CN110195208A - 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法 - Google Patents

一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法 Download PDF

Info

Publication number
CN110195208A
CN110195208A CN201910506035.5A CN201910506035A CN110195208A CN 110195208 A CN110195208 A CN 110195208A CN 201910506035 A CN201910506035 A CN 201910506035A CN 110195208 A CN110195208 A CN 110195208A
Authority
CN
China
Prior art keywords
nbmotawv
sull
entropy alloy
band gap
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910506035.5A
Other languages
English (en)
Other versions
CN110195208B (zh
Inventor
李晓娜
毕林霞
利助民
王清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910506035.5A priority Critical patent/CN110195208B/zh
Publication of CN110195208A publication Critical patent/CN110195208A/zh
Application granted granted Critical
Publication of CN110195208B publication Critical patent/CN110195208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法,属半导体材料技术领域。这种薄膜具有如下通式:NbMoTaWV x O y x=0~2,y=0.1~7,Nb:Mo:Ta:W:V接近1:1:1:1:x;呈纳米晶或非晶态。使用射频磁控溅射法制备,整体氧化,可获得均匀致密、表面平整的氧化物薄膜。通过调整V元素的含量以及氧气分压可改变薄膜性能,使薄膜的带隙宽度在0.5~2eV区间、硬度在7~17Gpa区间、电阻率在50~1×107 区间变化。该薄膜性能可从导体过渡到半导体,可用于光学材料、电容器材料以及高硬耐磨材料。

Description

一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法
技术领域
本发明涉及一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法,属半导体材料技术领域。
背景技术
高熵合金(High-entropy alloys)简称HEA,是由五种或五种以上等量或近等量金属形成的一种新型合金。其性质由其组成元素共同决定,易形成单一的固溶体相,使得高熵合金表现出优异的性能:高硬度、良好的耐腐蚀性、耐磨性、耐高温性等。
研究表明,高熵合金整体氧化并非是生成每种元素的氧化物的集合,而是生成一种多元素高熵合金氧化物。相对于单独元素氧化物,高熵合金氧化物有以下优点:首先,高熵合金氧化物的性能特点是由所有组成元素共同决定的,可以通过改变任一组元的含量来控制其成分及性能。其次,高熵合金氧化物薄膜可以通过射频磁控溅射技术制备,制备简便,成膜均匀致密,更可以轻易改变氧分压来调整薄膜的成分,性能易调节。
NbMoTaWV高熵合金的构成组元包括五种元素,单一组元的氧化物多数是半导体,其带隙及性能特点如下:NbO2 和VO2带隙宽度分别约为在0.7eV、 0.6eV,具有明显的热致相变性能,可用作智能热变窗口材料、超高速电磁脉冲保护装置、控温包装以及热传感器等。而Nb2O5和V2O5的带隙宽度则达到3.7、2.65,具有良好的电致变色性能、较高的介电常数,一般应用于阴极电致变色材料,光学材料和电容器材料等领域。此外,MoO3、Ta2O5、WO3三种氧化物的带隙宽度也在3.0以上,均表现出电致变色性能优良、漏电流小、介电常数高等特点,可用于电致变色材料、气体传感器、催化剂等。
单一氧化物薄膜性能较为固定,可调性小,而经整体氧化的高熵合金氧化物是多组元的,性能由各组元共同调控,故推测其结合各单一元素氧化物的性能,形成一种热电性能优良、高硬度以及高耐磨性的新型氧化物薄膜。
本发明要解决的技术问题是:为解决单个元素氧化物性能单一以及可调节性的问题,制备一种性能易调节、结合各组成元素金属氧化物性能的难熔高熵合金氧化物薄膜半导体材料。
发明内容
针对现有技术中存在的问题,本发明提供一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法,要求获得性能易调节的高熵合金氧化物薄膜,通过射频磁控溅射方法在单晶硅基体上制备了可变带隙的NbMoTaWV高熵合金氧化物薄膜。
本发明采用的技术方案是:一种可变带隙的NbMoTaWV高熵合金氧化物薄膜,高熵 合金氧化物薄膜具有如下通式:NbMoTaWV x O y x=0~2,y=0.1~7,呈纳米晶或非晶态,该高熵 合金氧化物薄膜的带隙宽度在0.5~2eV区间、硬度在7~17Gpa区间、电阻率在50~1×107 区间内可调;高熵合金氧化物薄膜从导体会过渡到半导体。
所述的一种可变带隙的NbMoTaWV高熵合金氧化物薄膜的制备方法,采用的具体步骤如下:
(一)制备合金溅射靶材
选用纯度均不低于99.9%的纯金属组元制备高纯度合金靶材,用以下两种方式:一是将NbMoTaWV五种金属组元直接熔炼成合金靶,靶材金属组元的配比可调;二是制备组合靶,先将NbMoTaW四组成元素熔炼成原子百分比为1:1:1:1的合金靶,再将一定数量的V片粘贴在四元合金靶的主溅射区,制备成NbMoTaWV x 五元组合合金靶;
(二)制备高熵合金NbMoTaWV氧化物薄膜
清洗基片:选用单晶Si基片,依次经酒精、乙醇和去离子水超声清洗,各10分钟,然后将单晶硅片放入5%的氢氟酸溶液中腐蚀2~3分钟,再用去离子水冲洗干净,用N2吹干放入真空室;
磁控溅射制备薄膜:将真空抽至3.0×10-4Pa以下后开始工作,按照所需氧含量充入合适比例的氩气/氧气混合气体,使气压保持稳定,随后设置相应设备参数:电源类型选用射频电源,工作气压为1.5Pa,溅射功率为100W,靶基距为8~12cm;设置完毕后起辉,设定溅射时间,包括预溅射以及正式溅射;溅射完毕后,设备冷却30min后取出薄膜样品。
所述高熵合金氧化物薄膜用于光学材料、电容器材料以及高硬耐磨材料。
采用上述技术方案制备的可变带隙的NbMoTaWV高熵合金氧化物薄膜,呈纳米晶或非晶形态。薄膜的氧元素含量可通过改变氧气分压进行调节,V元素含量可通过添加V片的数量来控制,制备简便,成分及性能易调控。
本发明的有益效果是:这种可变带隙的NbMoTaWV高熵合金氧化物薄膜使用射频磁控溅射法制备薄膜,过程简易,获得的薄膜纯度高、致密均匀、附着性好,并且可以通过改变薄膜成分调整带隙宽度、硬度、电阻率等性能,实现了从导体到半导体的过渡,拓宽了薄膜的应用领域,可应用于光电材料及高硬耐磨薄膜等领域。
该薄膜在以下方面具有明显优势:光学性能:薄膜的带隙宽度可通过调整氧分压来控制,从而拓宽了薄膜在光学领域的应用。例如光学器件的窗口材料等;电学性能:电阻率变化范围大且可调节,可以针对不同应用材料调整其电阻率。机械性能:薄膜在硬度、高温稳定性、化学稳定性等方面性能优异,可应用在高硬耐磨等领域。
附图说明
图1是NbMoTaWV1.18O6.22高熵合金氧化物薄膜的(αE)2 - E关系曲线。
图2是NbMoTaWV1.28O5.66高熵合金氧化物薄膜的(αE)2 - E关系曲线。
图中:横坐标是能量E,单位为eV,纵坐标是(αE)2,由图可知本发明制备的高熵合金氧化物薄膜NbMoTaWV1.18O6.22和NbMoTaWV1.28O5.66的带隙宽度分别为1.26eV和1.09eV。
具体实施方式
下面结合技术方案详细叙述本发明的具体实施例。
实施例1:磁控溅射方法制备NbMoTaWV1.18O6.22薄膜
(一)制备NbMoTaWV组合合金溅射靶材
制备合金靶:按照Nb: Mo: Ta:W原子百分比1:1:1:1称取各金属组元质量熔炼成靶材,纯度为99.9%;将切好的Ф8mmV片均匀粘贴到所述四元靶材主溅射区制备成五元组合合金靶。
(二)制备耐高温NbMoTaWV高熵合金薄膜
清洗基片:选用单晶Si基片,依次经酒精、乙醇和去离子水超声清洗(各10分钟),然后将单晶硅片放入5%的氢氟酸溶液中腐蚀2~3分钟,再用去离子水冲洗干净,用N2吹干放入真空室;
磁控溅射制备薄膜:抽真空至3.0×10-4Pa以下,然后充入高纯Ar2和氧气的混合气体,使气压保持稳定,氧气分压为2.56%,选用射频电源,工作气压为1.5Pa,溅射功率为100W,靶基距为8~12cm,起辉后,进行预溅射40min,预溅射完成后,进行正式溅射90min。溅射完毕后,设备冷却30min后可取出薄膜样品。
(三)分析
本发明中薄膜成分采用日本岛津公司的EPMA-1600电子探针分析仪进行测定,成分为 NbMoTaWV1.18O6.22。膜厚由截面扫描电子显微分析得出,为796nm。采用UV3600型紫外-可见- 近红外分光光度计测定分析带隙宽度,如图1所示,可得出此成分下的薄膜带隙宽度为 1.26eV。硬度由MTS XP纳米压痕仪进行测定,此成分下的薄膜硬度为9.82Gpa。采用四探针 法测试电阻,获得此成分下的薄膜电阻率为1.26×106
(四)应用
这种可变带隙的NbMoTaWV高熵合金氧化物薄膜可用于光学材料、电容器材料以及高硬耐磨材料。
实施例2:磁控溅射方法制备NbMoTaW V1.28O5.66薄膜
制备过程与实施例1相同,仅氧气分压降低为2.04%,薄膜表征方法与实施例1相同。薄 膜成分为NbMoTaWV1.28O5.66,膜厚为730nm。带隙宽度测试,如图2所示,可得出此成分下的薄 膜带隙宽度为1.09eV。硬度为9.47Gpa,电阻率为1.6×105 。这种可变带隙的 NbMoTaWV高熵合金氧化物薄膜可用于光学材料、电容器材料以及高硬耐磨材料。

Claims (3)

1.一种可变带隙的NbMoTaWV高熵合金氧化物薄膜,其特征是:高熵合金氧化物薄膜具有如下通式:NbMoTaWV x O y x=0~2,y=0.1~7,呈纳米晶或非晶态,该高熵合金氧化物薄膜的带隙宽度在0.5~2eV区间、硬度在7~17Gpa区间、电阻率在50~1×107 区间内可调;高熵合金氧化物薄膜从导体会过渡到半导体。
2.根据权利要求1所述的一种可变带隙的NbMoTaWV高熵合金氧化物薄膜的制备方法,其特征是:采用的具体步骤如下:
(一)制备合金溅射靶材
选用纯度均不低于99.9%的纯金属组元制备高纯度合金靶材,用以下两种方式:一是将NbMoTaWV五种金属组元直接熔炼成合金靶,靶材金属组元的配比可调;二是制备组合靶,先将NbMoTaW四组成元素熔炼成原子百分比为1:1:1:1的合金靶,再将一定数量的V片粘贴在四元合金靶的主溅射区,制备成NbMoTaWV x 五元组合合金靶;
(二)制备高熵合金NbMoTaWV氧化物薄膜
清洗基片:选用单晶Si基片,依次经酒精、乙醇和去离子水超声清洗,各10分钟,然后将单晶硅片放入5%的氢氟酸溶液中腐蚀2~3分钟,再用去离子水冲洗干净,用N2吹干放入真空室;
磁控溅射制备薄膜:将真空抽至3.0×10-4Pa以下后开始工作,按照所需氧含量充入合适比例的氩气/氧气混合气体,使气压保持稳定,随后设置相应设备参数:电源类型选用射频电源,工作气压为1.5Pa,溅射功率为100W,靶基距为8~12cm;设置完毕后起辉,设定溅射时间,包括预溅射以及正式溅射;溅射完毕后,设备冷却30min后取出薄膜样品。
3.根据权利要求1所述的一种可变带隙的NbMoTaWV高熵合金氧化物薄膜的应用,其特征在于:所述高熵合金氧化物薄膜用于光学材料、电容器材料以及高硬耐磨材料。
CN201910506035.5A 2019-06-12 2019-06-12 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法 Active CN110195208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910506035.5A CN110195208B (zh) 2019-06-12 2019-06-12 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910506035.5A CN110195208B (zh) 2019-06-12 2019-06-12 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110195208A true CN110195208A (zh) 2019-09-03
CN110195208B CN110195208B (zh) 2021-03-19

Family

ID=67754439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910506035.5A Active CN110195208B (zh) 2019-06-12 2019-06-12 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110195208B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527970A (zh) * 2019-10-11 2019-12-03 中国科学院兰州化学物理研究所 一种全陶瓷基高温太阳能吸收涂层及其制备方法
CN111118464A (zh) * 2019-12-30 2020-05-08 四川大学 一种纳米晶高熵氧化物薄膜的制备方法及应用
CN114015995A (zh) * 2021-11-10 2022-02-08 中国人民解放军军事科学院国防科技创新研究院 一种Nb-Ta-W多主元合金薄膜及其制备方法
WO2022249880A1 (ja) * 2021-05-25 2022-12-01 東芝マテリアル株式会社 多元系複合酸化物粉末、それを用いた電気化学デバイス及び触媒、並びに多元系複合酸化物粉末の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112759A (zh) * 2015-08-12 2015-12-02 太原理工大学 耐高温的高熵合金材料及其制备方法
CN105886812A (zh) * 2016-04-20 2016-08-24 中国科学院理化技术研究所 一种WNbTaMoV高熵合金及其制备方法
CN106001566A (zh) * 2016-06-29 2016-10-12 华南理工大学 一种高强度高熵合金NbMoTaWV及其制备方法
KR20170027520A (ko) * 2015-09-02 2017-03-10 한국과학기술원 단상의 다원계 고엔트로피 합금 및 이의 제조방법
JP2018070949A (ja) * 2016-10-28 2018-05-10 国立大学法人大阪大学 多成分系からなる合金
CN108359939A (zh) * 2018-03-06 2018-08-03 大连理工大学 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112759A (zh) * 2015-08-12 2015-12-02 太原理工大学 耐高温的高熵合金材料及其制备方法
KR20170027520A (ko) * 2015-09-02 2017-03-10 한국과학기술원 단상의 다원계 고엔트로피 합금 및 이의 제조방법
CN105886812A (zh) * 2016-04-20 2016-08-24 中国科学院理化技术研究所 一种WNbTaMoV高熵合金及其制备方法
CN106001566A (zh) * 2016-06-29 2016-10-12 华南理工大学 一种高强度高熵合金NbMoTaWV及其制备方法
JP2018070949A (ja) * 2016-10-28 2018-05-10 国立大学法人大阪大学 多成分系からなる合金
CN108359939A (zh) * 2018-03-06 2018-08-03 大连理工大学 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG KANG等: "《Oxidation behavior of high entropy Mo25 Nb25 Ta25 W25 alloy》", 《SPECIAL CASTING & NONFERROUS ALLOYS》 *
冯骁斌: "《纳米晶NbMoTaW难熔高熵合金薄膜力学性能及其热稳定性》", 《精密成形工程》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527970A (zh) * 2019-10-11 2019-12-03 中国科学院兰州化学物理研究所 一种全陶瓷基高温太阳能吸收涂层及其制备方法
CN110527970B (zh) * 2019-10-11 2021-07-20 中国科学院兰州化学物理研究所 一种全陶瓷基高温太阳能吸收涂层及其制备方法
CN111118464A (zh) * 2019-12-30 2020-05-08 四川大学 一种纳米晶高熵氧化物薄膜的制备方法及应用
WO2022249880A1 (ja) * 2021-05-25 2022-12-01 東芝マテリアル株式会社 多元系複合酸化物粉末、それを用いた電気化学デバイス及び触媒、並びに多元系複合酸化物粉末の製造方法
CN114015995A (zh) * 2021-11-10 2022-02-08 中国人民解放军军事科学院国防科技创新研究院 一种Nb-Ta-W多主元合金薄膜及其制备方法
CN114015995B (zh) * 2021-11-10 2023-09-22 中国人民解放军军事科学院国防科技创新研究院 一种Nb-Ta-W多主元合金薄膜及其制备方法

Also Published As

Publication number Publication date
CN110195208B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN110195208A (zh) 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法
Wu et al. Cu films prepared by bipolar pulsed high power impulse magnetron sputtering
Arnell et al. Recent developments in pulsed magnetron sputtering
Cemin et al. Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering
CN110106490A (zh) 一种耐高温高熵合金NbMoTaWV薄膜及其制备方法
CN108359939A (zh) 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法
Lin et al. Structure and properties of Cr2O3 coatings deposited using DCMS, PDCMS, and DOMS
Ma et al. Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering
CN101168836A (zh) 一种采用共溅射沉积法制备碲化铋合金薄膜的方法
KR20150053959A (ko) 기판 상에 금속-보로카바이드 층을 제조하는 방법
Zhou et al. Effects of deposition parameters on tantalum films deposited by direct current magnetron sputtering
CN110205597A (zh) 多段式双极性脉冲高功率脉冲磁控溅射方法
CN105925946A (zh) 一种利用磁控溅射法在铝合金表面制备TiN或CrN薄膜的方法
Li et al. Electron-induced secondary electron emission properties of MgO/Au composite thin film prepared by magnetron sputtering
Wang et al. Effect of oxygen partial pressure on crystal quality and electrical properties of RF sputtered PZT thin films under the fixed Ar flow and sputtering pressure
KR20080078507A (ko) 자성 및 비자성 원소를 포함하는 스퍼터링 타겟 내 누설 자속 제어방법 및 시스템
CN106884141A (zh) 一种Ti2AlC MAX相薄膜的制备方法
Chen et al. Characteristics of NixFe100− x films deposited on SiO2/Si (1 0 0) by DC magnetron co-sputtering
Anders Deposition of niobium and other superconducting materials with high power impulse magnetron sputtering: concept and first results
Window et al. Magnetically confined sputter source with high ion flux
CN102386326B (zh) 一种用于高密度阻变存储的氮化铜阻变材料的制备方法
CN105441877A (zh) 电阻式热蒸发制备铁磁性材料Fe3Si薄膜的工艺
Nayan et al. Correlation between microstructure of copper oxide thin films and its gas sensing performance at room temperature
Roy et al. Lead zirconate titanate films produced by ‘facing targets’ RF-sputtering
CN110344015A (zh) 一种脉冲电场辅助的薄膜制备或处理的装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant