CN110314830B - 基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底 - Google Patents

基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底 Download PDF

Info

Publication number
CN110314830B
CN110314830B CN201910614681.3A CN201910614681A CN110314830B CN 110314830 B CN110314830 B CN 110314830B CN 201910614681 A CN201910614681 A CN 201910614681A CN 110314830 B CN110314830 B CN 110314830B
Authority
CN
China
Prior art keywords
array
layer
raman scattering
enhanced raman
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910614681.3A
Other languages
English (en)
Other versions
CN110314830A (zh
Inventor
张成鹏
陈帅
姜兆亮
刘文平
马嵩华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201910614681.3A priority Critical patent/CN110314830B/zh
Publication of CN110314830A publication Critical patent/CN110314830A/zh
Application granted granted Critical
Publication of CN110314830B publication Critical patent/CN110314830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/145After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/655Stimulated Raman

Abstract

本公开提出了基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,包括自下至上依次为柔性基材层、光固化树脂层、纳米颗粒和金属涂层;所述柔性基材层的表面涂布光固化树脂材料形成光固化树脂层,通过辊压成形工艺在光固化树脂层的光固化树脂材料表面加工限位结构阵列;每个限位结构具有容纳一个纳米颗粒且纳米颗粒能够裸露出来的空间,形成单层有序纳米颗粒阵列,从而实现能够对纳米颗粒进行限位。本公开通过辊压成形工艺加工限位结构阵列,工艺简单、成本低、效率高、可批量化制造、大面积一致性好;通过调控限位结构的间距和阵列方式,可以精确控制纳米颗粒的间隙和阵列方式,获得最优的等离子体共振效果,即最优的拉曼增强效果。

Description

基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底
技术领域
本公开涉及生物检测技术领域,特别是涉及基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底及其制备方法。
背景技术
表面增强拉曼散射(SERS)作为一种强有力的实验手段,广泛应用在化学、催化、生物、医学、环境、食品安全等诸多领域,可以提供非破坏性的、超灵敏的表征,检测极限可以达到单分子级别。在瓜果蔬菜表面农药残留的原位探测、水溶液中污染物的原位检测、微生物实时检测以及化学反应的快速现场分析等领域,需要SERS基底兼具优异的柔性和透明性。
金、银等贵金属纳米颗粒常用于表面增强拉曼散射(SERS),但基于纳米颗粒的SERS基底容易存在有序性和均匀性难以控制、信号重现性差等不足。
中国专利CN 109060762 A公开了一种基于银纳米颗粒的复合柔性表面增强拉曼基底及其制备方法,利用化学还原方法制备出含有大量银纳米颗粒的银胶体;其次将银胶体与用甲苯稀释的聚二甲基硅氧烷(PDMS)混合形成悬浊液,把悬浊液滴加在硬质基板表面上,加热固化形成内含大量银纳米颗粒的PDMS薄膜,剥离;最后用浸渍法在制备好的薄膜上面转移一层银纳米颗粒,制备出基于银纳米颗粒的复合柔性表面增强拉曼基底,该专利中没有对纳米颗粒的有序性和均匀性进行调控,无法保证多次测量时的信号可重现性。
中国专利CN 109650392 A公开了一种灵敏且稳定的TiC表面增强拉曼散射纳米粒子的制备方法,包括如下步骤:将无水钛氯化物与乙醇搅拌均匀后,加入锂粉末,将再次搅拌均匀的溶液放入不锈钢高压釜中,高温下反应,得到高稳定的TiC纳米材料,该专利中也未对纳米颗粒的有序性和均匀性进行调控。
发明内容
本说明书实施方式的目的是提供基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,实现拉曼信号的高精度、高灵敏度、可重现性、可弯折、原位测试。
本说明书实施方式提供基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,通过以下技术方案实现:
包括:
自下至上依次为柔性基材层、光固化树脂层、纳米颗粒和金属涂层;
所述柔性基材层的表面涂布光固化树脂材料形成光固化树脂层,通过辊压成形工艺在光固化树脂层的光固化树脂材料表面加工限位结构阵列;
每个限位结构具有容纳一个纳米颗粒且纳米颗粒能够裸露出来的空间,形成单层有序纳米颗粒阵列,从而实现能够对纳米颗粒进行限位。
进一步的技术方案,所述柔性基材层的柔性基材为聚对苯二甲酸乙二酯PET、聚甲基丙烯酸甲酯PMMA、聚氯乙烯PVC、聚碳酸酯PC中的任意一种。
进一步的技术方案,所述纳米颗粒和金属涂层为金、银、铜、铂中的任意一种。
进一步的技术方案,所述限位结构为圆锥形、圆柱形、圆台形、长方体、正方体中的任意一种。
优选地,所述限位结构呈矩形阵列、三角形阵列、正方形阵列、菱形阵列、六边形阵列或圆形阵列分布在光固化树脂层的表面。
进一步优选地,所述纳米颗粒直径为10nm-2000nm。
进一步优选地,所述限位结构的直径或边长略大于纳米颗粒直径,结构深度与纳米颗粒直径的比值为0.7~1。
本说明书实施方式提供基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底的其制备方法,通过以下技术方案实现:
包括:
在柔性基材表面涂布光固化树脂材料,通过辊压成形工艺在光固化树脂材料表面加工限位结构阵列;
然后采用刮涂方法将纳米颗粒填入限位结构,擦拭掉表面多余的纳米颗粒溶液,使得每个限位结构保留一个纳米颗粒,形成单层有序纳米颗粒阵列;
通过等离子体刻蚀工艺去除部分光固化树脂材料,使纳米颗粒裸露出来;
采用蒸发镀膜工艺在表面沉积一层金属涂层,即可获得基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底。
进一步优选地,在辊压成形过程中,压印速度为0.3-50m/min,挤压力为0.5-6kg/cm2,模具温度为20-80℃;
在刮涂工艺中,刮涂速度为10~1000mm/min;
在等离子体刻蚀工艺中,功率为30-120W,刻蚀时间0.5-5min;
在蒸发镀膜工艺中,真空度为0.5×10-5-3.5×10-5Pa。
与现有技术相比,本公开的有益效果是:
本公开通过辊压成形工艺加工限位结构阵列,工艺简单、成本低、效率高、可批量化制造、大面积一致性好;通过调控限位结构的间距和阵列方式,可以精确控制纳米颗粒的间隙和阵列方式,获得最优的等离子体共振效果,即最优的拉曼增强效果;基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,具有精度高、灵敏度高、信号重现性强、可弯折、原位测试等优点。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为本公开实施例子的基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底的剖视图;
图2为本公开实施例子的基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底制备流程图;
图3为一种实施例的斜视图;
图中,110-柔性基材;120-光固化树脂;130-纳米颗粒;140-金属涂层。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例1
该实施例公开了基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,参见附图1所述,由柔性基材层110、光固化树脂层120、纳米颗粒130和金属涂层140构成。
具体实施例子中,柔性基材为聚对苯二甲酸乙二酯(PET)、聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)、聚碳酸酯(PC)等中的任意一种。
优选地,纳米颗粒和金属涂层为金、银、铜、铂等中的任意一种。
优选地,限位结构为圆锥形、圆柱形、圆台形、长方体、正方体等中的任意一种。
优选地,限位结构呈矩形阵列、三角形阵列、正方形阵列、菱形阵列、六边形阵列或圆形阵列等分布在光固化树脂表面。
进一步优选地,纳米颗粒直径为10nm-2000nm。
进一步优选地,限位结构的直径或边长略大于纳米颗粒直径,结构深度与纳米颗粒直径的比值为0.7~1。
实施例2
该实施例公开了基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底的制备方法,制备工艺流程如图2所示,通过辊压成形、刮涂、等离子体刻蚀、蒸发镀膜等工艺步骤获得基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底。具体采用以下步骤:在柔性基材110(PET)表面涂布光固化树脂材料120,通过辊压成形工艺在光固化树脂材料120表面加工限位结构阵列;然后采用刮涂方法将纳米银颗粒130填入限位结构,用酒精擦拭掉表面多余的纳米银颗粒溶液,使得每个限位结构保留一个纳米银颗粒130,形成单层有序纳米银颗粒阵列130;通过等离子体刻蚀工艺去除部分光固化树脂材料120,使纳米银颗粒130裸露出来;采用蒸发镀膜工艺在表面沉积一层金属涂层140,即可获得基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底。
具体的,在辊压成形过程中,压印速度为0.3-50m/min,挤压力为0.5-6kg/cm2,模具温度为20-80℃;在刮涂工艺中,刮涂速度为10~1000mm/min;在等离子体刻蚀工艺中,功率为30-120W,刻蚀时间0.5-5min;在蒸发镀膜工艺中,真空度为0.5×10-5-3.5×10-5Pa。
实施例3
制备的一种基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底如图3所示,纳米颗粒130和金属涂层140材料为银,纳米颗粒直径100nm,限位结构为圆锥形状,直径70nm、深度30nm、间距100nm,呈正方形阵列排布。
实施例4
一种基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,与实施例3相比,不同之处在于,限位结构间距为150nm。
实施例5
一种基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,与实施例3相比,不同之处在于,限位结构间距为200nm。
实施例6
一种基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,与实施例3相比,不同之处在于,纳米银颗粒的直径为80nm。
实施例7
一种基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,与实施例3相比,不同之处在于,纳米银颗粒的直径为60nm。
为了使得本领域技术人员能够更加清楚地了解本公开的技术方案,以下将结合具体的实施例与对比例详细说明本公开的技术方案。
在对比例1中,一种基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,限位结构的直径、深度、间距都为0nm,即没有限位结构。
在对比例2中,一种基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底,限位结构的直径、深度、间距都为0nm,纳米颗粒直径为0nm,即没有限位结构和纳米颗粒。
以罗丹明6G溶液为标记物,从每一样品表面随机选取6个位置进行拉曼信号测试,激光器波长785nm,功率1mW,积分时间30s,计算1366-1峰处的拉曼信号增强因子。
表1是实施例3-7、对比例1和2制备的基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底初始增强因子、多点测试的标准偏差、弯折100次后的增强因子(弯曲半径10mm)统计表。从测试结果可以看出,本发明基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底具有优异的拉曼信号增强效果、信号可重现性强,并且具有优异的抗弯折性能。
表1拉曼信号增强因子、相对标准偏差统计表
Figure BDA0002123541040000071
Figure BDA0002123541040000081
可以理解的是,在本说明书的描述中,参考术语“一实施例”、“另一实施例”、“其他实施例”、或“第一实施例~第N实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料的特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (4)

1.基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底的制备方法,其特征是,
包括:
在柔性基材表面涂布光固化树脂材料,通过辊压成形工艺在光固化树脂材料表面加工限位结构阵列;
然后采用刮涂方法将纳米颗粒填入限位结构,擦拭掉表面多余的纳米颗粒溶液,使得每个限位结构保留一个纳米颗粒,形成单层有序纳米颗粒阵列;
通过等离子体刻蚀工艺去除部分光固化树脂材料,使纳米颗粒裸露出来;
采用蒸发镀膜工艺在表面沉积一层金属涂层,即可获得基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底;
通过调控限位结构的间距和阵列方式,可以精确控制纳米颗粒的间隙和阵列方式,获得最优的拉曼增强效果;
在辊压成形过程中,压印速度为0.3-50m/min,挤压力为0.5-6kg/cm2,模具温度为20-80℃;
在刮涂工艺中,刮涂速度为10~1000mm/min;
在等离子体刻蚀工艺中,功率为30-120W,刻蚀时间0.5-5min;
在蒸发镀膜工艺中,真空度为0.5×10-5-3.5×10-5Pa;
所述纳米颗粒直径为10nm-2000nm。
2.如权利要求1所述的基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底的制备方法,其特征是,柔性基材为聚对苯二甲酸乙二酯PET、聚甲基丙烯酸甲酯PMMA、聚氯乙烯PVC、聚碳酸酯PC中的任意一种。
3.如权利要求1所述的基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底的制备方法,其特征是,所述限位结构为圆锥形、圆柱形、圆台形、长方体中的任意一种。
4.如权利要求1所述的基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底的制备方法,其特征是,所述限位结构呈矩形阵列、三角形阵列、菱形阵列、六边形阵列或圆形阵列分布在光固化树脂层的表面。
CN201910614681.3A 2019-07-09 2019-07-09 基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底 Active CN110314830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910614681.3A CN110314830B (zh) 2019-07-09 2019-07-09 基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910614681.3A CN110314830B (zh) 2019-07-09 2019-07-09 基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底

Publications (2)

Publication Number Publication Date
CN110314830A CN110314830A (zh) 2019-10-11
CN110314830B true CN110314830B (zh) 2020-10-02

Family

ID=68123141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910614681.3A Active CN110314830B (zh) 2019-07-09 2019-07-09 基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底

Country Status (1)

Country Link
CN (1) CN110314830B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501324B (zh) * 2019-09-05 2020-09-08 山东大学 一种表面增强拉曼检测基底及其基于微纳3d打印的制备方法和应用
CN111337474A (zh) * 2020-03-19 2020-06-26 山东大学 一种基于微纳米复合结构和纳米颗粒的拉曼检测芯片及其制备方法与应用
CN112683879B (zh) * 2020-12-22 2023-03-17 山东大学 聚合物基多元表面增强拉曼检测基底及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107567579A (zh) * 2015-07-20 2018-01-09 惠普发展公司,有限责任合伙企业 用于表面增强拉曼光谱的结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460224B2 (en) * 2005-12-19 2008-12-02 Opto Trace Technologies, Inc. Arrays of nano structures for surface-enhanced Raman scattering
WO2006048660A1 (en) * 2004-11-04 2006-05-11 Mesophotonics Limited Metal nano-void photonic crystal for enhanced raman spectroscopy
CN104502323A (zh) * 2014-12-22 2015-04-08 安徽师范大学 一种透明柔性表面增强拉曼活性基底及其制备方法
KR101777852B1 (ko) * 2015-09-24 2017-09-13 한국표준과학연구원 투명기판의 제조방법 및 이를 이용한 표면증강 라만산란 기판의 제조방법
CN109470675B (zh) * 2017-09-08 2024-04-02 清华大学 分子载体的制备方法
CN109470679B (zh) * 2017-09-08 2021-04-23 清华大学 用于分子检测的分子载体
CN108613959B (zh) * 2018-03-22 2020-03-24 苏州天际创新纳米技术有限公司 一种sers芯片及其制备方法
CN108827933A (zh) * 2018-05-17 2018-11-16 华南师范大学 一种表面增强拉曼散射基底及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107567579A (zh) * 2015-07-20 2018-01-09 惠普发展公司,有限责任合伙企业 用于表面增强拉曼光谱的结构

Also Published As

Publication number Publication date
CN110314830A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN110314830B (zh) 基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底
Fu et al. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique
Huo et al. Ag-nanoparticles@ bacterial nanocellulose as a 3D flexible and robust surface-enhanced Raman scattering substrate
Cao et al. Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications
Orendorff et al. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence
CN110220881B (zh) 基于纳米结构和有序纳米颗粒的柔性sers基底及其制备方法和应用
Pimentel et al. 3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms
Watanabe et al. Spontaneous formation of cluster array of gold particles by convective self-assembly
Lee et al. Particle-on-film gap plasmons on antireflective ZnO nanocone arrays for molecular-level surface-enhanced Raman scattering sensors
Badilescu et al. Gold nano-island platforms for localized surface plasmon resonance sensing: a short review
Zhang et al. Controllable in-situ growth of silver nanoparticles on filter paper for flexible and highly sensitive SERS sensors for malachite green residue detection
Chen et al. Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering
Xia et al. Electrodeposition of high density silver nanosheets with controllable morphologies served as effective and reproducible SERS substrates
Li et al. Fabrication of Au nanorods by the oblique angle deposition process for trace detection of methamphetamine with surface-enhanced Raman scattering
Zhao et al. Large-area nanogap-controlled 3D nanoarchitectures fabricated via layer-by-layer nanoimprint
Zhang et al. Synthesis of Open-Ended, Cylindrical Au− Ag Alloy Nanostructures on a Si/SiO x Surface
Yang et al. Simple, large-scale fabrication of uniform Raman-enhancing substrate with enhancement saturation
Bhattarai et al. Plasmonic-active nanostructured thin films
Domonkos et al. Nanosphere lithography for structuring polycrystalline diamond films
Geissler et al. Plastic substrates for surface-enhanced Raman scattering
Gahlaut et al. Recent advances in silver nanostructured substrates for plasmonic sensors
Chen et al. Arrays of iso-oriented gold nanobelts
Wu et al. High performance surface-enhanced Raman scattering substrate combining low dimensional and hierarchical nanostructures
Bartschmid et al. Self-assembled au nanoparticle monolayers on silicon in two-and three-dimensions for surface-enhanced Raman scattering sensing
Yin et al. MoS2-based substrates for surface-enhanced Raman scattering: fundamentals, progress and perspective

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant