CN110215912B - 萘基聚酰亚胺磁性复合物及其制备方法和应用 - Google Patents

萘基聚酰亚胺磁性复合物及其制备方法和应用 Download PDF

Info

Publication number
CN110215912B
CN110215912B CN201910516208.1A CN201910516208A CN110215912B CN 110215912 B CN110215912 B CN 110215912B CN 201910516208 A CN201910516208 A CN 201910516208A CN 110215912 B CN110215912 B CN 110215912B
Authority
CN
China
Prior art keywords
polyimide
naphthyl
magnetic
sio
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910516208.1A
Other languages
English (en)
Other versions
CN110215912A (zh
Inventor
胡锴
崔永霞
陈志红
龚海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Traditional Chinese Medicine HUTCM
Original Assignee
Henan University of Traditional Chinese Medicine HUTCM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Traditional Chinese Medicine HUTCM filed Critical Henan University of Traditional Chinese Medicine HUTCM
Priority to CN201910516208.1A priority Critical patent/CN110215912B/zh
Publication of CN110215912A publication Critical patent/CN110215912A/zh
Application granted granted Critical
Publication of CN110215912B publication Critical patent/CN110215912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种萘基聚酰亚胺磁性复合物及其制备方法和应用,萘基聚酰亚胺磁性复合物包括磁性Fe3O4内核以及核外依次包裹的SiO2层和萘基聚酰亚胺层,所述萘基聚酰亚胺层含有苯环、C=O、C‑N、C‑C和C=C键。本发明将磁性萘基聚酰亚胺聚合物通过共价键键合到磁性纳米粒子表面,制备了一种具有多重作用力的复合材料,键合到四氧化三铁上的萘基聚酰亚胺材料不但可以提供作为萃取材料必备的比表面积和孔结构,而且其具有大量共轭结构的苯环,可以与苏丹红分子之间发生π‑π堆积和疏水作用;残余的羧基基团可以与苏丹红中的羟基发生氢键作用。本发明的复合物比表面积大,孔径分布均匀,对一些极性以及具有芳香共轭体系的物质可以实现特异性吸附。

Description

萘基聚酰亚胺磁性复合物及其制备方法和应用
技术领域
本发明涉及一种分离材料,具体涉及一种萘基聚酰亚胺磁性复合物及其制备方法和应用。
背景技术
在食品中过度使用添加剂,尤其是有害的染料,可能会对人体健康带来一定危害。苏丹红是亲脂性偶氮苯化合物,主要包括Ⅰ、Ⅱ、Ⅲ和Ⅳ这4种类型,其作为一种人工合成的染料,广泛用于如溶剂、油、蜡和汽油的增色以及鞋、地板等的增光。由于其具有潜在的致癌性,中国和欧盟都禁止将其作为食品添加剂,但因苏丹红成本低、着色性好,仍被很多商家非法使用,食品中检测出苏丹红的报道时有发生,因此有必要建立简单、快速、高效的苏丹红分析检测方法。
目前,为了分析检测环境和食品样品中的苏丹红,已经发展了各种分析方法,包括有高效液相色谱法、薄层色谱法、气质联用法、荧光光谱法等。但常常由于苏丹食物样品的基质比较繁琐,气相或液相色谱法等不能直接被用于分析,被测物质往往需要用适当的前处理方法进行富集和分离后,才能够被进行检测。到目前为止,已经发展了多种样品制备方法,用于从不同样品中富集和分离苏丹红,如液-液萃取、固相萃取(SPE)、固相微萃取(SPME)、液相微萃取和分散固相萃取(DSPE)。磁固相萃取(MSPE)是集分散液-液萃取和SPE的优点于一体的小型化固相萃取方法,近年来越来越受到研究者的关注。与传统的SPE法相比,MSPE法由于吸附剂与目标分析物接触面积的扩大,可以提供更高的吸附容量。此外,MSPE法具有简单、快速、有机溶剂消耗低、成本低等优点。因此,MSPE作为一种极具吸引力和前景的样品前处理技术,已被广泛用于从各种食品样品中提取污染物。
在MSPE过程中,吸附剂是影响提取效率的关键因素,因此开发具有较高吸附效率的新型磁性吸附剂成为热门研究课题。近年来,四氧化三铁基磁性聚合物材料由于其结合了纳米四氧化三铁的超顺磁性和有机聚合物的多种特殊形式,如生物相容性、良好分散性、磁性响应性等,从而在催化、分离等领域有着极为广泛的应用前景。芳香聚酰亚胺具有优异的热和化学稳定性、高强度、耐溶剂及尺寸稳定等特性,被广泛应用于电子材料、复合材料和气体分离膜材料等领域。近年来,具有多孔骨架结构的聚酰亚胺在氢能储存方面的发展日益受到重视,成为了当前微孔材料研究的热点之一。萘基聚酰亚胺具有较好的空间规整性以及良好的耐热耐化学腐蚀性等优点,受到了越来越多的关注。截止目前,此类化合物在样品前处理领域研究较少。本发明以廉价的商品化原料1,4,5,8-萘四甲酸二酐(NTDA)和尿素单体,制备了萘基聚酰亚胺磁性复合物,用于苏丹红染料的萃取分离。
发明内容
针对现有技术的不足,本发明的目的是提供一种比表面积大、分散性好、核壳层结构稳定的萘基聚酰亚胺磁性复合物及其制备方法和应用
为了实现上述目的,本发明的技术方案是:
萘基聚酰亚胺磁性复合物,包括磁性Fe3O4内核以及核外依次包裹的SiO2层和萘基聚酰亚胺层,所述萘基聚酰亚胺层含有苯环、C=O、C-N、C-C和C=C键。
一种萘基聚酰亚胺磁性复合物的制备方法,是将氨基修饰的Fe3O4@SiO2-NH2纳米粒子分散至溶剂中,加入1,4,5,8-萘四甲酸酐与尿素,进行反应,最后洗涤、干燥,得到萘基聚酰亚胺磁性复合物。
氨基修饰的Fe3O4@SiO2-NH2纳米粒子、1,4,5,8-萘四甲酸酐与尿素的重量比为1:1.35-1.45:0.25-0.35,溶剂为N-甲基-2-吡咯烷酮。
反应条件为:先在室温下搅拌3-5h,然后加热至170-190℃反应1-2h。
洗涤条件为:先用体积比1:1的丙酮和N-甲基-2-吡咯烷酮混合液洗涤,然后用乙醇洗涤,再用水洗涤,最后用乙醇洗涤。
干燥条件为:温度40-50℃,真空,时间为12h。
氨基修饰的Fe3O4@SiO2-NH2纳米粒子的制备方法为:
(1)采用溶剂热法制备磁性Fe3O4纳米粒子;
(2)采用溶胶-凝胶聚合法对磁性Fe3O4纳米粒子进行表面修饰,制备具有核壳结构的磁性Fe3O4@SiO2粒子;
(3)将磁性Fe3O4@SiO2纳米粒子超声分散至溶剂中,在搅拌下加入3-氨丙基三乙氧基硅烷,加热回流反应,最后洗涤、干燥,得到氨基修饰的Fe3O4@SiO2-NH2纳米粒子。
步骤(1)的具体方法为:称取2.7g FeCl3·6H2O固体于100mL的烧杯中,加入80mL的乙二醇,超声使其溶解,然后加入7.2g无水乙酸钠和2.0g聚乙二醇,超声20min;转移至高压反应釜中,在200℃下反应12h,依次使用乙醇和二次蒸馏水洗涤反应生成的Fe3O4纳米粒子,即得。
步骤(2)的具体方法为:向含有步骤(1)Fe3O4纳米粒子的乙醇水溶液中加入氨水和硅酸四乙酯,搅拌反应,制得具有核壳结构的Fe3O4@SiO2粒子;Fe3O4纳米颗粒(g)与硅酸四乙酯(mL)和氨水(mL)的比例为1:2:3;反应温度为45℃,反应时间为11h;所用的乙醇水溶液的体积分数为80%;
还包括反应结束后加入0.1mol/L的HCl溶液,分散后磁石分离,先依次用乙醇、丙酮、二次蒸馏水洗涤,再用乙醇洗涤;在60℃下真空干燥6h,得到Fe3O4@SiO2纳米粒子储于干燥器中备用。
步骤(3)中Fe3O4@SiO2纳米粒子(g)与3-氨丙基三乙氧基硅烷(mL)的比例为1:2;溶剂为无水甲苯;反应温度为115℃,反应时间为8h;搅拌条件为转速20-30rpm;洗涤时,依次用甲苯、甲醇、丙酮、二次蒸馏水、乙醇洗涤;干燥条件为:温度40℃,时间为12h。
一种萘基聚酰亚胺磁性复合物在萃取苏丹红化合物时作为吸附剂的应用。
本发明的优点在于采用溶剂热法合成大小均一、分散性好的Fe3O4纳米粒子,通过表面改性和修饰,使得磁性Fe3O4纳米粒子具有良好的分散性。经与硅酸四乙酯水解后在Fe3O4形成具有稳定的核壳结构的SiO2层;然后以3-氨丙基三乙氧基硅烷为偶联剂,先合成具有氨基修饰的核壳结构磁性纳米粒子;在1,4,5,8-萘四甲酸酐和尿素作用下,即可制得萘基聚酰亚胺磁性复合物。
将本发明合成的萘基聚酰亚胺磁性复合物用红外光谱和透射电镜进行了表征。实验结果表明,采用本发明方法合成的萘基聚酰亚胺磁性复合物具有分散性良好、结构稳定、合成方法简便,制备成本较低、制备方法适用面较广、材料可以重复回收利用等优点。键合到四氧化三铁上的磁性萘基聚酰亚胺聚合物能提供疏水作用、氢键作用、π-π堆积作用等多种作用力,所以对一些极性物质如多环芳烃类、苯酚类物质特异性吸附作用。
具体的,本发明相对于现有技术具有如下优点和效果:
(1)本发明的复合物具有较强的磁性,对目标物进行吸附后,还可以借助外部的磁场作用实现与基质的快速分离,可避免离心或者过滤分离操作带来的不便,大大降低了操作的难度和成本,提高了吸附效率。
(2)本发明的复合物比表面积大,孔径分布均匀,对一些极性以及具有芳香共轭体系的物质可以实现特异性吸附。
(3)本发明的复合物具有分散性良好,结构稳定,合成方法简便,制备成本较低、制备方法适用面较广、材料可以重复回收利用等优点。
(4)本发明将磁性萘基聚酰亚胺聚合物通过共价键键合到磁性纳米粒子表面,制备了一种具有多重作用力的复合材料,键合到四氧化三铁上的萘基聚酰亚胺材料不但可以提供作为萃取材料必备的比表面积和孔结构,而且其具有大量共轭结构的苯环,可以与苏丹红分子之间发生π-π堆积和疏水作用;残余的羧基基团可以与苏丹红中的羟基发生氢键作用。
(5)本发明制备方法具有快速、高效、成本低、环境友好、可重复使用等优点。
附图说明
图1为本发明萘基聚酰亚胺磁性复合物的合成流程图。
图2为本发明萘基聚酰亚胺磁性复合物的红外表征图。图中,a为Fe3O4@SiO2-NH2,b为萘基聚酰亚胺磁性复合物。
图3为本发明萘基聚酰亚胺磁性复合物的扫描电镜图。
图4为本发明萘基聚酰亚胺磁性复合物的磁滞回线图。图中,a为Fe3O4@SiO2-NH2,b为萘基聚酰亚胺磁性复合物。
图5为本发明萘基聚酰亚胺磁性复合物的XRD表征图谱。图中,a为Fe3O4@SiO2-NH2,b为萘基聚酰亚胺磁性复合物。
图6为本发明萘基聚酰亚胺磁性复合物对苏丹红的吸附效率随吸附时间变化的关系图。
图7为本发明萘基聚酰亚胺磁性复合物与商品化萃取材料对苏丹红的吸附效率对比图。
图8为本发明萘基聚酰亚胺磁性复合物的稳定性和重复性实验结果。
具体实施方式
以下结合实施例对本发明的具体实施方式作进一步详细说明。
实施例1、萘基聚酰亚胺磁性复合物的制备
萘基聚酰亚胺磁性复合物的制备方法,包括以下步骤:
(1)磁性Fe3O4纳米粒子的合成:
称取2.7g FeCl3·6H2O固体于100mL的烧杯中,加入80mL的乙二醇,超声至FeCl3·6H2O固体溶解溶液呈透明液体,然后加入7.2g无水乙酸钠和2.0g聚乙二醇,超声20min,溶液呈黄褐色,并含有大量的黄色絮状物;将得到的混合物转移至高压反应釜中,在200℃下反应12h,冷却至室温,依次使用乙醇和二次蒸馏水洗涤反应生成的Fe3O4纳米粒子,重复三次,Fe3O4纳米粒子储于无水乙醇中备用。
(2)磁性Fe3O4@SiO2纳米粒子的合成:
称取2.0g制备好的磁性Fe3O4纳米粒子,倒进250mL三口圆底烧瓶,加入80%(v/v)乙醇溶液160mL,超声10min后,再加入氨水6mL,剧烈搅拌20min后加入4mL硅酸四乙酯,在45℃下加热回流反应11h,用磁石进行分离,倒去上层,在沉积物中加入0.1mol/L HCl溶液50mL,超声10min,用磁石吸住底部,倒去HCl溶液,先依次用乙醇、丙酮和二次蒸馏水分别洗涤二次,最后用乙醇洗涤一次,60℃下真空干燥6h。
(3)氨基修饰的磁性Fe3O4@SiO2-NH2纳米粒子的合成
称取1.0g制备好的磁性Fe3O4@SiO2纳米粒子,倒入250mL三口圆底烧瓶中,向其中加60mL无水甲苯,超声20min后,在磁力搅拌(20-30rpm)下,缓慢逐滴加入2mL 3-氨丙基三乙氧基硅烷,快速将温度升到115℃回流反应8h,冷却,用磁石进行分离,弃去上层清液,依次用甲苯、甲醇、丙酮、二次蒸馏水、乙醇洗涤一次,最后在40℃下干燥12h,得到氨基修饰的磁性Fe3O4@SiO2-NH2纳米粒子,放在干燥器中备用。
(4)萘基聚酰亚胺磁性复合物的合成
称取0.75g Fe3O4@SiO2-NH2纳米粒子置于250mL的三口圆底烧瓶中,加入1.07g 1,4,5,8-萘四甲酸酐、0.24g尿素和50mL N-甲基-2-吡咯烷酮,在室温下搅拌4h后,升温至180℃,反应1h,冷却后,用磁石进行分离,弃去上层,下层磁性产品先用10mL丙酮和N-甲基-2-吡咯烷酮混合液(体积比1:1)洗涤两次,然后用10mL乙醇洗涤三次,再用10mL水洗涤三次,最后用10mL乙醇洗涤三次,在40℃下干燥过夜,得到萘基聚酰亚胺磁性复合物,置于干燥器中备用。
本发明萘基聚酰亚胺磁性复合物的合成示意图如图1所示。
采用FT-IR光谱仪对上述制备的萘基聚酰亚胺磁性复合物进行表征,其红外表征图如图2所示。图2a中,Fe3O4@SiO2-NH2的红外光谱图中600cm-1的振动峰是Fe-O的振动峰,1097cm-1的峰是Si-O-Si的振动峰,在1630cm-1和3432cm-1处的强吸收峰与-NH2的弯曲和拉伸振动相对应,表明Fe3O4@SiO2-NH2已经成功制备;图2b中多出的1446和1581cm-1的吸收峰可以归因于苯环骨架振动,而1681-1700cm-1的吸收峰是羰基的红外吸收特征峰。以上结果表明,聚酰亚胺壳层成功的修饰到磁性纳米粒子表面。
图3是所制备的萘基聚酰亚胺磁性复合物的扫描电镜图,由图可以看出,所制备的磁性材料颗粒粒径在350nm左右,纳米颗粒呈现出球形结构且分散性良好。
足够的磁性能保证萘基聚酰亚胺磁性复合物被外部磁铁快速地从样品溶液中分离出来。因此,采用磁滞回线仪对萘基聚酰亚胺磁性复合物的磁性进行了考察。结果如图4所示,Fe3O4@SiO2-NH2和萘基聚酰亚胺磁性复合物的最大饱和磁化强度分别为56.5emμ/g和44.4emμ/g。尽管由于萘基聚酰亚胺材料的修饰导致饱和磁化强度降低,但是萘基聚酰亚胺磁性复合物的超顺磁性仍足以保证其在实际应用中具有良好的磁响应性。
XRD射线衍射是表征物质有序结构的一种有效手段,为了进一步研究萘基聚酰亚胺磁性复合物的结构,采用XRD对复合物进行了表征。从图5可知,Fe3O4@SiO2-NH2中有6个明显的峰为Fe3O4的特征吸收峰;磁性萘基聚酰亚胺复合物在12.4°、14.9°、18.0°和28.2°出现了萘基聚酰亚胺聚合物的特征吸收峰,进一步说明萘基聚酰亚胺聚合物被成功修饰到磁性Fe3O4纳米粒子表面上。
实施例2、萘基聚酰亚胺磁性复合物的吸附性能测试:
取4mg萘基聚酰亚胺磁性复合物,加入浓度为0.2μg/mL的苏丹红混标溶液5mL,考察超声时间对苏丹红吸附效率的影响。如图6所示,本发明萘基聚酰亚胺磁性复合物对苏丹红化合物的吸附效率随着吸附时间的延长而增大,在8min时吸附效率达到90%以上。
实施例3、萘基聚酰亚胺磁性复合物与商品化萃取材料对比:
为了考察萘基聚酰亚胺磁性复合物对苏丹红的萃取效果,选取六种商品化的萃取剂,包括中性氧化铝、C18、NH2、MCX、HLB和MAX,与之进行了对比。分别称取3.0mg上述六种萃取剂加入到苏丹红溶液中(0.2μg/mL,5.00mL),吸附10min后,移取萃取后的苏丹红溶液进样分析,计算吸附效率。如图7所示,萘基聚酰亚胺磁性复合物对苏丹红的吸附效率远高于商品化吸附剂,说明其在苏丹染料吸附方面的具有独特优势。
实施例4、萘基聚酰亚胺磁性复合物的稳定性和重复性考察:
称取4mg萘基聚酰亚胺磁性复合物,加入浓度为0.2μg/mL的苏丹红混标溶液5mL,超声吸附8min,移去上清液,向复合物中加入2mL 0.5%(v/v)甲酸-甲醇溶液,超声2min后,移出有机相过0.2μm的水系滤膜后,进样分析苏丹红的回收率。将上述经过吸附-洗脱过程的萘基聚酰亚胺磁性复合物依次使用2mL甲醇与2mL乙酸乙酯洗涤后,重复上述吸附实验,计算吸附效率。结果如图8所示,该材料经过15次吸附-洗脱循环过程后,其吸附效率下降在8%以内,表明该材料具有较好的稳定性和可重复利用性能。

Claims (6)

1.萘基聚酰亚胺磁性复合物在萃取苏丹红化合物时作为吸附剂的应用,其特征在于,所述萘基聚酰亚胺磁性复合物包括磁性Fe3O4内核以及核外依次包裹的SiO2层和萘基聚酰亚胺层,所述萘基聚酰亚胺层含有苯环、C=O、C-N、C-C和C=C键;
所述萘基聚酰亚胺磁性复合物的制备方法为,将氨基修饰的Fe3O4@SiO2-NH2纳米粒子分散至溶剂中,加入1,4,5,8-萘四甲酸酐与尿素,进行反应,最后洗涤、干燥,得到萘基聚酰亚胺磁性复合物;
所述氨基修饰的Fe3O4@SiO2-NH2纳米粒子的制备方法为:
(1)采用溶剂热法制备磁性Fe3O4纳米粒子;
(2)采用溶胶-凝胶聚合法对磁性Fe3O4纳米粒子进行表面修饰,制备具有核壳结构的磁性Fe3O4@SiO2粒子;
(3)将磁性Fe3O4@SiO2纳米粒子超声分散至溶剂中,在搅拌下加入3-氨丙基三乙氧基硅烷,加热回流反应,最后洗涤、干燥,得到氨基修饰的Fe3O4@SiO2-NH2纳米粒子。
2.根据权利要求1所述的应用,其特征在于,所述萘基聚酰亚胺磁性复合物的制备方法中氨基修饰的Fe3O4@SiO2-NH2纳米粒子、1,4,5,8-萘四甲酸酐与尿素的重量比为1:1.35-1.45:0.25-0.35,溶剂为N-甲基-2-吡咯烷酮。
3.根据权利要求1所述的应用,其特征在于,所述萘基聚酰亚胺磁性复合物的制备方法中反应条件为:先在室温下搅拌3-5 h,然后加热至170-190℃反应1-2 h。
4.根据权利要求1所述的应用,其特征在于,所述萘基聚酰亚胺磁性复合物的制备方法中洗涤条件为:先用体积比1:1的丙酮和N-甲基-2-吡咯烷酮混合液洗涤,然后用乙醇洗涤,再用水洗涤,最后用乙醇洗涤。
5.根据权利要求1所述的应用,其特征在于,所述萘基聚酰亚胺磁性复合物的制备方法中干燥条件为:温度40-50℃,真空,时间为12 h。
6.根据权利要求1所述的应用,其特征在于,所述氨基修饰的Fe3O4@SiO2-NH2纳米粒子的制备方法中步骤(1)的具体方法为:称取2.7 g FeCl3·6H2O固体于100 mL的烧杯中,加入80mL的乙二醇,超声使其溶解,然后加入7.2 g无水乙酸钠和2.0 g聚乙二醇,超声20 min;转移至高压反应釜中,在200℃下反应12 h,依次使用乙醇和二次蒸馏水洗涤反应生成的Fe3O4纳米粒子,即得;
步骤(2)的具体方法为:向含有步骤(1)Fe3O4纳米粒子的乙醇水溶液中加入氨水和硅酸四乙酯,搅拌反应,制得具有核壳结构的Fe3O4@SiO2粒子;Fe3O4纳米颗粒(g)与硅酸四乙酯(mL)和氨水(mL)的比例为1:2:3;反应温度为45℃,反应时间为11 h;所用的乙醇水溶液的体积分数为80%;
还包括反应结束后加入0.1 mol/L的HCl溶液,分散后磁石分离,先依次用乙醇、丙酮、二次蒸馏水洗涤,再用乙醇洗涤;在60℃下真空干燥6 h,得到Fe3O4@SiO2纳米粒子储于干燥器中备用;
步骤(3)中Fe3O4@SiO2纳米粒子(g)与3-氨丙基三乙氧基硅烷(mL)的比例为1:2;溶剂为无水甲苯;反应温度为115℃,反应时间为8 h;搅拌条件为转速20-30 rpm;洗涤时,依次用甲苯、甲醇、丙酮、二次蒸馏水、乙醇洗涤;干燥条件为:温度40℃,时间为12 h。
CN201910516208.1A 2019-06-14 2019-06-14 萘基聚酰亚胺磁性复合物及其制备方法和应用 Active CN110215912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910516208.1A CN110215912B (zh) 2019-06-14 2019-06-14 萘基聚酰亚胺磁性复合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910516208.1A CN110215912B (zh) 2019-06-14 2019-06-14 萘基聚酰亚胺磁性复合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110215912A CN110215912A (zh) 2019-09-10
CN110215912B true CN110215912B (zh) 2022-05-27

Family

ID=67817298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910516208.1A Active CN110215912B (zh) 2019-06-14 2019-06-14 萘基聚酰亚胺磁性复合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110215912B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091861A (zh) * 2017-12-14 2018-05-29 东华大学 一种基于聚酰亚胺结构的有机电极材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748064B (zh) * 2011-08-17 2016-08-24 株式会社可乐丽 金属配合物以及由其制成的吸附材料、储藏材料和分离材料
JP6596196B2 (ja) * 2014-09-05 2019-10-23 東京応化工業株式会社 多孔質膜製造用ワニスの製造方法
US9845380B2 (en) * 2014-12-30 2017-12-19 The Board Of Trustees Of The University Of Alabama Ionic polyimide materials and methods of use
CN107207760B (zh) * 2015-02-06 2021-03-16 东京应化工业株式会社 聚酰亚胺及/或聚酰胺酰亚胺多孔质体及其制造方法和用途
CN109201019B (zh) * 2018-09-20 2021-06-01 河南中医药大学 一种磁性聚酰亚胺复合材料及其制备方法和应用
CN109364880B (zh) * 2018-10-30 2021-02-12 西北师范大学 一种具有循环解析功能的超分子有机框架材料及在去除水体中有机染料的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091861A (zh) * 2017-12-14 2018-05-29 东华大学 一种基于聚酰亚胺结构的有机电极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Naphthalene-based Polyimide Derivatives as Organic Electrode Materials for Lithium-ion Batteries;Chaoyi Chen et.al;《Electrochimica Acta》;20170127;第229卷;第387-395页 *

Also Published As

Publication number Publication date
CN110215912A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN110215904B (zh) 磁性羧基化共价有机骨架纳米复合材料及其制备方法和应用
CN109201019B (zh) 一种磁性聚酰亚胺复合材料及其制备方法和应用
CN105879842B (zh) 一种磁性PAFs固相萃取剂及其制备方法和应用
Wang et al. Preparation of fluorescent nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning
CN111530437B (zh) 一种具有混合作用模式的磺酸功能化共价有机骨架磁性复合材料及其制备方法和应用
CN109400889B (zh) 一种磁性修饰的金属有机多孔材料及其制备和应用
CN106824099B (zh) 一种磁性CCPs固相萃取剂及其制备方法和应用
CN109351335B (zh) 一种磁性三叠烯-三嗪共价骨架固相萃取剂及其制备方法和应用
CN111530438B (zh) 一种具有混合作用模式的羧基功能化共价有机骨架磁性复合材料及其制备方法和应用
CN114471476B (zh) 磁性多孔有机骨架材料及其制备方法与应用
CN114409913B (zh) 一种磁性金属有机框架材料及其制备方法和应用
CN106732385B (zh) 复合磁性杂化材料Fe3O4/MOFs及其制备方法和应用
Kara et al. Synthesis, characterization and catalytic properties of sulfonic acid functionalized magnetic-poly (divinylbenzene-4-vinylpyridine) for esterification of propionic acid with methanol
Wang et al. Facile fabrication of snowman-like magnetic molecularly imprinted polymer microspheres for bisphenol A via one-step Pickering emulsion polymerization
Duan et al. Magnetically modified porous β-cyclodextrin polymers for dispersive solid-phase extraction high-performance liquid chromatography analysis of Sudan dyes
CN102807254A (zh) 氨基功能化的超顺磁性碳纳米球及其制备方法
CN106512958B (zh) 一种核酸适配体修饰壳聚糖纳米纤维的制备方法及应用
Dong et al. A quinoline group modified SBA-15 INHIBIT logic gate with [Cu2+ and Zn2+] or [Cu2+ and Cd2+] as inputs
Lu et al. Magnetic solid-phase extraction using polydopamine-coated magnetic multiwalled carbon nanotube composites coupled with high performance liquid chromatography for the determination of chlorophenols
CN110215912B (zh) 萘基聚酰亚胺磁性复合物及其制备方法和应用
CN114100580B (zh) 具有轻烃吸附功能的复合材料及其制备方法及利用其去除轻烃的方法和应用
Zhang et al. Confinement effect of ionic liquid: improve of the extraction performance of parent metal organic framework for phthalates
CN113292690A (zh) 吩噁嗪二维共价有机框架材料及其制备方法与应用
CN112979893A (zh) 磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法
CN110538485A (zh) 纳米氮化碳/氧化铜复合材料、纳米氮化碳/氧化铜复合固相微萃取器及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190910

Assignee: Henan Senses Analytical Technology Co.,Ltd.

Assignor: HENAN University OF CHINESE MEDICINE

Contract record no.: X2023980054231

Denomination of invention: Naphthyl polyimide magnetic composites and their preparation methods and applications

Granted publication date: 20220527

License type: Exclusive License

Record date: 20240102

EE01 Entry into force of recordation of patent licensing contract