CN110220881A - 基于纳米结构和有序纳米颗粒的柔性sers基底及其制备方法和应用 - Google Patents

基于纳米结构和有序纳米颗粒的柔性sers基底及其制备方法和应用 Download PDF

Info

Publication number
CN110220881A
CN110220881A CN201910380665.2A CN201910380665A CN110220881A CN 110220881 A CN110220881 A CN 110220881A CN 201910380665 A CN201910380665 A CN 201910380665A CN 110220881 A CN110220881 A CN 110220881A
Authority
CN
China
Prior art keywords
nano particle
groove
resin layer
curing resin
light curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910380665.2A
Other languages
English (en)
Other versions
CN110220881B (zh
Inventor
张成鹏
姜兆亮
刘文平
马嵩华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201910380665.2A priority Critical patent/CN110220881B/zh
Publication of CN110220881A publication Critical patent/CN110220881A/zh
Priority to LU101707A priority patent/LU101707B1/en
Application granted granted Critical
Publication of CN110220881B publication Critical patent/CN110220881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/04Networks or arrays of similar microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00373Selective deposition, e.g. printing or microcontact printing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/02Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a matt or rough surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0353Holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/655Stimulated Raman

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明属于柔性电子薄膜技术领域,尤其涉及基于纳米结构和有序纳米颗粒的柔性SERS基底及其制备方法和应用。所述SERS基底包括:柔性薄膜基材、光固化树脂层、凹槽、金属薄膜层和纳米颗粒,其中:所述光固化树脂层设置在柔性薄膜基材的表面上,所述凹槽呈阵列式分布在光固化树脂层上且与光固化树脂层一体化成型,所述金属薄膜层覆盖在光固化树脂层和凹槽表面,所述纳米颗粒有序填充在凹槽之中。本发明将光固化树脂层和凹槽进行了金属化,并通过纳米结构和有序纳米颗粒的协同作用实现拉曼信号增强,具有精度高、灵敏度高、稳定性好、信号重现性强等优点。

Description

基于纳米结构和有序纳米颗粒的柔性SERS基底及其制备方法 和应用
技术领域
本发明属于柔性电子薄膜技术领域,尤其涉及一种基于纳米结构和有序纳米颗粒的柔性SERS基底及其制备方法和应用。
背景技术
本发明背景技术公开的信息仅仅旨在增加对本发明总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
表面增强拉曼散射(SERS)可以将吸附在金属表面的分子信号放大到106-1015倍,甚至可以实现单分子检测,是一种高灵敏的光谱技术,广泛应用于材料科学、表面科学、分析化学、生物学、诊断学等领域。
表面增强拉曼光谱测试要求信号具有稳定性和重现性,主要取决于表面增强基底的纳米结构及纳米颗粒的有序性和均匀性,精度高、灵敏度高、稳定性好、信号重现性强的SERS基底的快速制备成为亟需解决的问题。
专利文献CN 109187487 A公开了一种银纳米团簇表面增强拉曼散射基底及其制备方法和应用,该专利通过电化学置换反应制备纳米银颗粒团簇实现拉曼信号增强。然而,本发明人认为:该专利文献仅通过纳米银颗粒实现SERS功能,且其中的纳米银颗粒随机分布,无法保证多次检测的信号重现性。
专利文献CN 109239051 A公开了一种柔性可转移型表面增强拉曼检测基底,将硫醇化的聚苯乙烯通过配体交换修饰到贵金属纳米颗粒上,然后将其通过气液界面自组装的方法在多孔基底上组装成有序的无基底自支撑的二维贵金属纳米超晶格薄膜,即得到柔性可转移型SERS基底。然而,本发明人认为:该专利文献存在制作工艺复杂、效率低、成本高等不足,且通过自组装工艺只能实现单层金属颗粒的二维组装,无法实现多层金属颗粒的有序排布,削弱拉曼信号增强效果。
发明内容
针对上述的现有技术中存在的问题,本发明旨在提供基于纳米结构和有序纳米颗粒的柔性SERS基底及其制备方法和应用。本发明的方法不仅成本低、效率高、适合大规模批量化加工,而且制备的性SERS基底能够实现拉曼信号的高精度、高灵敏度、稳定性和可重现性测试。
本发明第一目的,提供一种基于纳米结构和有序纳米颗粒的柔性SERS基底。
本发明第二目的,提供所述基于纳米结构和有序纳米颗粒的柔性SERS基底的制备方法。
本发明第三目的,提供所述基于纳米结构和有序纳米颗粒的柔性SERS基底及其制备方法的应用。
为实现上述发明目的,本发明公开了下述技术方案:
首先,本发明公开了一种基于纳米结构和有序纳米颗粒的柔性SERS基底,包括:柔性薄膜基材、光固化树脂层、凹槽、金属薄膜层和纳米颗粒,其中:所述光固化树脂层设置在柔性薄膜基材的表面上,所述凹槽呈阵列式分布在光固化树脂层上,且凹槽与光固化树脂层一体化成型,所述金属薄膜层覆盖在光固化树脂层和凹槽表面,所述纳米颗粒有序填充在凹槽中。
作为进一步的技术方案,所述柔性薄膜基材包括:聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚丙烯(PP)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)等中的任意一种。
作为进一步的技术方案,所述金属薄膜层和纳米颗粒由具有拉曼信号增强功能的材料制成,例如:金、银、铜、铂等。
作为进一步的技术方案,所述凹槽的形状包括:圆柱形结构、长方体结构、正方体结构、棱柱形结构等中的任意一种或多种。
作为进一步的技术方案,所述凹槽组成的阵列形状包括:矩形阵列、正方形阵列、六边形阵列、圆形阵列、菱形阵列或三角形阵列等。
作为进一步的技术方案,所述金属薄膜层的厚度为3nm-100nm。
作为进一步的技术方案,所述纳米颗粒的直径为1nm-200nm。
作为进一步的技术方案,所述凹槽的直径或边长大于纳米颗粒直径且小于纳米颗粒直径的1.4倍;凹槽直径略大于纳米颗粒,可以保证纳米颗粒顺利填入;但凹槽直径不宜过大,这样可以保证纵向方向上每层只能容纳一个纳米颗粒,且可以最大限度限制纳米颗粒的位置,保证纵向方向上纳米颗粒的有序性。
作为进一步的技术方案,所述凹槽的深度为1.5nm-500nm。
作为进一步的技术方案,所述凹槽之间的间距为5nm-1000nm。
其次,本发明公开所述基于纳米结构和有序纳米颗粒的柔性SERS基底的制备方法,包括如下步骤:
(1)在柔性薄膜基材表面涂布光固化树脂材料,形成光固化树脂层,通过卷对卷紫外固化工艺,对光固化树脂层上进行压印得,得到与光固化树脂层一体化成型的凹槽,所述凹槽呈阵列式分布在光固化树脂层上;
(2)采用蒸发镀膜技术在光固化树脂层和凹槽表面沉积一层金属薄膜层,使其金属化,以便于具备SERS功能;
(3)将纳米颗粒填充在凹槽中,使纳米颗粒有序分布在凹槽中,即得。
作为进一步的技术方案,所述卷对卷紫外固化工艺中,压印速度为0.5-60m/min,挤压力为1-9kg/cm2,模具温度为10-100℃。
作为进一步的技术方案,所述蒸发镀膜工艺中,真空度为1×10-5-4×10-5Pa。
作为进一步的技术方案,所述纳米颗粒的填充采用刮涂工艺,可选为:将纳米颗粒溶液刮涂到凹槽之间的间隙中,然后用酒精擦拭掉表面多余的纳米颗粒溶液,即可;可选地,所述刮涂的速度为0.1-100mm/s。
最后,本发明公开所述基于纳米结构和有序纳米颗粒的柔性SERS基底在电子设备中的应用;以及该柔性SERS基底的制备方法在制备柔性电子材料中的应用。
与现有技术相比,本发明取得了以下有益效果:
(1)本发明的方法不仅成本低、效率高、适合大规模批量化加工,而且制备的性SERS基底能够实现拉曼信号的高精度、高灵敏度、稳定性和可重现性测试。
(2)本发明将光固化树脂层和凹槽进行了金属化,使得结构阵列具有三重功能:金属化的凹槽可以产生“热点”,激发等离子体共振,实现增强拉曼信号强度的功能;此外,凹槽又可以对纳米颗粒起到限位作用,使纳米颗粒在大面积上保持有序性和一致性,实现拉曼信号的稳定性和可重现性测试;再者,在凹槽之间产生的“热点”基础上,金属化的凹槽和纳米颗粒之间也可以产生非常多的“热点”,进一步提高拉曼信号检测的精度和灵敏度。
(3)本发明通过凹槽形成的阵列结构调控纳米颗粒的均匀性和有序性,通过纳米结构和有序纳米颗粒的协同作用实现拉曼信号增强,具有精度高、灵敏度高、稳定性好、信号重现性强等优点。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1中基于纳米结构和有序纳米颗粒的柔性SERS基底的剖视图。
图2为本发明实施例1中基于纳米结构和有序纳米颗粒的柔性SERS基底的俯视图。
图3为本发明实施例2中制备基于纳米结构和有序纳米颗粒的柔性SERS基底的工艺流程图。
附图中标记分别代表:1-柔性薄膜基材、2-光固化树脂层、3-凹槽、4-金属薄膜层、5-纳米颗粒。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所述,表面增强拉曼光谱测试要求信号具有稳定性和重现性,主要取决于表面增强基底的纳米结构及纳米颗粒的有序性和均匀性,精度高、灵敏度高、稳定性好、信号重现性强的SERS基底的快速制备成为亟需解决的问题。因此,本发明提出基于纳米结构和有序纳米颗粒的柔性SERS基底及其制备方法;现结合附图和具体实施方式对本发明进一步进行说明。
实施例1
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,参考图1和2,包括:柔性薄膜基材1、光固化树脂层2、凹槽3、金属薄膜层4和纳米颗粒5,其中:所述光固化树脂层2设置在柔性薄膜基材1的表面上,所述凹槽3为圆柱形结构,呈正方形阵列分布在光固化树脂层2上且与光固化树脂层2一体化成型,所述金属薄膜层4覆盖在光固化树脂层2和凹槽3表面,所述纳米颗粒5有序填充在凹槽3之中;所述柔性薄膜基材1的材质为聚对苯二甲酸乙二酯(PET);所述金属薄膜层4和纳米颗粒5均为纳米银颗粒;所述金属薄膜层4的厚度为15nm;所述纳米颗粒5的直径为20nm;所述凹槽3的深度为100nm,其直径为25nm;所述凹槽3之间的间距为60nm。
实施例2
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例1,区别在于:所述凹槽3为长方体结构,呈矩形阵列分布在光固化树脂层2上;所述柔性薄膜基材1的材质为聚碳酸酯(PC);所述金属薄膜层4的厚度为30nm;所述金属薄膜层4和纳米颗粒5均为纳米金颗粒;所述纳米颗粒的直径为10nm;所述凹槽3的深度为20nm,其直径为10.5nm;所述凹槽3之间的间距为10nm。
实施例3
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例1,区别在于:所述凹槽3为正方体结构,呈六边形阵列分布在光固化树脂层2上;所述柔性薄膜基材1的材质为聚氯乙烯(PVC);所述金属薄膜层4的厚度为50nm;所述金属薄膜层4和纳米颗粒5均为纳米铜颗粒;所述纳米颗粒的直径为15nm;所述凹槽3的深度为20nm,其直径为15.5nm;所述凹槽3之间的间距为60nm。
实施例4
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例1,区别在于:所述凹槽3为棱柱形结构,呈圆形阵列分布在光固化树脂层2上;所述柔性薄膜基材1的材质为聚甲基丙烯酸甲酯(PMMA);所述金属薄膜层4的厚度为60nm;所述金属薄膜层4和纳米颗粒5均为纳米银颗粒;所述纳米颗粒的直径为50nm;所述凹槽3的深度为150nm,其直径为70nm;所述凹槽3之间的间距为150nm。
实施例5
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例1,区别在于:所述柔性薄膜基材1的材质为聚丙烯(PP);所述金属薄膜层4的厚度为3nm;所述金属薄膜层4和纳米颗粒5均为纳米铂颗粒;所述纳米颗粒的直径为1nm;所述凹槽3的深度为1.5nm,其直径为1.4nm;所述凹槽3之间的间距为5nm。
实施例6
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例2,区别在于:所述凹槽3呈菱形阵列分布在光固化树脂层2上;所述金属薄膜层的厚度为100nm;所述纳米颗粒的直径为80nm;所述凹槽3的深度为200nm,其直径为100nm;所述凹槽3之间的间距为200nm。
实施例7
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例3,区别在于:所述凹槽呈三角形阵列分布在光固化树脂层2上;所述金属薄膜层4的厚度为20nm;所述纳米颗粒的直径为200nm;所述凹槽3的深度为300nm,其直径为250nm;所述凹槽3之间的间距为500nm。
实施例8
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例5,区别在于:所述金属薄膜层4的厚度为50nm;所述纳米颗粒的直径为120nm;所述凹槽3的深度为500nm,其直径为150nm;所述凹槽3之间的间距为1000nm。
实施例9
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例1,区别在于:所述金属薄膜层4的厚度为25nm;所述纳米颗粒的直径为45nm;所述凹槽3的深度为300nm,其直径为50nm;所述凹槽3之间的间距为600nm。
实施例10
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例1,区别在于:没有设置光固化树脂层2、凹槽3以及金属薄膜层4。
实施例11
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例1,区别在于:没有纳米颗粒。
实施例12
一种基于纳米结构和有序纳米颗粒的柔性SERS基底,同实施例1,区别在于:没有光固化树脂层2、凹槽3、金属薄膜层4以及纳米颗粒5,即只有柔性薄膜基材1。
实施例13
实施例1所述的基于纳米结构和有序纳米颗粒的柔性SERS基底的制备方法,包括如下步骤:
(1)在柔性薄膜基材表面涂布光固化树脂材料,形成光固化树脂层,通过卷对卷紫外固化工艺,对光固化树脂层上进行压印得,得到与光固化树脂层一体化成型的凹槽,所述凹槽呈阵列式分布在光固化树脂层上;所述卷对卷紫外固化工艺中,压印速度为20m/min,挤压力为5kg/cm2,模具温度为50℃;
(2)采用蒸发镀膜技术在光固化树脂层和凹槽表面沉积一层金属薄膜层,所述蒸发镀膜工艺中,真空度为3.5×10-5Pa;
(3)将纳米颗粒溶液刮涂到凹槽3之间的间隙中,然后用酒精擦拭掉表面多余的纳米颗粒溶液,使纳米颗粒有序分布在凹槽之间,即得;所述刮涂的速度为20mm/s。
对实施例1-12制备的柔性SERS基底的信号增强因子、多点测试的相对标准偏差统计表。检测时,以罗丹明6G溶液为标记物,激光波长785nm,功率1mW,积分时间10s,计算1366-1峰处的拉曼信号增强因子。相对标准偏差的计算是从样品表面随机选取9个位置进行拉曼信号表征,对不同位置测得的拉曼信号增强因子求相对标准偏差,结果如表1所示。
表1
以上所述仅为本申请的优选实施例,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种基于纳米结构和有序纳米颗粒的柔性SERS基底,其特征在于,包括:柔性薄膜基材、光固化树脂层、凹槽、金属薄膜层和纳米颗粒,其中:所述光固化树脂层设置在柔性薄膜基材的表面上,所述凹槽呈阵列式分布在光固化树脂层上且与光固化树脂层一体化成型,所述金属薄膜层覆盖在光固化树脂层和凹槽表面,所述纳米颗粒有序填充在凹槽之中。
2.如权利要求1所述的基于纳米结构和有序纳米颗粒的柔性SERS基底,其特征在于,所述柔性薄膜基材包括:聚对苯二甲酸乙二酯、聚碳酸酯、聚丙烯、聚氯乙烯、聚甲基丙烯酸甲酯中的任意一种。
3.如权利要求1所述的基于纳米结构和有序纳米颗粒的柔性SERS基底,其特征在于,所述金属薄膜层和纳米颗粒由具有拉曼信号增强功能的材料制成,优选为金、银、铜、铂中任意一种或多种。
4.如权利要求1所述的基于纳米结构和有序纳米颗粒的柔性SERS基底,其特征在于,所述凹槽的形状包括:圆柱形结构、长方体结构、正方体结构、棱柱形结构中的任意一种或多种;
优选地,所述凹槽组成的阵列形状包括:矩形阵列、正方形阵列、六边形阵列、圆形阵列、菱形阵列或三角形阵列。
5.如权利要求1-4任一项所述的基于纳米结构和有序纳米颗粒的柔性SERS基底,其特征在于,所述金属薄膜层的厚度为3nm-100nm;优选地,所述纳米颗粒的直径为1nm-200nm。
6.如权利要求1-4任一项所述的基于纳米结构和有序纳米颗粒的柔性SERS基底,其特征在于:所述凹槽的直径或边长大于纳米颗粒直径且小于纳米颗粒直径的1.4倍。
7.如权利要求1-4任一项所述的基于纳米结构和有序纳米颗粒的柔性SERS基底,其特征在于,所述凹槽的深度为1.5nm-500nm;
优选地,所述凹槽之间的间距为5nm-1000nm。
8.基于纳米结构和有序纳米颗粒的柔性SERS基底的制备方法,其特征在于,包括如下步骤:
(1)在柔性薄膜基材表面涂布光固化树脂材料,形成光固化树脂层,通过卷对卷紫外固化工艺,对光固化树脂层上进行压印得,得到与光固化树脂层一体化成型的凹槽,所述凹槽呈阵列式分布在光固化树脂层上;
(2)采用蒸发镀膜技术在光固化树脂层和凹槽表面沉积一层金属薄膜层;
(3)将纳米颗粒填充凹槽之间的间隙中,使纳米颗粒有序分布在凹槽之间,即得。
9.如权利要求8所述的制备方法,其特征在于,所述卷对卷紫外固化工艺中,压印速度为0.5-60m/min,挤压力为1-9kg/cm2,模具温度为10-100℃;
优选地,所述蒸发镀膜工艺中,真空度为1×10-5-4×10-5Pa;
优选地,所述纳米颗粒的填充采用刮涂工艺,可选为:将纳米颗粒溶液刮涂到凹槽之间的间隙中,然后用酒精擦拭掉表面多余的纳米颗粒溶液,即可;
优选地,所述刮涂的速度为0.1-100mm/s。
10.如权利要求1-7任一项所述的基于纳米结构和有序纳米颗粒的柔性SERS基底在电子设备中的应用和/或如权利要求8或9所述的制备方法在制备柔性电子材料中的应用。
CN201910380665.2A 2019-05-08 2019-05-08 基于纳米结构和有序纳米颗粒的柔性sers基底及其制备方法和应用 Active CN110220881B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910380665.2A CN110220881B (zh) 2019-05-08 2019-05-08 基于纳米结构和有序纳米颗粒的柔性sers基底及其制备方法和应用
LU101707A LU101707B1 (en) 2019-05-08 2020-03-27 Flexible sers substrate based on nano-structures and ordered nano-particles, and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910380665.2A CN110220881B (zh) 2019-05-08 2019-05-08 基于纳米结构和有序纳米颗粒的柔性sers基底及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110220881A true CN110220881A (zh) 2019-09-10
CN110220881B CN110220881B (zh) 2021-03-23

Family

ID=67820588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910380665.2A Active CN110220881B (zh) 2019-05-08 2019-05-08 基于纳米结构和有序纳米颗粒的柔性sers基底及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110220881B (zh)
LU (1) LU101707B1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272714A (zh) * 2020-03-03 2020-06-12 电子科技大学中山学院 一种光学谐振腔原理的金属氧化物气体传感器
CN111951662A (zh) * 2020-06-03 2020-11-17 中山大学 一种基于结构单元尺寸差异的物理型信息隐藏结构及其制备方法
CN112683879A (zh) * 2020-12-22 2021-04-20 山东大学 聚合物基多元表面增强拉曼检测基底及其制备方法与癌症诊断应用
CN113702354A (zh) * 2021-09-02 2021-11-26 电子科技大学 一种基于阵列式微结构的柔性sers基底及其制备方法
CN114280028A (zh) * 2021-12-29 2022-04-05 国家纳米科学中心 一种介质增强拉曼散射芯片及其制备方法与应用
CN114295599A (zh) * 2021-12-29 2022-04-08 国家纳米科学中心 一种表面增强拉曼散射芯片及其制备方法与应用
CN114324293A (zh) * 2021-12-29 2022-04-12 国家纳米科学中心 一种表面增强拉曼芯片
CN117607121A (zh) * 2023-11-10 2024-02-27 元珵科技(北京)有限公司 一种生物组织拉曼光谱扫描专用载玻片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279009A (zh) * 2013-06-14 2013-09-04 中国科学院光电技术研究所 一种柔性紫外光压印复合模板及其制备方法
CN107290326A (zh) * 2016-04-12 2017-10-24 中国科学院苏州纳米技术与纳米仿生研究所 芯片器件及其制作方法
CN109470679A (zh) * 2017-09-08 2019-03-15 清华大学 用于分子检测的分子载体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279009A (zh) * 2013-06-14 2013-09-04 中国科学院光电技术研究所 一种柔性紫外光压印复合模板及其制备方法
CN107290326A (zh) * 2016-04-12 2017-10-24 中国科学院苏州纳米技术与纳米仿生研究所 芯片器件及其制作方法
CN109470679A (zh) * 2017-09-08 2019-03-15 清华大学 用于分子检测的分子载体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高丽等: "柔性光学超材料和等离子激元的发展和应用", 《中国科学:物理学 力学 天文学》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272714A (zh) * 2020-03-03 2020-06-12 电子科技大学中山学院 一种光学谐振腔原理的金属氧化物气体传感器
CN111951662A (zh) * 2020-06-03 2020-11-17 中山大学 一种基于结构单元尺寸差异的物理型信息隐藏结构及其制备方法
CN111951662B (zh) * 2020-06-03 2022-06-10 中山大学 一种基于结构单元尺寸差异的物理型信息隐藏结构及其制备方法
CN112683879A (zh) * 2020-12-22 2021-04-20 山东大学 聚合物基多元表面增强拉曼检测基底及其制备方法与癌症诊断应用
WO2022134459A1 (zh) * 2020-12-22 2022-06-30 山东大学 聚合物基多元表面增强拉曼检测基底及其制备方法与癌症诊断应用
CN113702354A (zh) * 2021-09-02 2021-11-26 电子科技大学 一种基于阵列式微结构的柔性sers基底及其制备方法
CN114280028A (zh) * 2021-12-29 2022-04-05 国家纳米科学中心 一种介质增强拉曼散射芯片及其制备方法与应用
CN114295599A (zh) * 2021-12-29 2022-04-08 国家纳米科学中心 一种表面增强拉曼散射芯片及其制备方法与应用
CN114324293A (zh) * 2021-12-29 2022-04-12 国家纳米科学中心 一种表面增强拉曼芯片
CN117607121A (zh) * 2023-11-10 2024-02-27 元珵科技(北京)有限公司 一种生物组织拉曼光谱扫描专用载玻片

Also Published As

Publication number Publication date
CN110220881B (zh) 2021-03-23
LU101707B1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
CN110220881A (zh) 基于纳米结构和有序纳米颗粒的柔性sers基底及其制备方法和应用
JP6252053B2 (ja) 表面増強ラマン散乱測定用基板、及びその製造方法
Pisco et al. Nanosphere lithography for optical fiber tip nanoprobes
Ai et al. Advanced colloidal lithography beyond surface patterning
KR101886619B1 (ko) 표면증강 라만산란 기판, 이를 포함하는 분자 검출용 소자 및 이의 제조방법
Cai et al. Marangoni flow-induced self-assembly of hexagonal and stripelike nanoparticle patterns
US10281398B2 (en) Lithographic systems and methods
Deng et al. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy
US7292334B1 (en) Binary arrays of nanoparticles for nano-enhanced Raman scattering molecular sensors
Liu et al. A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template
Wallace et al. Advancements in fractal plasmonics: structures, optical properties, and applications
Watanabe et al. Spontaneous formation of cluster array of gold particles by convective self-assembly
Fang et al. Scalable bottom-up fabrication of colloidal photonic crystals and periodic plasmonic nanostructures
Wang et al. Template-confined site-specific electrodeposition of nanoparticle cluster-in-bowl arrays as surface enhanced Raman spectroscopy substrates
CN110044869B (zh) 柔性表面增强拉曼检测基底及其制备方法与制备系统
Wendisch et al. Confined etching within 2D and 3D colloidal crystals for tunable nanostructured templates: local environment matters
Richner et al. Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution
Zhang et al. Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates
Zhao et al. Large-area nanogap-controlled 3D nanoarchitectures fabricated via layer-by-layer nanoimprint
Lordan et al. The effect of Ag nanoparticles on surface-enhanced luminescence from Au nanovoid arrays
Gomez et al. Reliable and cheap SERS active substrates
Banik et al. Fabrication of ordered 2D colloidal crystals on flat and patterned substrates by spin coating
Yim et al. Transferrable plasmonic au thin film containing sub-20 nm nanohole array constructed via high-resolution polymer self-assembly and nanotransfer printing
Lee et al. A low-cost, highly-stable surface enhanced Raman scattering substrate by Si nanowire arrays decorated with Au nanoparticles and Au backplate
Bartschmid et al. Self-assembled au nanoparticle monolayers on silicon in two-and three-dimensions for surface-enhanced Raman scattering sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant