CN110219018B - 一种工业化实施磁化铜电解的装置及方法 - Google Patents

一种工业化实施磁化铜电解的装置及方法 Download PDF

Info

Publication number
CN110219018B
CN110219018B CN201910453350.6A CN201910453350A CN110219018B CN 110219018 B CN110219018 B CN 110219018B CN 201910453350 A CN201910453350 A CN 201910453350A CN 110219018 B CN110219018 B CN 110219018B
Authority
CN
China
Prior art keywords
electrolyte
copper
tank
electrolysis
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910453350.6A
Other languages
English (en)
Other versions
CN110219018A (zh
Inventor
姚夏妍
王军辉
牛永胜
鲁兴武
程亮
李俞良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Research Institute of Mining and Metallurgy
Original Assignee
Northwest Research Institute of Mining and Metallurgy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Research Institute of Mining and Metallurgy filed Critical Northwest Research Institute of Mining and Metallurgy
Priority to CN201910453350.6A priority Critical patent/CN110219018B/zh
Publication of CN110219018A publication Critical patent/CN110219018A/zh
Application granted granted Critical
Publication of CN110219018B publication Critical patent/CN110219018B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明属于铜电解冶炼技术领域,具体涉及一种工业化实施磁化铜电解的装置及方法,包括包括永磁装置、过渡槽、电解槽、低位槽、高位槽和蒸汽加热装置,本发明通过将磁处理装置的旁路循环实现铜的磁电解工艺的大规模高效率的利用,并且可通过电解液高速通过永磁装置提高磁处理效率;本发明可增强当电解液通过磁场时所受到的洛伦磁力,极大地活化电解液,强化杂质絮凝沉降,提高电解液的清晰度,细化阴极铜晶粒,降低电解液中的气泡数量,解决了电解液中空气气泡容易在阳极表面反应生成氧化膜出现阳极钝化而影响阴极铜质量的问题。

Description

一种工业化实施磁化铜电解的装置及方法
技术领域
本发明属于铜电解冶炼技术领域,具体涉及一种工业化实施磁化铜电解的装置及方法。
背景技术
电解精炼是铜冶炼企业加工生产中的重要步骤,也是阴极铜生产制造的基本程序。近年来,有关铜的磁电解工艺进行了大量研究,但主要集中在通过将磁场施加在阴阳极两侧,虽然效果显著,但很难实施工业化生产,以至于磁电解工艺主要集中在实验室,极大地限制了磁电解工艺的进一步发展,例如,文献[V.C. Noninski. Magnetic field effecton copper electrodeposition in the Tafel potential region[J]. ElectrochimicaActa,1997,42(2).]发现磁场可提高铜的沉积速率,文献[温艳玲,钟云波,任忠鸣,等 .强磁场对电沉积镍铁合金膜显微组织的影响[J].中国有色金属学报,2006 ,16(4):715-721.]发现磁场可提高传质速率,具有细化镀层晶粒的作用,文献[车驾才.探讨电解液纯净度对阴极铜质量的影响[J].山西冶金,2015,38(06):42-44+51.]指出电解液携带的气体在循环过程中不能得到排出,在电解过程中,一方面容易搅浑电解液,延长阳极泥的沉降时间,使部分阳极泥在沉降的过程中吸附到阴极铜表面,增加阴极铜表面的黏附性阳极泥粒子。另一方面,电解液中空气气泡容易在阳极表面反应生成氧化膜出现阳极钝化现象,导致单槽槽压升高。槽压高,加快电解液中铜离子的运动速率,改变铜离子的运动轨迹,改变阴极铜的晶格状态,增加其它杂质吸附到阴极铜表面的机率。此外,电解液含气严重的情况下直接在阴极铜表面生成气孔,影响阴极铜质量。而文献[张舍. 流体中气泡的磁场效应[D].陕西师范大学,2017.]发现在强磁场下,磁场对气泡的抑制作用明显。基于此,本发明通过在原铜电解的循环系统另施加带有磁处理装置的旁路循环系统,以提高洛伦磁力的作用,强化传质,减少电解液的气泡数量,改善阴极铜质量。
发明内容
针对上述现有技术中存在的问题及不足,本发明提供一种工业化实施磁化铜电解的装置。
本发明的另一目的是提供一种利用工业化实施磁化铜电解的装置进行磁电解精练铜的方法。
为实现上述目的,本发明提供如下技术方案:
一种工业化实施磁化铜电解的装置,包括永磁装置、过渡槽、电解槽、低位槽、高位槽和蒸汽加热装置,所述的永磁装置、过渡槽和第一循环泵串联起来并通过旁路循环系统管道连接于电解槽的进液口处形成旁路循环系统,所述电解槽依次通过管道与低位槽、高位槽和蒸汽加热装置连接形成主路循环系统,电解槽和低位槽之间的管道上设有流量计和阀门,低位槽和高位槽之间的管道上设有第二循环泵。
进一步的,所述的旁路循环系统的循环管道平行穿设于永磁装置的磁极中间位置,永磁装置的磁场强度为4-6T,永磁装置的磁感线方向与电解液流动方向垂直,旁路循环系统的流速为0.5 m/s-1.2 m/s。
进一步的,所述的过渡槽的体积为电解槽的1/4。
进一步的,所述的永磁装置内的循环管道呈扁平状,循环管道内宽度为1cm,高为20cm,长为15cm。
一种利用工业化实施磁化铜电解的装置进行磁电解精练铜的方法,该方法按照下述步骤进行:
步骤1:首先测得电解液中铜离子的浓度为40-50g/L,H2SO4的浓度为160-180g/L,永磁装置的磁场强度为4-6T,量取一定体积的电解液从高位槽缓缓进液并开启蒸汽加热装置,使电解液充满过渡槽后开启第一循环泵,保持流速为0.5 m/s-1.2 m/s。电解液充分磁化后进入电解槽和低位槽,然后开启第二循环泵控制电解液的温度为50℃-65℃,调节阀门使得流量计显示为0.2-0.3 m/s;
步骤2:将铜阳极和始极片放置于电解槽中,设置电解槽的电压为0.35V,电流密度为220-280A/m2,开启直流电源开始电解,同时按照明胶:20~150g/t,硫脲:20~150g/t,盐酸:100~250g/t的量向电解槽中进行滴加;
步骤3:电解12d后,将阴极取出,用稀硫酸煮洗后,进行真空干燥称重,并观察阴极铜微观结构,然后观察电解液清晰度。
与现有技术相比,本发明的有益效果是:
本发明解决了现有磁电解工艺无法实现工业化、铜电解液清晰度差、铜电解过程易出现浓差极化、阴极铜晶粒粗糙的问题,本发明通过将磁处理装置的旁路循环实现铜的磁电解工艺的大规模高效率的利用,并且可通过电解液高速通过永磁装置提高磁处理效率;本发明可增强当电解液通过磁场时所受到的洛伦磁力,极大地活化电解液,强化杂质絮凝沉降,提高电解液的清晰度,细化阴极铜晶粒,降低电解液中的气泡数量,解决了电解液中空气气泡容易在阳极表面反应生成氧化膜出现阳极钝化而影响阴极铜质量的问题。
附图说明
图1为本发明的结构示意图;
图2为图1中的旁路循环系统管道穿过永磁装置的结构示意图;
图3为对比例1得到的阴极铜的结构图;
图4为对比例2得到的阴极铜的结构图;
图5为实施例1得到的阴极铜的结构图。
图中:1.永磁装置、2.过渡槽、3.循环泵、4.电解槽、5.流量计、6.阀门、7.低位槽、8. 循环泵、9.高位槽、10.蒸汽加热装置、11.旁路循环系统管道、12.管道。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
如图1-2所示,一种工业化实施磁化铜电解的装置,包括永磁装置1、过渡槽2、电解槽4、低位槽7、高位槽9和蒸汽加热装置10,永磁装置1、过渡槽2和第一循环泵3串联起来并通过旁路循环系统管道11连接于电解槽4的进液口处形成旁路循环系统,电解槽4依次通过管道12与低位槽7、高位槽9和蒸汽加热装置10连接形成主路循环系统,电解槽4和低位槽7之间的管道12上设有流量计5和阀门6,低位槽7和高位槽9之间的管道12上设有第二循环泵8,旁路循环系统管道11平行穿设于永磁装置1的磁极中间位置,永磁装置1内的旁路循环系统管道11呈扁平状,旁路循环系统管道11内宽度为1cm,高为20cm,长为15cm,永磁装置1的磁场强度为4-6T,永磁装置1的磁感线方向与电解液流动方向垂直,旁路循环系统的流速为0.5 m/s-1.2 m/s,过渡槽2的体积为电解槽4的1/4。
本发明利用工业化实施磁化铜电解的装置进行磁电解精练铜的方法,该方法按照下述步骤进行:
步骤1:首先测得电解液中铜离子的浓度为40-50g/L,H2SO4的浓度为160-180g/L,永磁装置1的磁场强度为4-6T,量取一定体积的电解液从高位槽9缓缓进液并开启蒸汽加热装置10,使电解液充满过渡槽2后开启第一循环泵3,电解液充分磁化后进入电解槽4和低位槽7,然后开启第二循环泵8控制电解液的温度为50℃-65℃,调节阀门6使得流量计5显示为0.2-0.3 m/s;
步骤2:将铜阳极和始极片放置于电解槽4中,设置电解槽4的电压为0.35V,电流密度为220-280A/m2,开启直流电源开始电解,同时按照明胶:20~150g/t,硫脲:20~150g/t,盐酸:100~250g/t的量向电解槽4中进行滴加;
步骤3:电解12d后,将阴极取出,用稀硫酸煮洗后,进行真空干燥称重,并观察阴极铜微观结构,然后观察电解液清晰度。
对比例1
首先测得电解液中铜离子的浓度为40g/L,H2SO4的浓度为160g/L,第一循环泵3是关闭状态,然后开启第二循环泵8和蒸汽加热装置10,使得电解液的温度控制在50℃,之后调节阀门6使得流量计5的流速显示为0.2m/s,同时将铜阳极和始极片放置于电解槽4中,设置电解槽4的电压为0.35V,电流密度:220A/m2,开启直流电源开始电解,同时按照明胶:20g/t,硫脲:20g/t,盐酸:100g/t(t表示每吨阴极铜)的量向电解槽4中滴加盐酸、硫脲、明胶,电解12d后,将阴极取出,用稀硫酸煮洗后,进行真空干燥并观察阴极铜表观结构,发现阴极铜出现粒子,整个表面特别粗糙,如图3所示,然后观察电解液清晰度,发现电解液较浑浊,测得铜离子浓度为52g/L,证明铜离子扩散性能低,易出现浓差极化,而Pb离子浓度为16.8g/L,证明阳极泥沉降不彻底。
对比例2
首先测得电解液中铜离子的浓度为44.5g/L,H2SO4的浓度为170g/L,永磁装置1的磁场强度为1T,第一循环泵3是关闭状态,然后开启第二循环泵8和蒸汽加热装置10,使得电解液的温度控制在50℃,之后调节阀门6使得流量计5的流速显示为0.25m/s,然后开启第一循环泵3,使得旁路循环系统的流速为0.80 m/s,同时将铜阳极和始极片放置于电解槽4中,设置电解槽4的电压为0.35V,电流密度:236A/m2,开启直流电源开始电解,同时按照明胶:35g/t,硫脲:35g/t,盐酸:150g/t(t表示每吨阴极铜)的量向电解槽4中滴加盐酸、硫脲、明胶,电解12d后,将阴极取出,用稀硫酸煮洗后,进行真空干燥并观察其表观结构,与磁场强度为0T时相比,发现阴极铜没有长粒子现象,但晶粒比较粗大,容易黏附阳极泥,然后观察电解液清晰度,发现电解液清晰度有所提高,如图4所示,测得铜离子浓度为48.4g/L,证明铜离子扩散性能较好,可降低浓差极化发生的概率,而铅离子浓度为12.6g/L,证明阳极泥沉降较好。
实施例1
首先测得电解液中铜离子的浓度为50g/L,H2SO4的浓度为180g/L,永磁装置1的磁场强度为4T,第一循环泵3是关闭状态,然后开启第二循环泵8和蒸汽加热装置10,使得电解液的温度控制在65℃,之后调节阀门6使得流量计5的流速显示为0.25m/s,然后开启第一循环泵3,使得旁路循环系统的流速为0.5 m/s,同时将铜阳极和始极片放置于电解槽4中,设置电解槽4的电压为0.35V,电流密度:280A/m2,开启直流电源开始电解,同时按照明胶:35g/t,硫脲:35g/t,盐酸:150g/t(t表示每吨阴极铜)的量向电解槽4中滴加盐酸、硫脲、明胶,电解12d后,将阴极取出,用稀硫酸煮洗后,进行真空干燥并观察其表观结构,与磁场强度为0T时相比,发现阴极铜没有长粒子现象,而且可以细化晶粒的目的,如图5所示,阳极泥不易黏附在其表面,然后观察电解液清晰度,发现电解液十分清澈,测得铜离子浓度为43.5g/L,证明铜离子扩散性能好,可防止出现浓差极化的现象,而铅离子浓度为6.3 g/L,证明阳极泥沉降好。
实施例1的结果与对比例1-2相比得出结论表明,磁场强度为4-6T,电解液通过磁场使得流速为1.2 m/s时,施加磁场可以解决阴极铜长粒子的问题,提高阴极铜的表观性能,说明磁场磁化电解液后,电解液的气泡数量降低,较少阳极泥对阴极铜的影响,适应于大液量的铜电解车间。

Claims (4)

1. 一种利用工业化实施铜电解的装置进行磁电解精练铜的方法,包括永磁装置(1)、过渡槽(2)、电解槽(4)、低位槽(7)、高位槽(9)和蒸汽加热装置(10),其特征在于,所述的永磁装置(1)、过渡槽(2)和第一循环泵(3)串联起来并通过旁路循环系统管道(11)连接于电解槽(4)的进液口处形成旁路循环系统,所述电解槽(4)依次通过管道(12)与低位槽(7)、高位槽(9)和蒸汽加热装置(10)连接形成主路循环系统,电解槽(4)和低位槽(7)之间的管道(12)上设有流量计(5)和阀门(6),低位槽(7)和高位槽(9)之间的管道(12)上设有第二循环泵(8),所述的旁路循环系统管道(11)平行穿设于永磁装置(1)的磁极中间位置,永磁装置(1)的磁场强度为4-6T,永磁装置(1)的磁感线方向与电解液流动方向垂直,旁路循环系统的流速为0.5 m/s-1.2 m/s。
2.如权利要求1所述的一种利用工业化实施铜电解的装置进行磁电解精练铜的方法,其特征在于,所述的过渡槽(2)的体积为电解槽(4)的1/4。
3.如权利要求1所述的一种利用工业化实施铜电解的装置进行磁电解精练铜的方法,其特征在于,所述的永磁装置(1)内的旁路循环系统管道(11)呈扁平状,旁路循环系统管道(11)内宽度为1cm,高为20cm,长为15cm。
4.如权利要求1所述的一种利用工业化实施铜电解的装置进行磁电解精练铜的方法,其特征在于,所述的方法按照下述步骤进行:
步骤1:首先测得电解液中铜离子的浓度为40-50g/L,H2SO4的浓度为160-180g/L,永磁装置(1)的磁场强度为4-6T,量取一定体积的电解液从高位槽(9)缓缓进液并开启蒸汽加热装置(10),使电解液充满过渡槽(2)后开启第一循环泵(3),电解液充分磁化后进入电解槽(4)和低位槽(7),然后开启第二循环泵(8)控制电解液的温度为50℃-65℃,调节阀门(6)使得流量计(5)显示为0.2-0.3 m/s;
步骤2:将铜阳极和始极片放置于电解槽(4)中,设置电解槽(4)的电压为0.35V,电流密度为220-280A/m2,开启直流电源开始电解,同时按照明胶:20~150g/t,硫脲:20~150g/t,盐酸:100~250g/t的量向电解槽(4)中进行滴加;
步骤3:电解12d后,将阴极取出,用稀硫酸煮洗后,进行真空干燥称重,并观察阴极铜微观结构,然后观察电解液清晰度。
CN201910453350.6A 2019-05-28 2019-05-28 一种工业化实施磁化铜电解的装置及方法 Active CN110219018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910453350.6A CN110219018B (zh) 2019-05-28 2019-05-28 一种工业化实施磁化铜电解的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910453350.6A CN110219018B (zh) 2019-05-28 2019-05-28 一种工业化实施磁化铜电解的装置及方法

Publications (2)

Publication Number Publication Date
CN110219018A CN110219018A (zh) 2019-09-10
CN110219018B true CN110219018B (zh) 2021-04-16

Family

ID=67818259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910453350.6A Active CN110219018B (zh) 2019-05-28 2019-05-28 一种工业化实施磁化铜电解的装置及方法

Country Status (1)

Country Link
CN (1) CN110219018B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904470B (zh) * 2019-11-22 2022-05-31 西北矿冶研究院 一种电解装置
RU2733768C2 (ru) * 2019-12-03 2020-10-06 Геннадий Леонидович Багич Устройство для рафинирования меди электролизом электролита и способ рафинирования меди электролизом
CN111778520A (zh) * 2020-05-22 2020-10-16 西北矿冶研究院 一种并流沉淀法降低铜电解过程漂浮阳极泥的方法
CN111676490B (zh) * 2020-05-22 2021-07-13 西北矿冶研究院 一种优化锌电积工艺的方法
CN116466023A (zh) * 2022-01-12 2023-07-21 杭州三耐环保科技股份有限公司 一种电解液异常监控方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526230B (zh) * 2013-10-08 2015-12-09 铜陵有色金属集团股份有限公司金昌冶炼厂 一种铜电解液净化过程高效生产高品质阴极铜的方法
CN104032332B (zh) * 2014-06-04 2016-05-25 杭州三耐环保科技有限公司 一种底部进液循环高电流密度电解沉积金属的装置及实现方法
CN206219686U (zh) * 2016-11-22 2017-06-06 丰顺佳丰电子有限公司 一种碱性蚀刻液电解提铜系统
CN107460498B (zh) * 2017-08-16 2019-04-12 桂林理工大学 用碳纳米管/聚合物导电复合材料阴极板进行铜电解精炼的方法
CN108546963B (zh) * 2018-05-31 2020-05-22 西北矿冶研究院 一种提高铜电解液净化效率的方法

Also Published As

Publication number Publication date
CN110219018A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN110219018B (zh) 一种工业化实施磁化铜电解的装置及方法
CN108546963B (zh) 一种提高铜电解液净化效率的方法
Dunne et al. Magnetic structuring of electrodeposits
CN109112569B (zh) 一种离子交换膜电解法同时制备金属锰与二氧化锰的生产方法
CN104087976B (zh) Sm-Co合金非晶磁性纳米线阵列的制备方法
CN201053039Y (zh) 制备球状纳晶镍铁镀层的电沉积装置
Xu et al. Extracting of copper from simulated leaching solution of copper-cadmium residues by cyclone electrowinning technology
Ding et al. Influence of three N-based auxiliary additives during the electrodeposition of manganese
Liu et al. The dynamic effect of micro-MHD convection on bubble grown at a horizontal microelectrode
CN110904470B (zh) 一种电解装置
CN103060842B (zh) 一种大流量下制备电积钴的方法
CN103060846B (zh) 脉冲电沉积制备Zn-Pb-Bi-La合金电极材料的方法
CN102839394B (zh) 一种快速制备多级结构的枝状纳米铁的方法
CN205741268U (zh) 一种强磁场下电化学循环镀液装置
CN110528025B (zh) 一种可调节铜酸比例的铜电解系统及方法
Hou et al. Effect of Tin Ion on Electrodeposition Behavior of Indium
CN108866582A (zh) 一种电沉积法制备粗化镍箔的工艺
Song et al. Electrodeposition of manganese metal and co-production of electrolytic manganese dioxide using single-membrane double-chamber electrolysis
CN108642530A (zh) 水溶液电解质中高效电沉积超高纯金属的装置和方法
CN211311618U (zh) 一种降低铜电解精炼漂浮阳极泥的电解系统
CN204529999U (zh) 一种分离回收金属复合废料的旋流电解装置
CN204690126U (zh) 一种铜阳极旋转电解制合格阴极铜的装置
CN209922976U (zh) 一种可调节电极双金属协助电解处理污水装置
CN106356187A (zh) 一种钕铁硼表面渗镝工艺
CN206477037U (zh) 一种镓电解用冷却电极

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant