示出根据一些示例性实施例能够从机器可读介质(例如,机器可读存储介质)读取指令并执行本文讨论的方法中的一种或多种的机器的组件的框图。
具体实施方式
在下面的描述中,参考形成其一部分的附图,并且其中附图通过说明的方式示出了可以实践的具体实施例。对这些实施例进行足够详细的描述,以使本领域技术人员能够实践本文公开的主题,并且应当理解,可以使用其他实施例,并且可以在不脱离本公开的范围的情况下进行结构、逻辑和电气的改变。因此,示例性实施例的以下描述不被认为是限制性的。
在一个实施例中,本文描述的功能或算法可以以软件或软件和人工实现的过程的组合来实现。软件可以由存储在计算机可读介质上的计算机可执行指令或诸如本地或联网的一个或多个非暂存存储器或其他类型的基于硬件的存储设备的计算机可读存储设备组成。此外,这些功能对应于可以是软件,硬件,固件或其任何组合的模块。可以根据需要在一个或多个模块中执行多个功能,并且所描述的实施例仅仅是示例。软件可以在在诸如个人计算机,服务器或其他计算机系统的计算机系统上操作的数字信号处理器,专用集成电路(application-specific integrated circuit,ASIC),微处理器或其他类型的处理器上执行。
在毫米波段(mmWave)中的传播比微波波段更具挑战性,导致在mmWave段处的链路预算比微波波段更严格。为发射机和接收机配备更多数量天线阵列是通过波束成形来补偿mmWave额外路径损耗的可行解决方案。
由于天线尺寸与载波频率成反比,所以使用这些高频带大大降低了天线尺寸。这打开了在网络侧和终端侧都采用更多数量的发射和接收天线阵列的大门。
混合天线架构很可能被用于权衡硬件复杂性,功耗以及系统的性能和覆盖。混合天线架构通常包括模拟(移相器)和数字(基带预编码器)波束成形部件。
基站可以包括一个或多个射频(RF)链,并且每个RF链连接到模拟移相器和天线阵列。 UE接收机可以包括连接到接收机模拟移相器和天线阵列的一个或多个RF链。
存在不同类型的模拟波束成形架构:共享阵列和子阵列。图1示出了具有共享阵列的一个混合波束成形架构100的示例。架构100包括基带波束成形发射机102和基带波束成形接收机104。在一个示例性实施例中,基带波束成形发射机102可以被实现为基带波束成形传输装置。在另一示例性实施例中,基带波束成形接收机104可以被实现为基带波束成形接收装置。基带波束成形发射机102包括多个预编码器106A-106B。预编码器106A-106B用于通过加权信息流来利用发送分集。在示例性实施例中,每个预编码器106A-106B可以被实现为预编码装置。数模转换器(Digital-to-Analog converters,DACs)108A,108B然后用于将预编码的数字信号转换为模拟信号以发送到发射机共享阵列110。在示例性实施例中,每个DAC 108A,108B可以被实现为数字模拟转换装置。在另一示例性实施例中,发射机共享阵列110 可以被实现为发射机共享阵列装置。然后,接收机共享阵列112接收发送的信号,并且一个或多个模数转换器(analog-to-digital converters,ADCs)114A,114B将接收的信号转换为数字的。在示例性实施例中,接收机共享阵列112可以被实现为接收机共享阵列装置。在另一个示例性实施例中,ADC 114A,114B中的每一个可以被实现为模数转换装置。最后,一个或多个均衡器116A,116B用于均衡数字信号。在示例性实施例中,均衡器116A,116B中的每一个可以被实现为均衡装置。
图2示出了具有子阵列的另一个混合波束成形架构200的示例。通过减少移相器的数量并在发射侧省略对RF组合器的需要,该架构200提供了图1的混合波束成形架构100的较低复杂度的版本。然而,架构200的其余部分与图1的共享混合波束成形架构100相同。架构200包括基带波束成形发射机202和基带波束成形接收机204。在一个示例性实施例中,基带波束成形发射机202可以被实现为基带波束成形传输装置。在另一个示例性实施例中,基带波束成形接收机204可以被实现为基带波束成形接收装置。基带波束成形发射机202包括多个预编码器206A-206B。预编码器206A-206B用于通过加权信息流来利用发送分集。在示例性实施例中,每个预编码器206A-206B可以被实现为预编码装置。然后数模转换器(DACs)208A,208B用于将预编码的数字信号转换为模拟信号以发送到发射机子阵列210。在一个示例性实施例中,DAC 208A,208B中的每一个可以被实现为数模转换装置。在另一示例性实施例中,发射机子阵列210可以被实现为发射机共享阵列装置。然后,接收器子阵列212接收所发送的信号,并且一个或多个模数转换器(ADCs)214A,214B将接收到的信号转换为数字的。在示例性实施例中,接收机子阵列212可以被实现为接收机子阵列装置。在另一示例性实施例中,ADC 214A,214B中的每一个可以被实现为模数转换装置。最后,一个或多个均衡器216A,216B均衡数字信号。在示例性实施例中,均衡器216A,216B中的每一个可以被实现为均衡装置。
图3描述了从控制器300到UE 302的发送/接收如何被称为下行链路(DL)发送/接收,并且从UE 304到控制器300的发送/接收如何被称为上行链路(UL)发送/接收。
在诸如第三代合作伙伴计划(Third Generation Partnership Project,3GPP)长期演进(Long Term Evolution,LTE)兼容通信系统的现代无线通信系统中,多个小区或演进的NodeB (evolved NodeBs,eNB)(也通常称为NodeB,基站(base stations,BSs)、基端站、通信控制器、网络控制器、控制器、接入点(access points,APs)等)可以被布置成小区的集群,每个小区具有多个发射天线。此外,每个小区或eNB可以在一段时间内基于诸如公平性、比例公平性、循环等的优先级度量之类的来服务于多个用户(也通常称为用户设备(User Equipment, UE)、移动台、用户、订户、终端等)。应当注意,术语小区、传输点和eNB可以互换地使用。将在需要时进行小区、传输点和eNB之间的区分。
在正交频分复用(Orthogonal frequency-division multiplexing,OFDM)系统中,频率带宽被划分成频域中的多个子载波。在时域中,一个子帧被划分成多个OFDM符号。OFDM符号可以具有循环前缀,以避免由于多个路径延迟导致的符号间干扰。一个资源单元(resource element,RE)由一个子载波内和一个OFDM符号的时间-频率资源来定义。参考信号和其他信号,例如数据信道,如,物理下行链路共享信道(physical downlink sharedchannel,PDSCH) 和控制信道,如,物理下行链路控制信道(physical downlink controlchannel,PDCCH)在时域中的不同资源单元中被正交和复用。此外,信号被调制并映射到资源单元中。对每一个OFDM 符号使用逆傅立叶变换,频域中的信号被变换成时域中的信号,并且用附加的循环前缀发送以避免符号间干扰。
每个资源块(resource block,RB)包含多个RE。图4是示出根据示例性实施例的示例资源块400的图。资源块400包括许多不同的资源单元,例如资源单元402。对于每个资源块 400,在每个子帧中存在从0到13标记的14个OFDM符号。每个子帧中的符号0至6对应于偶数时隙,并且每个子帧中的符号7至13对应于奇数时隙。在图中,仅显示了七个OFDM 符号(404)。在每个资源块400中还有12个子载波(406),因此在该示例中,RB中有132 个RE。在每个子帧中,存在多个RB,并且该数量可以取决于带宽(bandwidth,BW)。
图5是示出根据示例性实施例的示例数据分组500A,500B的图。将数据包500A在物理层中从eNB发送到UE的数据信道被称为物理下行链路共享信道(physical downlinkshared channel,PDSCH)502和511,并且将数据包500B在物理层中从UE发送到eNB的数据信道称为物理上行链路共享信道(physical uplink shared channel,PUSCH)504和505。从eNB向 UE发送的对应的物理控制信道指示对应的PDSCH 502和511和/或PUSCH 504和505在频域中的哪个位置,并且PDSCH 502和511和/或PUSCH 504和505以哪种方式被发送,这被称为物理下行链路控制信道(physical downlink control channel,PDCCH)502,503和505。在图5中,PDCCH 501可以指示PDSCH 502或PUSCH 504的信令。
UE测量信道状态,特别是对于多个天线情况。PMI/CQI/RI和其他反馈可以基于参考信号的测量。PMI是预编码矩阵指标,CQI是信道质量指标,RI是预编码矩阵的秩指标。可以为UE配置多个参考信号资源。由eNB针为每个参考信号资源分配的特定的时间频率资源和扰码。
通常,eNB可以彼此靠近地布置,使得由第一eNB做出的决定可能对第二eNB产生影响。例如,当服务它们时,eNB可以使用它们的发射天线阵列来形成向着它们的UE波束。这可能意味着如果第一eNB决定在特定的时间-频率资源中服务第一UE,则它可以形成指向该UE的波束。然而,指向的波束可以延伸到第二eNB的覆盖区域,并且对由第二eNB服务的UE造成干扰。小型小区无线通信系统的小区间干扰(inter-cell interference,ICI)通常被称为干扰受限小区场景,其可以与在大型小区无线通信系统中看到的噪声限制小区场景不同。
在示例性实施例中,eNodeB可以控制一个或多个小区。多个远程无线单元可以通过光缆连接到eNodeB的相同基带单元,并且基带单元和远程无线单元之间的时延相当小。因此,相同的基带单元可以处理多个小区的协调发送/接收。例如,eNodeB可以将多个小区的传输协调到UE,称为协调多点(coordinated multiple point,CoMP)传输。eNodeB还可以协调来自UE的多个小区的接收,这被称为CoMP接收。在这种情况下,具有相同eNodeB的这些小区之间的回程链路是快速回程,并且用于UE的不同小区中发送的PDSCH的调度可以容易地在相同的eNodeB中协调。
在诸如LTE的典型系统设计中,首先发送用于接收数据传输的包含控制信息的PDCCH 信道,紧接着是相应的数据传输。在接收到PDCCH信号时,UE开始对控制信号的基带处理,即控制消息的解调和解码。由于基带处理需要一些时间来完成,所以在控制信号处理完成之前,UE必须接收数据传输信号。这对于典型的低频带系统来说不是问题,因为UE缓存所接收的信号。
由于高频带的大的路径损耗特性,控制消息解码延迟对mmWave系统设计造成了严重的问题。为了适当地接收数据信号,UE需要应用正确的模拟接收波束成形,其匹配于在eNodeB 发射机处采用的模拟发射波束成形。一旦控制消息被解码,则关于调度的数据传输的信息是可用的,例如秩,PMI等,然后UE可以找出对应于数据传输的模拟发射波束,并应用匹配的模拟接收波束成形来接收信号。然而,由于控制消息解码延迟,在mmWave通信中,UE不能在数据信号接收开始之前应用与发射波束成形匹配的模拟接收波束成形。即使UE缓冲器具有接收到的信号,由于模拟发射和接收波束成形失配,信号将无效,直到控制消息的解码结果变得可用。只有这样,UE才可以根据控制消息的解码结果应用匹配的模拟接收波束成形。
图6是描绘根据示例性实施例的控制传输区域(例如,PDCCH)和数据传输区域(例如, PDSCH)的图。可以看出,首先接收控制传输区域600,随后接收数据传输区域602。在时间604,可以准备好PDSCH接收波束成形,但是PDCCH解调和解码结果直到时间606才准备就绪。
在示例性实施例中,提供了将控制传输区域600(例如,PDCCH)和数据传输区域602(例如,PDSCH)划分成子区域的设备和方法。每个控制子区域调度对应的数据传输子区域的数据传输。由于在控制消息和调度数据的传输之间引入了间隙,因此UE可以完成对控制消息的解码,并在对应的数据发送接收开始之前应用匹配的模拟接收波束成形。换句话说,由于在对应的子区域的调度和发送之间引入的延迟间隙,UE可以根据对应的控制子区域解码结果来支持其接收模拟波束成形,以接收数据子区域传输。
图7是示出根据示例性实施例的划分的控制传输区域和划分的数据传输区域的图。这里,控制发送区域700已被划分为子区域702A和子区域702B,而数据传输区域704已被划分成子区域706A和子区域706B。这样,在数据传输区域子区域706A在时间710接收波束成形就绪之前,该系统能够在时间708对子区域702A进行解调和解码。同样地,在数据传输区域子区域706B在时间714接收波束成形就绪之前,该系统能够在时间712对子区域702B进行解调和解码。
在替代的示例性实施例中,提供一种从数据传输时间线开始起对数据传输施加调度限制的设备和方法。在这种情况下,被调度的数据传输的UE应用用于数据信号接收的默认模拟接收波束成形,例如对应于UE的最新报告表征的模拟发射波束成形,包括秩,PMI,模拟发射波束成形等。相应地,网络也应用用于这些特定调度UE的数据传输中的默认模拟发射波束成形,秩和PMI。
虽然在数据传输开始时施加了延迟,但是在示例性实施例中,对从数据传输时间线的稍后部分开始的数据传输部分(例如,PDSCH)不施加任何限制。图8是示出根据示例性实施例的数据传输的开始部分的延迟的图。这里,首先执行控制传输区域802的第一部分800的解调和解码,其在时间804完成,而其次执行控制传输区域802的第二部分806的解调和解码,其在时间808完成。数据传输在时间810开始;然而,调度限制被应用于传输时间间隔 (TTI1)812,从而导致TTI1的波束成形利用默认参数(下面更详细地描述)。对于TTI2814,由于控制传输区域802的第二部分806在时间808被解调和解码,所以在时间816处的TTI2的波束成形可以使用从解调和解码的第二部分806收集的实际参数来执行。不存在对数据传输区域818的其余部分的调度限制。
在示例性实施例中,使用了上面关于图7和图8描述的特征的组合。图9是示出根据示例性实施例的用于处理mmWave通信中的输入数据传输的方法900的流程图。mmWave通信可以包括控制传输部分和数据传输部分。在操作902,确定是否应该对数据传输的较早部分应用调度限制。如果不是,则在操作904,使用上面参照图7描述的过程;具体地说,控制传输部分和数据传输部分被划分成子区域,并且在对数据传输部分的相应子区域的进行波束成形之前执行控制传输部分的子区域的解码和解调。如果在操作902确定了对数据传输的较早部分应当应用调度限制,则在操作906,对数据传输的较早部分应用调度限制。
图10是示出根据示例性实施例更详细地将控制传输部分和数据传输部分划分成子区域 (图9的操作904)的流程图。在操作1000,接收mmWave通信的控制传输部分。在操作1002,控制传输部分被分成多个控制传输部分子区域,每个子区域调度用于数据传输部分的对应子区域的数据传输。然后,对于每个控制传输部分子区域开始循环。在操作1004,UE解调并解码控制传输部分子区域。在操作1006,UE根据解调和解码的控制传输部分子区域布置接收模拟天线波束成形。在操作1008,UE在数据传输部分的相应子区域上执行接收波束成形。在操作1010,确定是否有更多的控制传输部分子区域。如果是,则处理循环到下一个控制传输部分子区域的操作1004。如果没有,则该过程结束。
应当注意,可以并行执行循环的每个执行的方面,因此操作1004-1010不是必须严格按照所描绘的顺序执行。例如,当UE正在执行用于一个控制传输部分子区域的操作1006和1008 时,它可以同时正在执行(或可能已经执行)用于后续控制传输部分子区域的操作1004。
图11是更详细地示出根据示例性实施例将调度限制应用于数据传输部分的较早部分(图 9的操作906)的流程图。在操作1100,接收mmWave通信的控制传输部分。在操作1102,可以将调度限制分配给控制传输部分的较早部分。这些调度限制可以指示要对数据传输部分的对应的较早部分执行的波束成形的延迟时间。在操作1104,开始对控制传输部分的较早部分和较晚部分的解调和解码。在操作1106,接收mmWave通信的数据传输部分。在操作1108,数据传输部分的较早部分的波束成形是使用默认参数执行的,因为该数据传输部分的较早部分受到控制传输部分的对应较早部分的调度限制。这些参数可以例如对应于用于波束成形的 UE最后报告的参数。在操作1110,完成mmWave通信的控制传输部分的较晚部分的解调和解码。在操作1112,使用从解调和解码mmWave通信的控制传输部分的较晚部分得到的参数来执行数据传输部分的较晚部分的波束成形。
关于数据传输部分的哪些部分被归类为“较早部分”(并因此应用延迟)的决定可以基于 UE在解调和解码中的实际性能。例如,可以跟踪UE的性能度量以确定解调和解码控制传输部分的一部分所花费的平均时间量。然后可以基于该平均时间量(可能具有某些填充)来设置较早部分(延迟)与较晚部分(未延迟)之间的划界,以确保数据传输部分的较晚部分使用来自解调和解码的对应控制传输部分的信息参数来波束成形,同时使被归类为较早部分的数据传输部分(并且因此在波束成形期间受到默认参数的限制)的数量最小化。返回参考图 8,可以看出,调度为在时间808之后被波束成形的任何TTI可能没有应用于它的调度限制。如上所述,可以基于平均解调和解码时间来先验确定时间808。或者,可以在运行时动态地确定时间808,使得当确定控制传输部分的特定部分已被解调和解码时,数据传输部分的相应部分被波束成形而没有调度限制,并且数据传输部分的任何后续部分也被波束成形而没有调度限制。
以下附图是可用于实现本文公开的装置和方法的处理系统的图。特定设备可以利用所示的所有组件,或者仅使用组件的子集,并且集成度可以随设备而变化。
某些实施例在本文中被描述为包括逻辑或多个组件,模块或机构。模块可以构成软件模块(例如,在机器可读介质上实现的代码)或硬件模块。“硬件模块”是能够执行某些操作并且可以以某种物理方式配置或布置的有形单元。在各种示例性实施例中,一个或多个计算机系统(例如,独立计算机系统,客户计算机系统或服务器计算机系统)或计算机系统的一个或多个硬件模块(例如,处理器或一组处理器)可以由软件(例如,应用程序或应用程序部分)配置为操作以执行如本文所述的某些操作的硬件模块。
在一些实施例中,硬件模块可以机械地,电子地或以其任何适当的组合来实现。例如,硬件模块可以包括被永久配置为执行某些操作的专用电路或逻辑。例如,硬件模块可以是专用处理器,例如现场可编程门阵列(field-programmable gate array,FPGA)或专用集成电路 (application specific integrated circuit,ASIC)。硬件模块还可以包括由软件临时配置以执行某些操作的可编程逻辑或电路。例如,硬件模块可以包括由通用处理器或其他可编程处理器执行的软件。一旦由这样的软件配置,硬件模块就成为专门定制成执行配置的功能而不再是通用处理器的特定的机器(或机器的特定组件)。将理解的是,在专用和永久配置的电路中或在临时配置的电路(例如,由软件配置)中机械地实现硬件模块的决定可以由成本和时间考虑来驱动。
因此,短语“硬件模块”应理解为包括有形实体,即物理构造,永久配置(例如,硬连线)或临时配置(例如,编程)成以某种方式操作方式或执行本文所述的某些操作的实体。如本文所使用的,“硬件实现的模块”是指硬件模块。考虑到其中硬件模块被临时配置(例如,编程)的实施例,每个硬件模块不需要在时间上任何一个时间点被配置或实例化。例如,在硬件模块包括由软件配置成为专用处理器的通用处理器的情况下,通用处理器可以被配置为在不同时间分别不同的专用处理器(例如,包括不同的硬件模块)。因此,软件相应地配置特定的处理器,例如,在一个时间点构成特定的硬件模块,和在不同的时间点构成不同的硬件模块。
硬件模块可以向其他硬件模块提供信息和从其他硬件模块接收信息。因此,所描述的硬件模块可以被认为是通信耦合的。在同时存在多个硬件模块的情况下,可以通过在两个或更多个硬件模块之间的信号传输(例如,通过适当的电路和总线)实现通信。在多个硬件模块在不同时间被配置或实例化的实施例中,可以例如通过存储和检索多个硬件模块能够访问的存储器结构中的信息来实现这种硬件模块之间的通信。例如,一个硬件模块可以执行一个操作并将该操作的输出存储在与其通信耦合的存储器设备中。然后,另外的硬件模块可以在较晚的时间访问存储器设备以检索和处理存储的输出。硬件模块还可以发起与输入或输出设备的通信,并且可以对资源(例如,信息的集合)进行操作。
本文描述的示例性方法的各种操作可以至少部分地由暂时地配置(例如通过软件)或永久地配置为执行相关操作的一个或多个处理器来执行。无论是临时地还是永久地配置,这些处理器可以构成操作以执行本文所述的一个或多个操作或功能的处理器实现的模块。如本文所使用的,“处理器实现的模块”是指使用一个或多个处理器实现的硬件模块。
类似地,本文描述的方法可以至少部分地由处理器实现,一个特定的处理器或多个处理器是硬件的示例。例如,方法的至少一些操作可以由一个或多个处理器或处理器实现的模块来执行。此外,一个或多个处理器还可以操作以支持在“云计算”环境中或作为“软件即服务”(software as a service,SaaS)的相关操作的性能。例如,至少一些操作可以由一组计算机 (作为包括处理器的机器的示例)来执行,这些操作可以经由网络(例如,因特网)以及经由一个或多个适当的接口(例如,应用程序接口(application programinterface,API))访问。
某些操作的性能可以分布在处理器中,不仅驻留在单个机器内,而且部署在多个机器上。在一些示例性实施例中,处理器或处理器实现的模块可以位于单个地理位置(例如,在家庭环境,办公环境或服务器场内)。在其他示例性实施例中,处理器或处理器实现的模块可以分布在多个地理位置上。
机器和软件架构
在一些实施例中,结合图1-11描述的模块,方法,应用等在机器和相关联的软件架构的情况下实现。以下部分描述了适用于所公开的实施例的代表性软件架构和机器(例如,硬件) 架构。
软件架构与硬件架构结合使用,以创建针对特定目的而定制的设备和机器。例如,与特定软件架构相结合的特定硬件架构将创建移动设备,诸如移动电话,平板设备等等。稍微不同的硬件和软件架构可以产生在“物联网”中使用的智能设备,而另一组合产生在云计算架构内使用的服务器计算机。并不是这样的软件和硬件架构的所有组合都在这里给出,因为本领域技术人员可以容易地理解如何在与本文所包含的公开内容不同的情况下实现本发明的主题。
软件架构
图12是示出可以结合本文所描述的各种硬件架构使用的代表性软件架构1202的框图 1200。图12仅仅是软件架构1202的非限制性示例,并且应当理解,可以实现许多其他架构以便于本文所描述的功能。软件架构1202可以在诸如图13的机器1300的硬件上执行,除其他外,其包括处理器1310,存储器/存储器1330和I/O组件1350。代表性硬件层1204被示出并且可以代表例如,图13的机器1300。代表性硬件层1204包括具有相关联的可执行指令1208的一个或多个处理单元1206。可执行指令1208表示软件架构1202的可执行指令,包括图1-9的方法,模块等的实现。硬件层1204还包括也具有可执行指令1208的存储器和/或存储模块1210。硬件层1204还可以包括表示硬件层1204的任何其他硬件的其他硬件1212,例如作为机器1300的一部分示出的其他硬件。
在图12的示例性架构中,软件架构1202可以被概念化为层的堆栈,其中每层提供特定的功能。例如,软件架构1202可以包括诸如操作系统1214,库1216,框架/中间件1218,应用程序1220和表示层1244等的层。操作上,层内的应用程序1220和/或其他组件可以通过软件堆栈调用应用程序编程接口(API)调用1224,并且接收响应、返回值等响应于API调用1224的消息1226。所示的层本质上是代表性的,并且并非所有软件架构1202都具有所有层。例如,一些移动或专用操作系统可能不提供框架/中间件1218,而其他的可以提供这样的层。其他软件架构可以包括附加或不同的层。
操作系统1214可以管理硬件资源并提供公共服务。操作系统1214可以包括,例如内核 1228,服务1230和驱动程序1232。内核1228可以充当硬件和其他软件层之间的抽象层。例如,内核1228可以负责内存管理,处理器管理(例如调度),组件管理,网络,安全设置等。服务1230可以为其他软件层提供其他公共服务。驱动程序1232可以负责控制或与底层硬件接口。例如,驱动程序1232可以包括显示驱动程序,相机驱动程序,蓝牙驱动程序,闪存驱动程序,串行通信驱动程序(例如,通用串行总线(Universal Serial Bus,USB)驱动程序), Wi-Fi驱动程序,音频驱动程序,电源管理驱动程序,等等,这取决于硬件配置。
库1216可以提供可由应用程序1220和/或其他组件和/或层使用的公共基础设施。库1216 通常提供允许其他软件模块以比直接与底层操作系统1214功能(例如,内核1228,服务1230 和/或驱动程序1232)接口的方式更简单的方式执行任务的功能。库1216可以包括可以提供诸如存储器分配功能,字符串操作功能,数学函数等功能的系统库1234(例如,C标准库)。此外,库1216可以包括API库1236,例如媒体库(例如,支持诸如MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等各种媒体格式的呈现和操纵的库),图形库(例如,可用于在显示器上的图形内容中呈现2D和3D的OpenGL框架),数据库库(例如,可提供各种关系数据库功能的SQLite),web库(例如,可提供web浏览功能的WebKit)等。库1216还可以包括各种各样的其他库1238,以向应用程序1220和其他软件组件/模块提供许多其他API。
框架/中间件1218(有时也称为中间件)可以提供可由应用程序1220和/或其他软件组件 /模块使用的更高级别的公共基础设施。例如,框架/中间件1218可以提供各种图形用户界面 (graphic user interface,GUI)功能,高级资源管理,高级位置服务等等。框架/中间件1218 可以提供可由应用程序1220和/或其他软件组件/模块使用的其他API的广泛范围,其中一些可能是特定操作系统1214或平台专用的。
应用1220包括内置应用程序1240和/或第三方应用程序1242。代表性的内置应用程序 1240的示例可以包括但不限于联系人应用程序,浏览器应用程序,书籍阅读器应用程序,位置应用程序,媒体应用程序,消息应用程序和/或游戏应用程序。第三方应用程序1242可以包括任何内置应用程序1240以及各种各样的其他应用程序。在具体示例中,第三方应用程序 1242(例如,由特定平台的供应商之外的实体使用AndroidTM或iOSTM软件开发工具包 (software development kit,SDK)开发的应用程序)可以是在诸如iOSTM,AndroidTM
Figure BDA0002054551790000091
Phone的移动操作系统或其他移动操作系统上运行的移动软件。在该示例中,第三方应用程序1242可以调用由诸如操作系统1214的移动操作系统提供的API调用1224以便于本文所描述的功能。
应用1220可以利用内置的操作系统功能(例如,内核1228,服务1230和/或驱动程序 1232),库(例如,系统库1234,API库1236和其他库1238)和框架/中间件1218以创建与系统的用户交互的用户界面。或者或另外,在一些系统中,与用户的交互可以通过表示层(诸如表示层1244)发生。在这些系统中,应用程序/模块“逻辑”可以从与用户相互作用的应用程序/模块的多个方面分开。
一些软件架构利用虚拟机。在图12的示例中,这由虚拟机1248示出。虚拟机创建软件环境,其中应用程序/模块可以像在硬件机器(例如,图13的机器1300)上执行一样执行。虚拟机1248由主机操作系统(图12中的操作系统1214)托管,并且通常(虽然并不总是) 具有管理虚拟机1248的操作以及与主机操作系统(即操作系统1214)接口的虚拟机监视器1246。软件架构1202在诸如操作系统1250,库1252,框架/中间件1254,应用程序1256和/ 或表示层1258之类的虚拟机1248内执行。在虚拟机1248内执行的这些软件架构层可以与之前描述的相应层相同或可以不同。
示例机器架构和机器可读介质
图13是示出根据一些示例性实施例能够从机器可读介质(例如,机器可读存储介质)读取指令1316并且执行以下任何一个或多个本文讨论的方法的机器1300的组件的框图。具体来说,图13示出了计算机系统的示例形式的机器1300的图示表示,其中指令1316(例如,软件,程序,应用程序,小应用程序,应用程序或其他可执行代码)用于机器1300执行本文所讨论的可以执行的任何一种或多种方法。例如,指令1316可以使机器1300执行图9和10 的流程图。另外或替代地,指令1316可以实现图1-11的模块等等。指令1316将通用的非编程机器1300转换成被编程为以所描述的方式执行所描述和示出的功能的特定机器。在替代实施例中,机器1300作为独立设备操作,或者可以耦合(例如,联网)到其他机器。在联网部署中,机器1300可以在服务器-客户端网络环境中的服务器机器或客户端机器的容量中操作,或者作为对等(或分布式)网络环境中的对等机器操作。机器1300可以包括但不限于顺序地或以其他方式指定机器1300要采取的动作的服务器计算机,客户端计算机,个人计算机 (personal computer,PC),平板计算机,笔记本,上网本,机顶盒(set-top box,STB),个人数字助理(personal digital assistant,PDA),娱乐媒体系统,蜂窝电话,智能电话,移动设备,可穿戴设备(例如,智能手表),智能家居设备(例如智能家电),其他智能设备,网络设备,网络路由器,网络交换机,网络桥接器或能够执行指令1316的任何机器。此外,尽管仅示出了单个机器1300,术语“机器”还应被视为包括单独或联合执行指令1316以执行本文所讨论的任何一种或多种方法的机器1300的集合。
机器1300可以包括处理器1310,存储器/存储器1330和I/O组件1350,其可以被配置为例如经由总线1302彼此通信。在示例性实施例中,处理器1310(例如,中央处理单元(central processing unit,CPU),精简指令集计算(reduced instruction setcomputing,RISC)处理器,复合指令集计算(complex instruction set computing,CISC)处理器,图形处理单元(graphics processing unit,GPU),数字信号处理器(digitalsignal processor,DSP),应用专用集成电路 (application specific integratedcircuit,ASIC),射频集成电路(radio-frequency integrated circuit, RFIC),另一处理器或其任何合适的组合)可以包括例如可执行指令1316的处理器1312和处理器1314。术语“处理器”旨在包括多核处理器1312,1314,其可以包括可以同时执行指令1316的两个或多个独立处理器1312,1314(有时称为“核”)。尽管图13示出了多个处理器 1310,机器1300可以包括具有单个核的单个处理器1312,1314,具有多个核的单个处理器 1312,1314(例如,多核处理器1312,1314),具有单个核的多个处理器1312,1314,具有多个核的多个处理器1312,1314或其任何组合。
存储器/存储1330可以包括存储器1332,诸如主存储器或其它存储器存储,以及存储单元1336,这两种存储器都可以例如经由总线1302访问处理器1310。存储单元1336和存储器1332存储实现本文所述的任何一种或多种方法或功能的指令1316。在由机器1300执行期间,指令1316还可以完全或部分地驻留在处理器1310中的至少一个(例如,处理器1312,1314 的高速缓冲存储器内)或其任何适当的组合内。因此,存储器1332,存储单元1336和处理器1310的存储器是机器可读介质的示例。
如本文所使用的,“机器可读介质”是指能够临时或永久地存储指令1316和数据的设备,并且可以包括但不限于随机存取存储器(random-access memory,RAM),只读存储器(read-only memory ROM),缓冲存储器,闪速存储器,光学介质,磁性介质,高速缓冲存储器,其他类型的存储器(例如,可擦除可编程只读存储器(erasable programmable read-only memory, EEPROM))和/或其任何合适的组合。术语“机器可读介质”应该被认为是包括能够存储指令1316的单个介质或多个介质(例如,集中式或分布式数据库,或相关联的高速缓存和服务器)。术语“机器可读介质”也应当被认为是包括能够存储由机器(例如,机器1300)执行的指令(例如,指令1316)的任何介质或多个介质的组合,使得当由机器1300(例如,处理器1310)的一个或多个处理器执行指令1316时,使机器1300执行本文所述的任何一种或多种方法。因此,“机器可读介质”是指单个存储装置或设备以及包括多个存储装置或设备的“基于云”的存储系统或存储网络。术语“机器可读介质”不包括信号本身。
I/O组件1350可以包括用于接收输入,提供输出,产生输出,发送信息,交换信息,捕获测量结果等的各种各样的组件。包括在特定机器1300中的特定I/O组件1350将取决于机器1300的类型。例如,诸如移动电话等的便携式机器可能包括触摸输入设备或其他这样的输入机构,而无头服务器机器可能不会包括这样的触摸输入设备。应当理解,I/O组件1350 可以包括在图13中未示出的许多其他组件。I/O组件1350根据功能被分组,仅仅是为了简化以下讨论,并且分组决不是限制性的。在各种示例性实施例中,I/O组件1350可以包括输出组件1352和输入组件1354。输出组件1352可以包括可视组件(例如,诸如等离子体显示面板(plasma display panel,PDP),发光二极管(light emitting diode,LED)显示器,液晶显示器(liquid crystal display,LCD),投影仪或阴极射线管(cathode ray tube,CRT)等的显示器),声学组件(例如扬声器),触觉组件(例如振动马达,电阻机构),其它信号发生器等等。输入组件1354可以包括字母数字输入组件(例如,键盘,被配置为接收字母数字输入的触摸屏,光光键盘或其他字母数字输入组件),基于点的输入组件(例如,鼠标,触摸板,轨迹球,操纵杆,运动传感器或其他指向仪器),触觉输入组件(例如提供触摸或触摸手势的位置和/或力的物理按钮,触摸屏或其他触觉输入组件),音频输入组件(例如麦克风)等。
在另外的示例性实施例中,I/O组件1350可以包括在众多其他组件中的生物特征组件 1356,运动组件1358,环境组件1360或位置组件1362。例如,生物特征组件1356可以包括检测表达(例如手部表达,面部表情,声音表达,身体姿势或眼睛跟踪),测量生物信号(例如,血压,心率,体温,出汗或脑波),识别人(例如,语音识别,视网膜识别,面部识别,指纹识别或基于脑电图的识别)的组件等。运动组件1358可以包括加速度传感器组件(例如,加速度计),重力传感器组件,旋转传感器组件(例如,陀螺仪)等等。环境组件1360可以包括例如照明传感器组件(例如光度计),温度传感器组件(例如,检测环境温度的一个或多个温度计),湿度传感器组件,压力传感器组件(例如气压计),声学传感器组件(例如,检测背景噪音的一个或多个麦克风),接近传感器组件(例如,检测附近物体的红外传感器),气体传感器(例如,用于检测危险气体的安全浓度或测量空气中的污染物的气体检测传感器) 或可能提供对应于周围物理环境的指示,测量或信号的其他组件。位置组件1362可以包括位置传感器组件(例如,全球定位系统(Global Position System,GPS)接收器组件),高度传感器组件(例如,检测大气压的高度计或气压计,根据大气压可以导出高度),方向传感器组件(例如,磁力计)等。
可以使用各种各样的技术来实现通信。I/O组件1350可以包括通信组件1364,其可操作以分别通过耦合1382和耦合1372将机器1300耦合到网络1380或设备1370。例如,通信组件1364可以包括网络接口组件或与网络1380接口的其它合适的设备。在另外的示例中,通信组件1364可以包括有线通信组件,无线通信组件,蜂窝通信组件,近场通信(nearfield communication,NFC)组件,
Figure BDA0002054551790000121
组件(例如,
Figure BDA0002054551790000122
Low Energy),
Figure BDA0002054551790000123
组件和通过其他模式提供通信的其他通信组件。设备1370可以是另一台机器或在众多外围设备中的任何一个(例如,通过通用串行总线(USB)耦合的外围设备)。
此外,通信组件1364可以检测标识符或包括可操作以检测标识符的组件。例如,通信组件1364可以包括射频识别(radio frequency identification,RFID)标签读取器组件,NFC智能标签检测组件,光学读取器组件(例如,用于检测诸如通用产品代码(UniversalProduct Code, UPC)代码的一维条形码、诸如快速响应(QR)码阿兹台克码,数据矩阵,Dataglyph,MaxiCode, PDF417,Ultra码,UCC RSS-2D条形码等的多维条形码和其他光学码的光学传感器),或声学检测组件(例如,用于识别标记的音频信号的麦克风)。此外,可以经由通信组件1364导出各种信息,例如通过因特网协议(IP)地理位置的位置,通过Wi-Fi信号三角测量的位置,通过检测可能指示特定位置的的NFC信标信号的位置等等。
传输介质
在各种示例性实施例中,网络1380的一个或多个部分可以是自组织网络,内联网,外部网,虚拟专用网络(virtual private network,VPN),局域网(local area network,LAN),无线 LAN(wireless LAN,WLAN),广域网(wide area network,WAN),无线WAN(wireless WAN, WWAN),城域网(metropolitan area network,MAN),因特网,因特网的一部分,公共交换电话网络(public switched telephone network,PSTN)的一部分,普通老式电话服务(plain old telephone service,POTS)网络,蜂窝电话网络,无线网络,Wi-Fi网络,另一类型的网络或两个或更多个这样的网络的组合。例如,网络1380或网络1380的一部分可以包括无线或蜂窝网络,并且耦合1382可以是码分多址(Code Division MultipleAccess,CDMA)连接,全球移动通信系统(Global System for Mobile communications,GSM)连接或其他类型的蜂窝或无线耦合。在该示例中,耦合1382可以实现各种类型的数据传输技术中的任何一种,诸如单载波无线传输技术(1xRTT),演进数据优化(Evolution-Data Optimized,EVDO)技术,通用分组无线业务(General Packet Radio Service,GPRS)技术,GSM演进的增强型数据速率(Enhanced Data rates for GSM Evolution,EDGE)技术,包括3G的第三代合作伙伴计划(3GPP),第四代无线(4G)网络,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),高速分组接入(High SpeedPacket Access,HSPA),全球微波互联接入(WiMAX),长期演进 (LTE)标准,由各种标准设定组织定义的其他标准,其他远程协议或其他数据传输技术。
可以使用传输介质经由网络接口设备(例如,包括在通信组件1364中的网络接口组件) 并利用多个公知传输协议中的任何一个(例如,超文本传输协议(HTTP))在网络1380上来发送或接收指令1316。类似地,可以使用传输介质经由耦合1392(例如,对等耦合)向设备 1370发送或接收指令1316。术语“传输介质”应被认为包括能够存储,编码或携带供机器1300执行的指令1316的任何无形介质,并且包括数字或模拟通信信号或其他无形介质以便于这种软件的通信。
语言
在整个说明书中,多个实例可以实现被描述为单个实例的组件,操作或结构。虽然一个或多个方法的单独操作被示出并且被描述为单独的操作,但可以并行执行一个或多个单独操作,并且不需要以所示顺序执行操作。作为示例配置中的单独组件呈现的结构和功能可以被实现为组合结构或组件。类似地,作为单个组件呈现的结构和功能可以被实现为单独的组件。这些和其他变化,修改,添加和改进落入本文主题的范围内。
虽然已经参考具体示例性实施例描述了本发明主题的概述,但是在不脱离本公开的实施例的更广泛范围的情况下,可以对这些实施例进行各种修改和改变。本发明主题的这些实施方案在本文中可以单独地或集体地被称为术语“发明”仅仅为了方便而不意图将本申请的范围限于任何单个公开或发明构思,如果实际上公开了多于一个。
本文描述的实施例足够详细地描述,以使本领域技术人员能够实践所公开的教导。可以使用和导出其他实施例,使得可以在不脱离本公开的范围的情况下进行结构和逻辑替换和改变。因此,具体实施方式不应被认为是限制性的,并且各种实施例的范围仅由所附权利要求以及这些权利要求所赋予的等同物的全部范围来限定。
如本文所使用的,术语“或”可以以包含或排除的方式来解释。此外,可以为本文所描述的资源,操作或结构提供多个实例作为单个实例。此外,各种资源,操作,模块,引擎和数据存储之间的边界是有些任意的,并且在特定说明性配置的情况示出了特定的操作。预期了功能的其他分配,并且可以落入本公开的各种实施例的范围内。通常,作为示例配置中的单独资源呈现的结构和功能可以被实现为组合结构或资源。类似地,作为单个资源呈现的结构和功能可以被实现为单独的资源。这些和其他变化,修改,添加和改进落入本公开的实施例的范围内。因此,说明书和附图被认为是说明性的而不是限制性的。

Claims (16)

1.一种通信方法,其特征在于,所述方法包括:
用户设备UE接收物理下行控制信道PDCCH上传输的控制信息,所述控制信息携带波束成形参数信息,所述波束成形参数信息用于模拟波束成形;
所述UE根据所述波束成形参数信息接收物理下行共享信道PDSCH上传输的数据;
其中,所述控制信息的接收和所述数据的接收之间的时间间隙包括用于所述UE解调解码所述控制信息获得所述波束成形参数信息的时间和应用所述波束成形参数信息的时间。
2.根据权利要求1所述的方法,其特征在于,
所述波束成形参数信息用于指示接收波束。
3.根据权利要求1或2所述的方法,其特征在于,所述通信方法应用于毫米波mmWave通信中。
4.根据权利要求1所述的方法,其特征在于,所述方法还包括:
所述UE在对应参考信号资源上接收波束成形参考信号;
根据对所述波束成形参考信号的测量,上报最佳波束对信息。
5.一种通信装置,其特征在于,所述装置包括:
收发单元,用于接收物理下行控制信道PDCCH上传输的控制信息,所述控制信息携带波束成形参数信息,所述波束成形参数信息用于模拟波束成形;
所述收发单元还用于根据所述波束成形参数信息接收物理下行共享信道PDSCH上传输的数据;
其中,所述控制信息的接收和所述数据的接收之间的时间间隙包括用于所述通信装置解调解码所述控制信息获得所述波束成形参数信息的时间和应用所述波束成形参数信息的时间。
6.根据权利要求5所述的装置,其特征在于,
所述波束成形参数信息用于指示接收波束。
7.根据权利要求5或6所述的装置,其特征在于,所述通信装置应用于毫米波mmWave通信中。
8.根据权利要求5所述的装置,其特征在于,
所述收发单元还用于,在对应参考信号资源上接收波束成形参考信号;
所述装置还包括处理单元,所述处理单元用于测量所述波束成形参考信号;
所述收发单元还用于,根据所述处理单元测量的测量结果,上报最佳波束对信息。
9.一种通信装置,其特征在于,所述装置包括:收发器;
所述收发器用于,用于接收物理下行控制信道PDCCH上传输的控制信息,所述控制信息携带波束成形参数信息,所述波束成形参数信息用于模拟波束成形;
所述收发器还用于根据所述波束成形参数信息接收物理下行共享信道PDSCH上传输的数据;
其中,所述控制信息的接收和所述数据的接收之间的时间间隙包括用于所述通信装置解调解码所述控制信息获得所述波束成形参数信息的时间和应用所述波束成形参数信息的时间。
10.根据权利要求9所述的装置,其特征在于,
所述波束成形参数信息用于指示接收波束。
11.根据权利要求9或10所述的装置,其特征在于,所述通信装置应用于毫米波mmWave通信中。
12.根据权利要求9所述的装置,其特征在于,所述装置还包括处理单元;
所述收发器还用于,在对应参考信号资源上接收波束成形参考信号;
所述处理器,用于测量所述波束成形参考信号;
所述收发器还用于根据所述处理器测量的测量结果,上报最佳波束对信息。
13.一种通信装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,读取存储器中的程序,并控制所述通信装置实现如权利要求1至4中任一项所述的方法。
14.根据权利要求13所述的装置,其特征在于,所述通信装置还包括所述存储器。
15.根据权利要求14所述的装置,其特征在于,
所述存储器设置在所述处理器中,或
所述存储器与所述处理器独立设置。
16.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被计算机执行时实现如权利要求1至4中任一项所述的方法。
CN201910384991.0A 2015-05-01 2016-04-29 一种用于在毫米波通信中接收传输数据的方法、装置和计算机可读存储介质 Active CN110224733B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562155961P 2015-05-01 2015-05-01
US62/155,961 2015-05-01
US15/140,088 US10193604B2 (en) 2015-05-01 2016-04-27 Device, network, and method for receiving data transmission under scheduling decoding delay in mmWave communication
US15/140,088 2016-04-27
CN201680025375.0A CN107535009B (zh) 2015-05-01 2016-04-29 用于接收毫米波mmWave通信的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680025375.0A Division CN107535009B (zh) 2015-05-01 2016-04-29 用于接收毫米波mmWave通信的方法

Publications (2)

Publication Number Publication Date
CN110224733A CN110224733A (zh) 2019-09-10
CN110224733B true CN110224733B (zh) 2020-07-07

Family

ID=57205407

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201910384991.0A Active CN110224733B (zh) 2015-05-01 2016-04-29 一种用于在毫米波通信中接收传输数据的方法、装置和计算机可读存储介质
CN201680025375.0A Active CN107535009B (zh) 2015-05-01 2016-04-29 用于接收毫米波mmWave通信的方法
CN202010707281.XA Pending CN112039569A (zh) 2015-05-01 2016-04-29 用于在毫米波通信中调度解码延迟的情况下接收数据传输的设备、网络和方法
CN201910385291.3A Active CN110190884B (zh) 2015-05-01 2016-04-29 一种用于接收毫米波mmWave通信的方法、装置和计算机可读存储介质

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201680025375.0A Active CN107535009B (zh) 2015-05-01 2016-04-29 用于接收毫米波mmWave通信的方法
CN202010707281.XA Pending CN112039569A (zh) 2015-05-01 2016-04-29 用于在毫米波通信中调度解码延迟的情况下接收数据传输的设备、网络和方法
CN201910385291.3A Active CN110190884B (zh) 2015-05-01 2016-04-29 一种用于接收毫米波mmWave通信的方法、装置和计算机可读存储介质

Country Status (8)

Country Link
US (3) US10193604B2 (zh)
EP (2) EP3284313B1 (zh)
JP (2) JP6571204B2 (zh)
KR (1) KR102163479B1 (zh)
CN (4) CN110224733B (zh)
ES (1) ES2764758T3 (zh)
MY (1) MY191979A (zh)
WO (1) WO2016177298A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10736082B2 (en) 2016-10-31 2020-08-04 Qualcomm Incorporated Transmission of a common control in a beamforming system
US10506576B2 (en) 2017-01-27 2019-12-10 Qualcomm Incorporated Multi-link new radio (NR)-physical downlink control channel (PDCCH) design
CN108923896B (zh) 2017-04-19 2021-03-26 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
CN109219136B (zh) * 2017-07-05 2021-08-27 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
JP7096335B2 (ja) * 2018-07-13 2022-07-05 株式会社Nttドコモ 端末、基地局、無線通信方法及びシステム
CN111182629B (zh) * 2018-11-09 2023-04-07 深圳市中兴微电子技术有限公司 小区间干扰协调方法、基站及存储介质
KR20200099044A (ko) * 2019-02-13 2020-08-21 삼성전자주식회사 통신시스템에서 데이터 송수신 방법 및 장치
US20200266954A1 (en) * 2019-02-14 2020-08-20 Mediatek Singapore Pte. Ltd. Method And Apparatus For User Equipment Processing Timeline Enhancement In Mobile Communications
US10826568B1 (en) * 2019-05-03 2020-11-03 Qualcomm Incorporated Simultaneous multiple default beams
KR102371408B1 (ko) 2020-11-18 2022-03-07 지앨에스 주식회사 무선 데이터 전송을 위한 전자 장치 및 방법
KR102371406B1 (ko) 2020-11-18 2022-03-08 지앨에스 주식회사 무선 데이터 전송을 위한 전자 장치 및 방법
KR102385527B1 (ko) 2020-11-25 2022-04-26 지앨에스 주식회사 무선 데이터 전송을 위한 전자 장치 및 방법
KR102385522B1 (ko) 2020-11-26 2022-04-26 지앨에스 주식회사 무선 데이터 전송을 위한 전자 장치 및 방법
US20240056267A1 (en) * 2020-12-16 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Time domain resource allocation for wireless communication network
WO2022139037A1 (ko) 2020-12-24 2022-06-30 지앨에스 주식회사 무선 통신을 위한 전자 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755392A (zh) * 2007-07-19 2010-06-23 交互数字技术公司 用于对波束成型向量进行编码和解码的无线通信方法和设备
CN101924610A (zh) * 2010-08-02 2010-12-22 西安电子科技大学 Lte-a系统中信道状态信息参考信号csi-rs的设计方法
CN102461010A (zh) * 2009-06-19 2012-05-16 捷讯研究有限公司 用于类型ii中继的下行链路参考信号
CN103107872A (zh) * 2011-11-09 2013-05-15 上海贝尔股份有限公司 增强下行确认/否定确认信号传输的方法及其装置
CN103200684A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
WO2014176204A1 (en) * 2013-04-23 2014-10-30 Qualcomm Incorporated Pdsch transmission schemes with compact downlink control information (dci) format in new carrier type (nct) in lte
CN104322128A (zh) * 2012-05-21 2015-01-28 索尼公司 用于在多个子帧中分配资源的方法和终端设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009617B2 (en) * 2007-08-15 2011-08-30 Qualcomm Incorporated Beamforming of control information in a wireless communication system
KR101611272B1 (ko) * 2008-11-07 2016-04-11 엘지전자 주식회사 참조 신호 전송 방법
US20100120442A1 (en) 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
WO2011001697A1 (ja) * 2009-07-03 2011-01-06 パナソニック株式会社 無線送信装置及び無線送信方法
US8520648B2 (en) * 2010-06-14 2013-08-27 Intel Corporation Beacon transmission techniques in directional wireless networks
KR101853914B1 (ko) * 2010-12-21 2018-05-02 엘지전자 주식회사 셀간 간섭을 완화하는 방법 및 이를 위한 장치
WO2012108679A2 (ko) 2011-02-08 2012-08-16 엘지전자 주식회사 반송파 집성 시스템에서 스케줄링 방법 및 장치
KR101764261B1 (ko) * 2011-07-15 2017-08-04 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법
WO2013036005A1 (en) 2011-09-05 2013-03-14 Lg Electronics Inc. Method of indicating a control channel in a wireless access system, base station for the same and user equipment for the same
US9071489B2 (en) 2011-12-07 2015-06-30 Futurewei Technologies, Inc. System and method for preambles in a wireless communications network
US20130188624A1 (en) * 2012-01-20 2013-07-25 Jung Seung Lee Apparatus and method for searching neighbor cells of small cell base station
US9603034B2 (en) 2012-01-30 2017-03-21 Futurewei Technologies, Inc. System and method for common control channels in a communications system
KR20140142696A (ko) * 2012-04-03 2014-12-12 엘지전자 주식회사 데이터 전송 방법 및 장치
US9531573B2 (en) * 2012-04-09 2016-12-27 Samsung Electronics Co., Ltd. Methods and apparatus for cyclic prefix reduction in MMwave mobile communication systems
US9380582B2 (en) * 2012-04-16 2016-06-28 Samsung Electronics Co., Ltd. Methods and apparatus for flexible beam communications in random access in system with large number of antennas
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
EP2936702B1 (en) * 2012-12-21 2021-08-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
US9204395B2 (en) * 2013-01-15 2015-12-01 Samsung Electronics Co., Ltd. Apparatus and method for discontinuous receive in communication systems with large number of antennas
JP6040467B2 (ja) 2013-02-07 2016-12-07 アイディーエーシー ホールディングス インコーポレイテッド 低レイテンシミリ波(mmw)バックホールシステムのための物理層(phy)設計
US10230513B2 (en) * 2013-03-12 2019-03-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control channel in wireless communication system
WO2015005641A1 (en) 2013-07-08 2015-01-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a communication system using beamforming
US9467909B2 (en) * 2013-09-11 2016-10-11 Intel IP Corporation Techniques for relocating a backhaul channel between a small cell base station and a macro cell base station
US9497651B2 (en) * 2014-01-31 2016-11-15 Intel IP Corporation Techniques for mmWave-capable small cell detection
KR102169662B1 (ko) * 2014-03-10 2020-10-23 삼성전자주식회사 무선 통신 시스템에서 빔 결정 장치 및 방법
US20160072562A1 (en) * 2014-09-10 2016-03-10 Samsung Electronics Co., Ltd. Channel state information reporting with basis expansion for advanced wireless communications systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755392A (zh) * 2007-07-19 2010-06-23 交互数字技术公司 用于对波束成型向量进行编码和解码的无线通信方法和设备
CN102461010A (zh) * 2009-06-19 2012-05-16 捷讯研究有限公司 用于类型ii中继的下行链路参考信号
CN101924610A (zh) * 2010-08-02 2010-12-22 西安电子科技大学 Lte-a系统中信道状态信息参考信号csi-rs的设计方法
CN103107872A (zh) * 2011-11-09 2013-05-15 上海贝尔股份有限公司 增强下行确认/否定确认信号传输的方法及其装置
CN103200684A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN104322128A (zh) * 2012-05-21 2015-01-28 索尼公司 用于在多个子帧中分配资源的方法和终端设备
WO2014176204A1 (en) * 2013-04-23 2014-10-30 Qualcomm Incorporated Pdsch transmission schemes with compact downlink control information (dci) format in new carrier type (nct) in lte

Also Published As

Publication number Publication date
CN107535009A (zh) 2018-01-02
US20210105053A1 (en) 2021-04-08
WO2016177298A1 (en) 2016-11-10
JP2018521531A (ja) 2018-08-02
KR102163479B1 (ko) 2020-10-08
US10193604B2 (en) 2019-01-29
CN110224733A (zh) 2019-09-10
US11909476B2 (en) 2024-02-20
EP3284313A1 (en) 2018-02-21
JP6571204B2 (ja) 2019-09-04
US20190044595A1 (en) 2019-02-07
EP3614792A1 (en) 2020-02-26
CN110190884A (zh) 2019-08-30
ES2764758T3 (es) 2020-06-04
CN107535009B (zh) 2020-08-07
CN112039569A (zh) 2020-12-04
KR20170140392A (ko) 2017-12-20
MY191979A (en) 2022-07-21
CN110190884B (zh) 2020-06-26
EP3284313B1 (en) 2019-10-16
US10873377B2 (en) 2020-12-22
JP7123018B2 (ja) 2022-08-22
US20160323028A1 (en) 2016-11-03
EP3284313A4 (en) 2018-08-29
JP2019216454A (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
US11184073B2 (en) Device, network, and method for CSI feedback of hybrid beamforming
CN110224733B (zh) 一种用于在毫米波通信中接收传输数据的方法、装置和计算机可读存储介质
KR101725749B1 (ko) 액세스 포인트, 및 정보 데이터 구조를 이용한 액세스 포인트 선택을 위한 방법
JP7240412B2 (ja) チャネルと信号の伝送方法及び通信機器
US11742925B2 (en) Methods and apparatus for mitigating codebook inaccuracy when using hierarchical beam operations
CN111278120A (zh) 上行信道的配置方法、传输方法、网络侧设备及终端
JP2014529208A (ja) 下りリンク制御情報送信及び受信方法並びに基地局及び移動端末
CN108886388B (zh) 用于无线通信的天线权重向量组标识
WO2022098629A1 (en) Methods, architectures, apparatuses and systems for adaptive multi-user noma selection and symbol detection
US20170279587A1 (en) Method of sounding using manipulated null data packets (ndp)
US10080219B2 (en) Uplink sounding in wireless networks
CN108370517A (zh) 参考信号发送和信道测量的方法、发送设备和终端设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant